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REAL ROOT COUNTING FOR SOME ROBOTICS PROBLEMS

FABRICE ROUILLIER
IRMAR Université de Rennes I
Avenue des Butles de Coesme, 35042 Rennes cedex, France

Abstract. We propose two algorithms to compute the number of real roots
of zero-dimensional systems, using effective algebraic methods. To compare
their behaviour on practical examples, we apply these methods to systems
that describe some robotics problems (e.g. direct kinematic problem of
parallel manipulators).

1. Introduction

Let Z be a domain, K its Fraction field, S = {fi, f2, -+, fs} a system
of polynomial equations in Z[X1,---, X,;] with a finite set of distinct roots
X =Aay,...,ay} of respective multiplicities {my,..., mgy} and , I the ideal
generated by § .

M is a finite dimensional vector space of

In such cases, A =
dimension D = "L, m;.

Referring to (Rouillier , 1995), we assume in this paper the existence of
efficient algorithms that compute the following (from a Groebner basis) :

— A Z-basis B=wy,...,wp of A

— The multiplication table of A (with respect to B), defined by a D x D
matrix MT = (MT[i, j])i1<ij<p, where MT[z, j] is the column-vector
whose coordinates are the coefficients of w;w; with respect to B (e.g.

wiwj = Ykey (MTi, ]k - wi)-

We study two different strategies in order to count the number of real
roots :

— Hermite’s method, which computes a quadratic form whose signature
gives the number of real roots of the system.



— The Generalized Shape Lemma , which computes an univariate poly-
nomial that has the same number of real roots as the system . The
number of distinct real roots can then be computed using a Sturm-
Habicht sequence.

Since the reduction of a quadratic form needs O(n?) basic arithmetic
operations and Sturm-Habicht sequences needs O(n?) operations, the sec-
ond method is asymptotically better. In practice however, the first method
behaves better in many cases.

2. Hermite’s method

For every h € A, we define :

— The linear homomorphism of multiplication by h:
mp . A — A
q +— h-q
— The matrix My of mj, with respect to B
— The h-trace symmetric bilinear form (or simply trace if h = 1) :

Trp, : AxA — K
(f,9) ~— Trace(fgh)
where Trace( fgh) is the trace of Mygp,.
Hermite’s quadratic form :
Qr: A — K
Jo— TR )

Let C (resp. R) be the algebraic closure (resp. real closure) of Z, the fol-
lowing theorem relates the rank and signature of () to the number of zeros
of §'in C™ or R™ (see (Petersen & al., 1993)) :

Theorem 1 Let S be a zero-dimensional system of Z[X1,...,X,] with a
finite set of distinct zeros X, C' (resp. R) the algebraic closure (resp. real
closure) of Z. Then :

— rank(Qn) = {6 € C"N X, h(d) # 0}

— signature(Qr) = ${6 € R"NAX,h(6) >0} — {6 € R*"NX,h(é) < 0}
Remark 1 The second formula allows us to produce an algorithm ”a la Ben
Or - Kozen -Reif” to deal with polynomial inequalities (=0, >0, < 0)
over X (R (see (Ben-Or & al., 1986)).

Applying the previous theorem with A = 1, we obtain an algorithm to

compute the number of distinct real or complex roots of a zero-dimensional
system :

Corollary 1 With the notations of theorem 1,



— rank(@Qy) =4{6 € C"N A}
— signature(Qq1) = §{6 € R"N A’}

2.1. COMPUTING HERMITE’S QUADRATIC FORM

Let the multiplication table MT of A with respect to a linear basis B =
{w1,...,wp} be given and for P € A, let Vect(P) be the column-vector
whose coordinates are the coefficients of P with respect to B.

With these notations, the matrix Qn.5 = (Qr,5l7, j])1<i,j<p of @p with
respect to the basis B is defined by :

D
Qn8li,j1 = Qu(wi,w;) = Trace(wiw;h) = > Vect(wiw;wih)y
k=1
A naive algorithm would require us to compute all the products w;w;wy
(resp. wiw;wrwy) to get Q1,8 (resp. Qp.8). Even if we can do these compu-
tations using the strategy proposed in (Rouillier , 1995), the method would
be inefficient because of a dramatic growth of the number of monomials

involved . In order to improve this, we use the linearity of the mapping
trace, as much as possible :

Lemma 1 If we denote by Vir(h) the column-vector
[Trace(hw,), ..., Trace(hwp)]"

then :
— Vir(h) = (Q1.8)F - Vect(h)
— Jorall1<i,5< D, Qugli,j]= MTJ[i,j]-Vir(h)

Proof: Let h = zle apwg. Then, forall 1 <¢ < D,

D
Trace(hw;) = Z arTrace(wyw;)
k=1
and so Vir(h) = (Q1,8)" - Vect(h).
Let wiw; = SR, agm)wl, then : N
Quslisf] = Sk Vee(wwiwrh)y = Do T2y af*)Veet(wwih)y
=P, ay’]) P Veet(wwph)y = Y2, aEZ’J)T'race(hwg)
= Vect(wwj) - Vir(h) -

When studying systems with coeflicients in Z, one obtains for Hermite’s
quadratic form a matrix with coefficients in K, but using a simple trans-
formation, one can assume that the matrix of ()5 5 has coeflicients in Z.



The author’s recent algorithm (see (Rouillier, 1994)) generalizes the
Bareiss identities in order to reduce @y 5 by doing all the computations in
7 with O(D?) basic operations, and allows a good control of the size of the
intermediate results, when Z is the domain of integers (e.g O(D(t+1og(D)))
if ¢ is the maximum size of the coefficients of Q4 3).

We can now describe a first algorithm for computing the number of
distinct real roots of a given zero-dimensional system :

Algorithm T
Input : A Groebner basis of S for any admissible monomial ordering and
the associated multiplication table MT.
— step 1 : Compute Vir(1) = [, (MT[1, 1)), ..., "R (MT[D, i]))"
— step 2 : Compute

Q87,1 = Q18lt, ] = MTT[i,j]- Vir(1) , 1 <i<j< D

— step 3 : Compute the signature of @)1 3.

3. Generalized Shape lemma

The idea of the Generalized Shape lemma (see (Alonso & al., 1994)) is to
express the solutions of a polynomial system as rational functions in the
roots of a univariate polynomial.

Let Y = {fB1,...,8p} be the set of the roots (not necessary distinct) of
S.

Let ¢ be a separating element of A i.e. such that for every z # y in Y,
t(z) # t(y) and let v be any element of A.

Consider the polynomials

f,1) = TIT —1(y))

yeY

g(U,t,T)I Zv(x) H (T_t(y))

TEY yEY y#T

If 3 is a zero of S of multiplicity m, then f(¢,¢(5)) = 0, and we have

(m—-1)(, " g(v,t,T)
o(p) = L0, LUB)) (7%%1 )
T=t(5)

) | T
where g(¢,T) = f'(t,T) = g(1,¢,T).

Proposition 1 Let S = {fi,..., fs} be a zero-dimensional system of poly-
nomials of Z[X1,...,X,], and X = {ay,...aq} the distinct solutions of S
with respective multiplicities {my,...,mgq}.



There exist a separating element t in A and polynomials

f(th) ) g(th) 3 gl(th)a . '7gn(t7T)

so that :
— The roots of f(t,T) are exactly {t(a1),...,t(aq)} with respective mul-
tiplicities {my,...,mgq}

— If B is a zero of S of multiplicity m,

(1)
g (w1(8))
Xi(B) = g(m=1(1,1(8))

Proof : The existence of a separating element is given by the following
lemma :

Lemma 2 If X' contains less than d points, then at least one among the
w = X1+ 1Xg+ ...+ "X, for 0 < i < (n— 1)ﬂ%l is a separaling
element.

Proof : Consider a couple (z,y) = ((z1,...,24),(y1,...,y,)) of distinct
points of X', and let {(z, y) be the number of index 7 such that w;(z) = w;(y).
Since the polynomial (z1 —y1)+...4 (2 — ¥, )t" ! has no more than k —1
distinct roots (it is not indentically null because @ # y), l[(z,y) is less than
k — 1. Since the total number of couples of distinct points of A" is less than
ﬂ%l, this complete the proof. a

Given a separating element ¢, we complete the proof of the proposition by
taking ¢;(t,T) = g(X;,t,T), i =1...n. O

According to the previous proposition, the number of distinct real roots
of a given system can be easily computed from the Generalized Shape
Lemma :

Corollary 2 Let t be a separating element of A. The number of distinct
real roots of S is exactly the number of real roots of f(t,T). It can also be
found by computing the Sturm-Habicht sequence of f(t,T)

We will not discuss here the problem of finding a separating element,
but, given f(¢,T), g(t,T), ¢1(t,T),...,9,(t,T) for any ¢ (randomly cho-
sen) , we assume that there exists a simple method to check if ¢ is a sepa-
rating element or not (see (Rouillier , 1995)).

An algorithm that computes the number of distinct real roots of a given
zero dimensional system can now be described :

Algorithm TT
Input : A Groebner basis of S for any admissible monomial ordering and
the associated multiplication table MT.



step 1 : Take any ¢ among

D(D - 1)

{(Xi+iXo4 ...+ 'X,,i=0...(n—1) 5

}

step 2 : ComPU-te f(tv T) > g(tv T) ’ gl(tv T)7 e '7gn(t7 T)
step 3 : Check if ¢ is a separating element, and if not go to step 1.
step 4 : Compute the Sturm-Habicht sequence of f(¢,T).

3.1. COMPUTING GSL USING TRACES AND SYMMETRIC FUNCTIONS

The method we propose for computing f(¢,7) = [[,ey(T = t(y)) uses the
classical notion of elementary symmetric functions and their connection
with Newton sums.

Notation 1 We denote by :

— Si(t,Y) = Yrcy yr=i [yer Ly) the it elementary symmetric function

associated with {(B1),...,4(Bp)} -
— Ni(1,Y) = ey t(y)* the i" elementary Newton sum associated with

{t(B1), .., 4(Bp)}

According to this notation, the classical relations that link elementary
symmetric functions to elementary Newton sums can be written as follows :
Z- .
(D = i)8i(1,¥) = D (=1Y N;(t, Y)Si—i(1, V)

j=0

with the convention Sy(¢,Y) = 1.

Let M; the matrix of multiplication by a polynomial ¢ in A. Since the
eigenvalues of M; are the scalars : {t{(y) , y € YV} (see (Petersen & al.,
1993)), the set {N;(¢,Y)} can be computed using the relation :

Trace(t') = Ni(t,Y)
Since 5;(t, V) is the coefficient of 777" in the polynomial [],ey(T—(y)),
f(t,T) can be easily computed by using the traces Trace(t'),i = 1,...D.

Expanding the polynomial g(v,¢,T) (of degree D — 1), we note that the
coefficient of TP=i=1 in g(v,1,T) is

(=1)" > o(y)Si(t, Y\ {y})

yeY

We also extend the notion of elementary symmetric function and elementary
Newton sums :



Definition 1 Given two polynomialst andv € K[X1,...,X,] andY € C™,
- Si(v7t7y) = Eyey v(y)si(t,-y \ {y})
- *Ni(luv l y) = Zyey ,U(y)t(y)z

Lemma 3 Generalized elementary Newton sums and classical elementary

symmetric functions can be linked using the following formula : For 0 <
k<1,

Y uey 0 Sk (L, Y\ {y}) = Np(v, t, V) Sioa(t, V) -
ey o9y T Siko1 (L, Y\ {y})

Proof : Forall k,0<k < 1,

Ni(v,t,Y)S:—x(t,Y) = (Eyey ”(’y)t(y)k> (Zlcy,ﬂlzi—k [Ler t(Z))
Yvey ey sr=iok YY) [Ler 1(2)
Yuey(Crey  sr=iok o) Tloer 2y 1(2)
+2 ey pr=i- k- LU Taer , 2y 1(2))
= ey o(9(y)Sin(t, Y\ {y})+

Eyey v(y)t(y)k+152_k_1(t,y\ {y})

O

We now extend the relation between Newton sums and symmetric func-
tions :

Proposition 2

SZ'(’U, L, y) = Z(_l)j*Nj(va 2 y)Si—j(tv y)

7=0
Proof According to lemma 3, we have :

Si(@,t,y) = Zyey U(y)sz(tvy\ {y}) B
No(v, 8, 3)5:(1,Y) = Yyey v(9)t(y)Si-1(t, Y \ {y})

Using the same argument, we obtain by induction :

Si(v,1,Y) = E] 0( )]N (thvy) -i(t, )
H=1)" Eyey v(®)Hy) So(t, Y\ {y})

Since So(t,Y \ {y}) = 1 the proof is complete. O

Since Trace(vt') = N;(v,t,Y) (for y € Y, the scalars vti(y) are the
eigenvalues of M) g(v,t,T) can be deduced from f(z,T) and the traces
Trace(vt'),i=1...(D —=1).



3.2. COMPUTING GENERALIZED NEWTON SUMS

According to the previous part, there is an easy way to compute the gen-
eralized Shape Lemma from the traces : Trace(vt'), i = 1,...,D — 1 and
Trace(t'),i=1,...,D.

Assume that all the products Vect(w;w;) are known. A straightforward
algorithm computes all the needed products vi¢ and, using the previous
results, the expressions T'race('vti).

Procedure Compute-Traces-I
Input :
MT
t /* a separating element */
Output :
Newtony, a vector of dimension D + 1 so that Newton,[i] = N;(t,Y)
Try, a n - D matrix so that T'r[7, j] = N;j(X;,t,Y)
Begin
Vir .= [Trace(wy), ..., Trace(wp)]”
tmp :=[1,0,...,0]
For j from 0 to D — 1 do
Newtony[j] :=tmp - Vir
For ¢ from 1 to n do
Tryi, §] := (Mx, -tmp) - Vir
Ifj<D-1
tmp := M; - tmp
Newton,[D] :=tmp - Vir

End
Proof of the algorithm Since Vect(P) - Vir = Trace(P), the proof of
the algorithm is obvious. a

The following procedure is an optimization of the previous one, signifi-
cantly decreasing the number of basic operations :

Procedure Compute-Traces
/* Same Input and Output as Compute-Traces-1 */
Begin
tmp = [Trace(w), ..., Trace(wp)]”
Newton,[0] := D
For j from 0 to D — 1 do
For ¢ from 1 to n do
Tri, §] := Vect(X;) - tmp
Newtons[j + 1] := Vect(t) - tmp
tmp = (Mt)T ~tmp
End

Proof of the algorithm If we notice that

Vect(P) - [Trace(Qw1),...,Trace(Qwp)] = Trace( PQ)



then, after the j* step in the principal loop :

tmp = [Trace(uw'w,), ..., Trace(w'wp)]’

Newton,]i]

and so, {

4. Benchmarks

]VZ(t,y) 3 /[’: 17"
Trili, ] = Ni(Xi,1, D)

.

In this section, we use examples from robotics (e.g. direct kinematic prob-
lem of a parallel robot, see (Ditrit & al., 1995), (Faugere and Lazard, 1994),
(Merlet, 1993), ...) in order to compare the two methods described before.

Legend :

— GSL : computation of the Generalized Shape Lemma.

— St-Habicht :

polynomial given by GSL).
— Hermite : Hermite’s algorithm.

— Roots :

e R : number of distinct real roots

e C : number of distinct complex roots

Sturm-Habicht’s algorithm (applied on the univariate

— T.: computation time in seconds on a Sun-Sparc 10Mhz/128Mo, using
the PoSSo-Library.
— L. : binary length of the largest coefficient that appears in the result.

We assume that GSL and Hermite algorithms take as input a Groebner
basis (computed with respect to the Degre Reverse Lexicographic monomial
ordering) and the associated multiplication table.

I Alg. 1T |  Alg.T | Roots ||

|| GSL || St-Habicht || Hermite || ||

| Name | T |L.| T | L || T. | L [|[R]|C|
kinl (Ditrit) 7 8 63 444 22 132 8 | 40
kin2 (Merlet) 247 | 87 || 591 | 1226 || 457 | 1647 || 16 | 36
planN3I (Faugere) 25 32| 198 | 936 179 | 654 0 |40
spatiall (Faugere) 51 | 30| 44 | 815 15 590 || 0 | 16
spatial2 (Innocenti) || 1236 | 77 || 4803 | 3514 || 5015 | 2944 || 24 | 40
spat2A21 (Faugere) 212 | 38 || 626 | 1839 || 316 | 894 0 |32
spat66 (Faugere) 1935 | 40 || 2006 | 2852 || 7955 | 2348 || 2 | 40




5. Conclusion

Even if we do not take care of the preprocessing that is needed in order to
compute an univariate representation of the systems, Hermite’s method is
more efficient in most cases. Since Sturm - Habicht sequences need O(n?)
basic operations and the quadratic form reduction needs O(n?) operations,
this result is due to a better control of the size of the coefficients in the
algorithm that reduces the quadratic forms.

References

Alonso, M.E., Becker, E., Roy, M.F., Wérmann, T.(1994) Zero’s, Multiplicities and Idem-
potents for Zero Dimensional Systems, MEFGA 94 to be published.

Ben-Or, M., Kozen, D., and Reif, J. (1986) Complexity of Elementary Algebra and Ge-
ometry Journal of Computation and Systems Sciences Vol. 32 p. 251-264.

Ditrit, O., Petitot, M., Walter, E. (1995) Guaranteed numerical solution of sets of non-
linear equations by Hansen’s algorithm, implementation and applications Proceedings
of the PoSSo Workshop on Software p. 19-34.

Faugere, J.C. (1994) Résolution des systémes d’équations polyndmiales Doctoral Thesis.

Faugere, J.C., Gianni, P., Lazard, D. and Mora, T. (1994) Efficient Computation of
Zero-dimensional Grobner Basis by Change of Ordering. J. Symbolic Computation

Faugere, J.C. and Lazard, D. (1994) The combinatorial classes of parallel manipulators
Mechanism and Machine Theory.

Merlet, J-P. (1990) Les Robots Paralltles Hermés, Paris.

Pedersen, P. Roy, M.F, Szpirglas, A. (1993) Counting Real Zeros in the Multivariate
Case Computational Algebraic Geometry, Frédéric Eyssette, André Galligo (editors),
Birkhduser p. 203-223.

Rouillier, F. (1994) Formules de Bareiss et réduction de formes quadratiques Notes auz
Comptes Rendus de I’Académie des Sciences To be published.

Rouillier, F. (1995) PoSSo-RealSolving (Zero-dimensional systems of polynomials) Pro-
ceedings of the PoSSo Workshop on Software p. 125-151.



