N
N

N

HAL

open science

Optimizing pattern matching compilation by program
transformation

Emilie Balland, Pierre-Etienne Moreau

» To cite this version:

Emilie Balland, Pierre-Etienne Moreau. Optimizing pattern matching compilation by program trans-
formation. 3rd Workshop on Software Evolution through Transformations SeTra 2006, Sep 2006,

Natal, Rio Grande do Norte, Brazil. inria-00000763v3

HAL Id: inria-00000763
https://inria.hal.science/inria-00000763v3
Submitted on 15 Jun 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00000763v3
https://hal.archives-ouvertes.fr

Optimizing pattern matching compilation
by program transformation

Emilie Balland and Pierre-Etienne Moreau

UHP & LORIA, INRIA & LORIA,
BP 101, 54602 Villers-lés-Nancy Cedex France
{Emilie.Balland,Pierre-Etienne.Moreau}@loria.fr

Abstract. Motivated by the promotion of rewriting techniques and their use in
major industrial applications, we have designed Tom: a pattern matching layer on top
of conventional programming languages. The main originality is to support pattern
matching against native data-structures like objects or records.

While crucial to the efficient implementation of functional languages as well as rewrite
rule based languages, in our case, this combination of algebraic constructs with arbi-
trary native data-structures makes the pattern matching algorithm more difficult to
compile. In particular, well-known many-to-one automaton-based techniques cannot
be used. We present a two-stages approach which first compiles pattern matching
constructs in a naive way, and then optimize the resulting code by program transfor-
mation using rewriting. As a benefit, the compilation algorithm is simpler, easier to
extend, and the resulting pattern matching code is almost as efficient as best known
implementations.

1 Introduction to Tom

Pattern matching is an elegant high-level construct which appears in many programming
languages. Similarly to method dispatching in object oriented languages, it is essential in
functional languages like Caml, Haskell, or ML. It is part of the main execution mechanism
in rewrite rule based languages like ASF4+SDF, ELAN, Maude, or Stratego.

In this paper, we present Tom!, whose goal is to integrate the notion of pattern matching
into classical languages such as C and Java. As presented in [7] and illustrated in Figure 1, a
Tom program is a program written in a host language and extended by some new instructions
like the %match construct. Therefore, a program can be seen as a list of Tom constructs
interleaved with some sequences of characters. During the compilation process, all Tom
constructs are dissolved and replaced by instructions of the host-language, as it is usually
done by a preprocessor.

Due to lack of space, we do not present Tom in details, but the reader should consider it
as a powerful language extension which offers syntactic matching, associative matching with
neutral element, conditional rewriting, support for built-in data-types, XML transformation
facilities, and a modular strategy library a la Stratego [11] which allows to define complex
recursive normalizing and traversal strategies. Tom has been used to implement various
applications from deep inference in the calculus of structures to the generation of web

! http://tom.loria.fr

2 Emilie Balland and Pierre-Etienne Moreau

servers using XML for example. One of the biggest application is the Tom compiler itself,
written in Tom and Java.

In order to understand the choices we have made when designing the pattern matching
algorithm, it is important to consider Tom as a generic and partial compiler (like a pre-
processor) which does not have any information about the host-language. In particular,
the data-structure, against which the pattern matching is performed, is not fixed. In some
sense, the data-structure is a parameter of the pattern matching, see [6] for more details. In
practice, this means that a description of the data-structure (a mapping) has to be given
to explain Tom how to access subterms for example.

C Definition of the data-structure

public class PeanoExample { Tom Compiler
Tex - PIL -
erm plus(Term t0O, Term t2) { ‘ Compiler %;;;;;% Optimizer
%match(t1, t2) {
x,zero -> { return x; } PIL
x,suc(y) -> { return suc(plus(x,y)); }

void run() {
System.out.println("plus(1,2) = " +
plus(suc(zero) ,suc(suc(zero))));

U) Input Program

Fig. 1. General architecture of Tom: the compiler generates an intermediate PIL program which is
optimized before being pretty-printed by the back-end.

There exists several methods [2, 1, 5, 4] to efficiently compile pattern matching. The
simplest ones, called one-to-one, inspect and compile each pattern independently. A more
efficient approach consists in considering the system globally and building a discrimination
network. These methods are called many-to-one, and they usually consist of three phases:
constructing an automaton, optimizing it, and finally generating the implementation code.
There are two main approaches to construct a matching automaton: one based on decision
trees [2, 5] and the other on backtracking automata [1]. These two approaches emphasize
the unavoidable compromise between speed and memory space [9].

In our case, we cannot assume that a function symbol (i.e. a node of a tree) is represented
by an integer, like it is commonly done in other implementations of pattern matching.
Therefore, the classical switch/case instruction can no longer be used to perform the
discrimination.

The approach chosen in Tom is to keep the optimization phase separated from the one-
to-one compilation phase. This allows us to design algorithms which are generic, simpler
to implement, easier to extend and maintain, and that can be formally certified [6]. In
addition, this work allows to generate efficient implementations. In Section 2, we present
the compilation algorithm and its intermediate language PIL. In Section 3, we introduce
a set of rules which describes the optimizer and a strategy to efficiently apply them. In
Section 4 we show that the optimizations are correct and improve the program in execution

Optimizing pattern matching compilation by program transformation 3

and size. Finally, in Section 5, some experimental results are given for several revealing
examples.

2 Compilation

To be data-structure independent and support several host-languages, Tom instructions,
like %match, are compiled into an intermediate language code, called PIL, before being
translated into the selected host-language. To compile the %match construct, we consider
each rule independently. Contrary to many-to-one algorithms which construct decision trees
or pattern automata, given a pattern, it is traversed top-down and left-to-right. Nested if-
then-else constructs are generated to ensure that constructors of the pattern effectively
occur in the subject at a correct position. This technique is inefficient because, for a set of
rules, identical tests may be repeatedly performed. The worst-case complexity is thus the
product of the number of rules and the size of the subject.

The nested if-then-else are expressed in an intermediate language called PIL, whose
syntax is given Figure 2. Note that PIL has both functional and imperative flavors: the as-
signment instruction let(variable, (term), (instr)) defines a scoped unmodifiable variable,
whereas the sequence instruction (instr) ; (instr) comes from imperative languages. A last
particularity of PIL comes from the hostcode(...) instruction which is used to abstract
part of code written in the underlying host-language. This instruction is parameterized by
a list of PIL-variables which are used in this part of host-code.

(expr) ==beB
PIL n= (instr) | eq({term), (term))
symbol = feF | is_fsym((term),symbol)
variable :=z € X (instr) := let(variable, (term), (instr))
(term) ==teT(F,X) | if({expr), (instr), (instr))
| subtermy((term),n) | (instr); (instr)
(feFAneN) | hostcode(variablex)
| nop

Fig. 2. PIL syntax

Similarly to functional programming languages, given a signature F and a set of vari-
ables X, the considered PIL language can directly handle terms and perform operations like
checking that a given term ¢ is rooted by a symbol f (is_fsym(¢, f)), or accessing to the
n-th child of a term ¢ (subtermy(¢,n)). The implementation of subtermy, eq and is_fsym is
given by the mapping which describes data-structures. To support the intuition, examples
of Tom and PIL code are given Figure 3.

We define PIL semantics as in [6] by a big-step semantics ¢ la Kahn. To represent a
substitution, we model an environment by a stack of assignments of terms to variables.
The set of environments is noted Env. The reduction relation of the big-step semantics
is expressed on tuples (e, d,i) where € is an environment, § is a list of pairs (environment,
host-code), and 4 is an instruction. Thanks to §, we can keep track of the executed host-code

4 Emilie Balland and Pierre-Etienne Moreau

Tom code: Generated PIL code:
...Java code ... hostcode(...) ;
. if(is_fsym (t,f), let(ty, subterms(t, 1),
Y%match(Term t) { if(is_fsym(t1,a), hostcode(),nop)),
f(a) = { print(...); } nop) ;
g(x)= { print(...x...); } if(is_fsym (t,g),let(ty, subtermy(t, 1),
f(b) = { print(...); } let(x,t1,hostcode(x)))
} nop) ;
. if(is_fsym (t,f), let(ty, subterms(t, 1),
...Java code ... if(is_fsym(ti,b), hostcode(),nop)),
nop) ;
hostcode(...) ;

Fig. 3. The left column shows a Tom program which contains three patterns: f(a), g(x), and f(b),
where x is a variable. As an example, when the second pattern matches ¢, this means that ¢ is
rooted by the symbol g, and the variable x is instantiated by its immediate subterm. The right
column shows the corresponding PIL code generated by Tom. We can notice that this code is not
optimal, but will hopefully be optimized by transformation rules afterwards.

blocks within their environment: the environment associated to each host-code construct
gives the instances of all variables which appear in the block. A complete definition of the
semantics can be found in [3].

(€,0,1) ps &, with € € Env, 8,8’ € [Env, (instr)]*, and i € (instr)

As PIL programs are predominantly constituted of if-then-else statements, the opti-
mization rules will depend of the evaluation of expressions e € (expr). In the following
we introduce the notions of equivalence and incompatibility for expressions, and we con-
sider two functions eval and . eval is a function which given an environment ¢ and an
expression e evaluates e in € to obtain a value (i.e T for true or L for false). Given an
environment € and a host-code list §, the evaluation of a program 7w € PIL results in a
host-code list: (e, d, 7) —ps ¢’. During this evaluation, expressions e, subterm of 7, are eval-
uated in environments ¢’. We call @ the function that associates such an environment €’ to
a sub-expression e of 7: € = @(m, e, €,4d). More formal definitions can be found in [3]. We
can notice that these definitions can be easily extended to terms.

Definition 1. Given a program 7, two expressions e1 and es are said w-equivalent, and
noted e1 ~y es, if for all starting environment €, §, eval(er,e1) = eval(ea,es) where
€1 = P(m,e1,6,0) and ea = P(m, ea,¢,0).

Definition 2. Given a program m, two expressions ey and es are said w-incompatible, and
noted e1 Ly es, if for all starting environment €, §, eval(er,e1) # eval(eq,es) where
€1 = D(m,e1,6,0) and ea = P(m, ea,¢,0).

We can now define two conditions which are sufficient to determine whether two expres-
sions are m-equivalent or m-incompatible. Propositions 1 and 2 are interesting because the
problem is generally undecidable [8], but here, conditions can be easily used in practice.

Optimizing pattern matching compilation by program transformation 5

Indeed condl which ensures that the two expressions are evaluated in the same environment
is easy to be checked because of PIL language restrictions and cond2 is a purely syntactic
condition. Proofs of these propositions are in [3].

Proposition 1. Given a program 7 and two expressions ey, ez € {(expr), we have e; ~ €2
if: Ve, §, P(m,e1,¢€,0) = D(m,ea,€,0) (condl) and e; = ey (cond?2).

Proposition 2. Given a program m and two expressions ey,es € (expr), we have e; L
ez if: Ve, 8, P(m,e1,€,0) = D(m, ez2,€,0) (condl) and incompatible(ey,ez) (cond2), where
incompatible is defined as follows:

incompatible(e1, e2) = match e1, ex with

- -

| L, T — T
| T,L1 — T
| is_fsym(t, f1),isfsym(t, f2) = T if fr # f2
| -1

3 Optimization

An optimization is a transformation which reduces the size of code (space optimization)
or the execution time (time optimization). In the case of PIL, the presented optimizations
reduce the number of assignments (let) and tests (if) that are executed at run time. When
manipulating abstract syntax trees, an optimization can easily be described by a rewriting
system. Its application consists in rewriting an instruction into an equivalent one, using a
conditional rewrite rule of the form 7; — iy IF c.

Definition 3. An optimization rule iy — iy IF ¢ rewrites a program into a program w'
if there exists a position w and a substitution o such that o(i1) = m,, ™ = nlo(iz)], and
o(c) is verified. If ¢ = e; ~ ea (resp. ¢ = e1 L e3), we say that o(c) is verified when
o(e1) ~r, o(e2) (resp. o(e1) L, o(ez)).

3.1 Reducing the number of assignments

This kind of optimization is standard, but useful to eliminate useless assignments. In the
context of pattern matching, this improves the construction of substitutions, when a variable
from the left-hand side is not used in the right-hand side for example.

Constant propagation. This first optimization removes the assignment of a variable
defined as a constant. Since no side-effect can occur in a PIL program, it is possible to
replace all occurrences of the variable by the constant (written i[v/t]).

ConstProp: let(v,t,i) — i[v/t] IFt € T(F)

Dead variable elimination and Inlining. Using a simple static analysis, these opti-
mizations eliminate useless assignments:

DeadVarElim: let(v,t,i) — ¢ IF use(v,i) =0

Inlining: let(v,t,4) — i[v/t] IF use(v,i) =1

where use(v,%) is a function that computes an upper bound on the number of occurences
of a variable v in an instruction 1.

6 Emilie Balland and Pierre-Etienne Moreau

Fusion. The following rule merges two successive let which assign a same value to two
different variables. This kind of optimization rarely applies on human written code, but
in the context of pattern matching compilation (see Figure 3), this case often occurs. By
merging the bodies, this allows to recursively perform some optimizations on subterms.

LetFusion: let(vy,t1,41); let(va,ta,ia) — let(vy,ta,ir;ia[va/v1]) IF ¢ ~ to

Note that the terms ¢; and ¢, must be compatible to ensure that values of v; and v are
the same at run time. We also suppose that use(vi,i2) = 0. Otherwise, it would require to
replace v, by a fresh variable in 5.

3.2 Reducing the number of tests

The key technique to optimize pattern matching consists in merging branches, and thus
tests that correspond to patterns with identical prefix. Usually, the discrimination between
branches is performed by a switch/case instruction. In Tom, since the data-structure is
not fixed, we cannot assume that a symbol is represented by an integer, and thus, contrary
to standard approaches, we have to use an if statement instead. This restriction prevents
us from selecting a branch in constant time. The two following rules define the fusion and
the interleaving of conditional blocks.

Fusion. The fusion of two conditional adjacent blocks reduces the number of tests. This
fusion is possible only when the two conditions are m-equivalent. Remind that the notion of
m-equivalence means that the evaluation of the two conditions in a given program are the
same (see Definition 1):

IfFusion: if(ey,i1,4));if(ca,io,1h) — if(er,i1;42,41;15) IF ¢1 ~ ¢

To evaluate ¢; ~ ca (i.e. ¢1 ~; co with 7 the redex of the rule), we use Proposition 1. The
condition @(m,¢€,d,e1) = (7, ¢€,d,e2) (condl) is trivially verified because the semantics of
the sequence instruction preserves the environment (V, e, (7, ¢,0,i1;i2) = (7, €,0,41) =
&(7,€,0,i2)) and then Vi, e, P(m,€,6,0(c1)) = P(m,€,d,0(c2)). We just have to verify that
e1 = ez (cond2), which is easier.

Interleaving. As matching code consists of a sequence of conditional blocks, we would
like to optimize blocks with m-incompatible conditions (see Definition 2). Some parts of the
code cannot be both executed in a given environment, so swapping statically their order
does not change the program behavior.

As we want to keep only one of the conditional block, we determine what instructions
must be executed in case of success or failure of the condition and we obtain the two
following transformation rules:

if(cy,i1,1));if(co,ia,1h) — if(eq,i1;h,47;1(co,d2,45)) IF ¢1 L ¢

if(Cl,il,ill); if(CQ,ig,i/Q) — if(CQ,ill;i27 if(Cl,il,ill);ilz) IF C1 1 C2

Optimizing pattern matching compilation by program transformation 7

As for the equivalence in the IfFusion rule, to evaluate ¢; L co, we just have to verify
that e; and e are incompatible (cond2). Note that the two presented rules are not right-
linear, therefore some code is duplicated (#} in the first rule, and 4} in the second one). As
we want to maintain linear the size of the code, we consider specialized instances of these
rules with respectively), and) equal to nop.

IfInterleaving: if(cy,i1,4});1f(ca, 2, n0p) — if(cy,i1,4);if(ca,i0,n0p)) IF ¢1 L ¢

if(eq,41,n0p); if(ca,io,ih) — if(ca,io, if(c1,i1,n0p);45) IF ¢1 L co

These two rules reduce the number of tests at run time because one of the tests is moved
into the “else” branch of the other. The second rule can be instantiated and used to swap
blocks. When ¢} and 4/, are reduced to the instruction nop, the second rule can be simplified
into:

if(Cl, il,nop); if(CQ, ig,nop) — if(CQ, iQ, if(Cl, il, IlOp)) IF C1 1 C2
As ¢; and ¢y are w-incompatible, we have the following equivalence:
if(CQ, i2, if(Cl, il, IlOp)) = if(CQ, ig, IlOp); if(Cl, il, IlOp)

After all, we obtain the following rule corresponding to the swapping of two conditional
adjacent blocks. This rule does not optimize the number of tests but is useful to bring closer
blocks subject to be merged thanks to the strategy presented in the next section.

IfSwapping: if(cy,41,n0p);if(ca, i, n0p) — if(ca,ia,n0p);if(cy1,41,n0p) IF ¢ L ¢

3.3 Application strategy

From the rules presented in Section 3.1 and 3.2, we define a rewrite system. Without strat-
egy, this system is clearly not confluent and not terminating. For example, the IfSwapping
rule can be applied indefinitely because of the symmetry of incompatibility. The confluence
of the system is not necessary as long as the programs obtained are semantically equivalent
to the source program but the termination is an essential criterion. Moreover, the strategy
should apply the rules to obtain a program as efficient as possible. Let us consider again
the program given Figure 3, and let us suppose that we interleave the last two patterns.
This would result in the following sub-optimal program:

if(is_fsym(t, f), let(t1, subterms(t,1),if(is_fsym(t1,a), hostcode(),nop)),nop) ;
if(is_fsym(t, g), let(ty, subtermy(t, 1), let(x,t1, hostcode(x)))
if(is_fsym(¢, f), let(t1, subterms(t, 1), if(is_fsym(ts,b),hostcode(),nop)), nop)

The IfSwapping and IfFusion rules can no longer be applied to share the is_fsym(t, f)
tests. This order of application is not optimal. As we want to grant IfFusion, the inter-
leaving rule must be applied afterward, when no more optimization is possible.

The second matter is to ensure termination. The IfSwapping rule is the only rule that
does not decrease the size or the number of assignments of a program. To limit its application
to interesting cases, we define a condition which ensures that a swapping is performed only if
it enables a fusion. This condition can be implemented in two ways, either in using a context,

8 Emilie Balland and Pierre-Etienne Moreau

or in defining a total order on conditions noted < (a lexicographic order for example).
The second approach is more efficient: similarly to a swap-sort algorithm it ensures the
termination of the algorithm. In this way, we obtain a new IfSwapping rule:

if(c1,41,n0p); if(co,92,n0p) — if(c2,i2,n0p);if(c1,41,n0p) IF c1 L ca A c¢1 < c2

Using basic strategy operators such as Innermost(s) (which applies s as many times as
possible, starting from the leaves), s; | s2 (which applies s; or sy indifferently), repeat(s)
(which applies s as many times as possible, returning the last unfailing result), and s; ; so
(which applies s, and then so if s; did not fail), we can define a strategy which describes
how the considered rewrite system should be applied to normalize a PIL program:

Innermost(repeat(ConstProp | DeadVarElim | Inlining | LetFusion | IfFusion | IfSwapping) ;
repeat(IfInterleaving))

Starting from the program given Figure 3, we can apply the rule IfSwapping, followed
by a step of IfFusion, and we obtain:

if(is_fsym(¢, f), let(ti,subterms(t,1),if(is_fsym(t;,a),hostcode(),nop))
; let(ty, subterms(t, 1), if(is_fsym(ts,b),hostcode(),nop)),nop) ;
if(is_fsym(t,g), let(ty, subtermy(t, 1), let(x,ty, hostcode(x))), nop)

Then, we can apply a step of Inlining to remove the second instance of t1, a step
of LetFusion, and a step of Interleaving (is_fsym(t1,a) and is_fsym(¢1,b) are m-
incompatible). This results in the following program:

if(is_fsym(t, f), let(ts, subterme(t, 1),
if(is_fsym(ts,a),hostcode(), if (is_fsym(ty,b),hostcode(),nop))),nop) ;
if(is_fsym(t,g), let(x, subtermy(t, 1), hostcode(x)), nop)

Since is_fsym(t, f) and is_fsym(t,g) are w-incompatible, we can apply a step of
IfInterleaving, and get the irreducible following program:

if(is_fsym(t, f),
let(ty, subterms(t,1),if(is_fsym(ty,a), hostcode(), if(is_fsym(ts,b), hostcode(),nop))),
if(is_fsym(t, g), let(x, subtermg(t, 1), hostcode(x)), nop)

4 Properties

When performing optimization by program transformation, it is important to ensure that
the generated code has some expected properties. The use of formal methods to describe
our optimization algorithm allows us to give proofs. In the section we show that each
transformation rule is correct, in the sense that the the optimized program has the same
observational behavior as the original. We also show that the optimized code is both more
efficient, and smaller than the initial program.

Optimizing pattern matching compilation by program transformation 9

4.1 Correction

Definition 4. Given m and wo two well-formed PIL programs, they are semantically equiv-
alent, noted m ~ mwo, when:

Ve, 8,30 s.t. {€,8,m1) —ps &' and (e,8,m3) —ps &

Definition 5. A transformation rule r is correct if for all well-formed program =, r rewrites
7 in 7' (Definition 3) implies that m ~ 7' (Definition 4).

From this definition, we prove that every rule given Section 3 is correct. For that, two
conditions have to be verified:

1. 7’ is well-formed,
2. Ve, d, the derivations of m and 7’ lead to the same result §’.

The first condition is quite easy to verify. The second one is more interesting: we consider
a program 7, a rule [— r IF ¢, a position w, and a substitution o such that o(l) = M- We
have 7’ = w[o(r)].,. We have to compare the derivations of 7 and 7’ in a the context €, ¢.

— when w = A, we have to compare the derivation tree of m = o(l) and 7’ = o (1),

— otherwise, we consider the derivation of 7 (resp. 7’): there is a step which needs in
premise the derivation of m, (resp. m[o(r)],). This is the only difference between the
two trees.

In both cases, we have to verify that 7, = o(l) and o(r) have the same derivation in a
given context:

— equal to €,0 when w = A,

— otherwise, we have to consider the instruction ¢ which immediately contains o(I) (resp.
o(r)). The context is defined by the context in which 4 is evaluated in the derivation
tree of m (resp. 7).

In the following, we give one representative proof of correction: IfSwapping?. To simplify
the proof we consider [, and c instead of o (1), o(r) and o(c).

Correction of IfSwapping. In this rule, I = if(cy,41,no0p);if(ce,iz,nop) and r =
if(eg,i2,n0p);if(c1,41,n0p). To prove that m ~ 7/, we have to verify that for a given
€,0, | and r have the same derivation. Since ¢; and ¢ are m-incompatible, three cases have
to be studied:

Case 1: €(c1) — R« T and €(c2) —pga L

(nop)

(6,6,11) —ps &' €(c1) =me T (€,8",n0p) Fps &’ €(e2) —re L

(iftrue) (if false)

(€,6,if(c1,11,n0p)) +—ps & (€,8",if(ca,i2,n0p)) Fops &

se
(€,6,if(c1,41,n0p); if(c2,i2,n0p)) ps & (seq)

2 The other proofs can be found in a technical report available at http://www.loria.fr/ moreau

10 Emilie Balland and Pierre-Etienne Moreau

We now consider the program if(cg,i2,nop);if(c1,41,n0p). Starting from the same
environment € and §, we show that the derivation leads to the same state ¢’, and thus prove
that if(cq,41,n0p); if(ca,i2,nop) and if(cq, $2,n0p); if(cy, $1,n0p) are equivalent:

nop)

(€,0,if(c2,i2,n0p)) —bs 0

E(Cz) — Rx 1 <6,5,i1> bs 5/ 6(01) —Rx T

(€,0,n0p) +—ps O (if false)

(iftrue)
(seq)

(€,6,if(c1,11,n0p)) —ps &

(e, 8, if(c2,i2,n0p); if(c1,41,n0p)) Hps &

Since 7 and 7’ are well-formed, their derivation in a given context are unique (see [3]).
(€,0,11) —ps 0 is part of these derivation trees, so it is unique, and ¢’ is identical in both
derivations.

Case 2: €(c1) —pr« L and €(c2) — g« T, the proof is similar.

Case 3: €(c1) —pr« L and €(c2) —p« L, the proof is similar.

4.2 Time and space reduction

In this section we show that the optimized code is both more efficient, and smaller than the
initial program. For that, we consider two measures:

— the size of a program m is the number of instructions which constitute the program,
— the efficiency of a program 7 is determined by the number of tests and assignments
which are performed at run time.

It is quite easy to verify that each transformation rule does not increase the size of
the program: DeadVarElim, ConstProp, Inlining, and LetFusion decrease the size of a
program, whereas IfFusion, IfInterleaving and IfSwapping maintain the size of the
transformed program.

It is also clear that no transformation can reduce the efficiency of a given program:

each application of DeadVarElim, ConstProp, and Inlining reduces by one the number
of assignment that can be performed at run time,

— IfFusion reduces by one the number of tests,

IfInterleaving also decreases the number of tests when the first alternative is chosen.
Otherwise, there is no optimization,

IfSwapping does not modify the efficiency of a program.

The program transformation presented in Section 3 is an optimization which improves
the efficiency of a given program, without increasing its size. Similarly to [4], this result
is interesting since it allows to generate efficient pattern matching implementations whose
size is linear in the number and size of patterns.

Optimizing pattern matching compilation by program transformation 11

5 Experimental Results

The Tom compiler is written in Tom and Java. Therefore, the presented algorithm de-
scribed using rules and strategies, has been implemented in Tom. As illustrated Figure 1,
the optimizer is just an extra phase of the compiler, which is now integrated into the main
distribution. In order to illustrate the efficiency of the compiler we have selected several
representative programs and measured the effect of optimization in practice:

H Fibonnacci | Eratosthene ‘ Langton ‘ Gomoku ‘ Nspk ‘ Structure

Tom Java 21.3 s 174.0 s 15.7 s 70.0s | 1.7 s 12.3 s
Tom Java Optimized 20.0 s 2.8 s 14 s 304s | 125 11.3 s

- Fibonacci computes 500 times the 18" Fibonacci number, using a Peano representation.
On this example, the optimizer has a small impact because the time spent in matching is
smaller than the time spent in allocating successors and managing the memory.
- Eratosthene computes prime numbers up to 1000, using associative list matching. The
improvement comes from the Inlining rules which avoids computing a substitution unless
the rule applies (i.e. the conditions are verified).
- Langton is a program which computes the 1000 iteration of a cellular automaton, us-
ing pattern matching to implement the transition function. This example is interesting
because it contains more than 100 (ground) patterns. Starting from a simple one-to-one
pattern matching algorithm, the optimizer performs program transformations such that a
pair (position,symbol) is never tested more than once. This interesting property, which char-
acterizes deterministic automata based approaches, can unfortunately not be generalized
to any program.
- Gomoku looks for five pawn on a go board, using list matching. This example contains
more than 40 patterns and illustrates the interest of test-sharing.
- Nspk implements the verification of the Needham-Schroeder Public-Key Protocol.
- Structure is a prover for the Calculus of Structures where the inference is performed by
pattern matching and rewriting.

The following table gives some comparisons with well known implementations.

’ H Fibonnacci ‘ Eratosthene ‘ Langton ‘

’ Tom Java Optimized H 20.0 s ‘ 2.8 s ‘ 14 s ‘
Tom C Optimized 0.95 s 0.36 s 0.84 s
0Caml 0.44 s 0.7 s 1.36 s
ELAN 0.77 s 0.8 s 1.26 s

All these examples are available on the Tom web page. The measures have been done
on a PowerMac 2 GHz, using Java 1.4.2, gcc 4.0, and Ocaml 3.09. They show that the
proposed approach is effective in practice and allows Tom to become competitive with state
of the art implementations such as OCaml. We should remind that Tom is not dedicated to a
unique language. In particular, the fact that data-structure can be user-defined contrary to

12 Emilie Balland and Pierre-Etienne Moreau

functional languages prevents us from using the switch instruction and thus optimizations
like those presented in [4].

6 Conclusion

In this paper, we have presented a new approach to compile pattern matching. This method
is based on well-attested program optimization methods. Separating compilation and opti-
mization in order to keep modularity, and to facilitate extensions is long-established in the
compiler construction community. Using a program transformation and a formal method
approach is an elegant way to describe, implement, and certify the proposed optimiza-
tions. This work is closed to Sestoft approach [10] which compiles naively ML-style pattern
matches and by partial evaluation removes redundant cases instead of constructing directly
the decision tree. Moreover, this two-stage pattern compilation is directly implemented in
Tom and shows how Tom language is well-adapted for program analysis-transformation.

We have only be interested in optimizing syntactic matching and thus considered a
subset of PIL language. As Tom already manages associativity, a future work will consist in
developing new transformation rules adapted to this theory, without having to change the
rules relative to syntactic one. However, note that the presented rules remain correct when
considering an extension of PIL.

This paper shows that using program transformation rules to optimize pattern matching
is an efficient solution, with respect to algorithms based on automata. The implementation
of this work combined with the formal validation of pattern matching [6] is another step
towards the construction of certified/certifying optimizing compilers.

Acknowledgments

We sincerely thank Claude Kirchner and Antoine Reilles for the useful interactions we had
on the topics of this paper.

References

[1] Lennart Augustsson. Compiling pattern matching. In Proceedings of a conference on Func-
tional Programming Languages and Computer Architecture, pages 368-381. Springer-Verlag,
1985.

[2] Luca Cardelli. Compiling a functional language. In Proceedings of the 1984 ACM Symposium
on LISP and Functional Programming, pages 208-217, 1984.

[3] Pierre-Etienne Moreau Emilie Balland. Optimizing pattern matching by program transfor-
mation. Technical report, INRIA-LORIA, 2005. http://hal.inria.fr/inria-00001127.

[4] Fabrice Le Fessant and Luc Maranget. Optimizing pattern matching. In Proceedings of the
sizth ACM SIGPLAN International Conference on Functional Programming, pages 26—37.
ACM Press, 2001.

[5] Albert Graf. Left-to-right tree pattern matching. In Proceedings of the 4th international
conference on Rewriting Techniques and Applications, volume 488 of LNCS, pages 323-334.
Springer-Verlag, 1991.

[6]

Optimizing pattern matching compilation by program transformation 13

Claude Kirchner, Pierre-Etienne Moreau, and Antoine Reilles. Formal validation of pattern
matching code. In Pedro Barahone and Amy Felty, editors, Proceedings of the 7th ACM
SIGPLAN international conference on Principles and Practice of Declarative Programming,
pages 187-197. ACM, July 2005.

Pierre-Etienne Moreau, Christophe Ringeissen, and Marian Vittek. A Pattern Matching Com-
piler for Multiple Target Languages. In G. Hedin, editor, 12th Conference on Compiler Con-
struction, Warsaw (Poland), volume 2622 of LNCS, pages 61-76. Springer-Verlag, May 2003.
Oliver Riithing, Jens Knoop, and Bernhard Steffen. Detecting equalities of variables: Com-
bining efficiency with precision. In Agostino Cortesi and Gilberto Filé, editors, SAS, volume
1694 of LNCS, pages 232-247. Springer-Verlag, 1999.

R. C. Sekar, R. Ramesh, and I. V. Ramakrishnan. Adaptive pattern matching. SIAM Journal
on Computing, 24(6):1207-1234, 1995.

P. Sestoft. ML pattern match compilation and partial evaluation. In O. Danvy, R. Glick, and
P. Thiemann, editors, Dagstuhl Seminar on Partial Evaluation, volume 1110 of LNCS, pages
446-464. Springer-Verlag, 1996.

Eelco Visser, Zine el Abidine Benaissa, and Andrew Tolmach. Building program optimizers
with rewriting strategies. In Proceedings of the third ACM SIGPLAN International Conference
on Functional Programming, pages 13—26, 1998.

