
HAL Id: lirmm-00090364
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00090364

Submitted on 30 Aug 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distance Labeling Scheme and Split Decomposition
Cyril Gavoille, Christophe Paul

To cite this version:
Cyril Gavoille, Christophe Paul. Distance Labeling Scheme and Split Decomposition. 01222, 2001.
�lirmm-00090364�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00090364
https://hal.archives-ouvertes.fr

Distance Labeling Scheme and Split

Decomposition

Cyril Gavoille∗ Christophe Paul†

November 26, 2002

Abstract

A distance labeling scheme is a distributed data-structure designed to
answer queries about distance between any two vertices of a graph G.
The data-structure consists in a label L(x, G) assigned to each vertex x
of G such that the distance dG(x, y) between any two vertices x and y
can be estimated as a function f(L(x, G), L(y, G)). In this paper we com-
bine several types of distance labeling schemes and split decomposition
of graphs. This yields to optimal label length schemes for the family of
distance-hereditary graphs and for other families of graphs, allowing dis-
tance estimation in constant time once the labels have been constructed.

Keywords: distance labeling scheme, split decomposition, distance-hereditary
graphs.

1 Introduction

In this paper we deal with undirected simple and connected graphs. The dis-
tance dG(x, y) between two vertices x, y of a graph G is the minimum length (or
the minimum cost in the case of weighted graphs) of a path connecting x and y
in G. The problem we are interested in is the distance labeling problem, that
is problem of designing of a distributed data-structure that enable us to answer
queries about distances between any two vertices of a graph G. More precisely:

How to label the vertices of a graph G in such a way the distance be-
tween any two vertices x and y of G can be computed or approximated
by inspecting the labels of x and of y, and without any other information
source?

Clearly one can encode all the desired information without any restriction on
the label length of the vertices. On the other hand short labels, say of (log n)c

bits1 per vertex where c is a constant and n the number of vertices of the graph,
∗Laboratoire Bordelais de Recherche en Informatique, Université Bordeaux I.

gavoille@labri.fr
†Laboratoire d’Informatique, de Robotique et de Micro-électronique de Montpellier.

paul@lirmm.fr
1The function log denotes the logarithm in base two.

1

is not doable for all n-vertex graphs since there are more than exp(n(log n)c)
graphs with n vertices, and since the list of the labels suffices to entirely rebuild
the graph by testing the distances. Our goal is to design labeling schemes that
assigns relatively short labels to all n-vertex graphs of a given family of graphs,
and such that distance queries can be performed quickly, idealy in constant
time. In addition, we are looking for labeling schemes that are polynomially
constructible.

This labeling problem has been formally introduced in [27], but early appears
informally in [16] about the Squashed Cube Embedding problem. Distance la-
beling is a natural generalization of the problem of finding implicit represen-
tation of graphs [4, 19, 28] that consists in assigning labels of the vertices of
a graph such that the adjacency between to vertices can be tested using the
corresponding labels. Other functions can be computed by suitable labeling
schemes: ancestry and small distances in trees [2, 20, 21], near-common ances-
tor in trees [1], and other functions [22, 26]. A recent overview on compact
labeling schemes can be founded in [14].

Definition 1.1 ([13]) Given a family F of connected graphs, an (s, r)-approximate
distance labeling scheme on F , (s, r)-approximate DLS for short, is a pair
〈L, f〉, where L is call the labeling function and f the distance decoder, such
that for any G ∈ F and any pair x, y of distinct vertices of G, L(x,G) ∈ {0, 1}∗,
and

dG(x, y) 6 f(L(x,G), L(y, G)) 6 s · dG(x, y) + r .

An (1, r)-approximate DLS is called r-additive, while an (s, 0)-approximate
is called s-multiplicative. For convenience, 0-additive and 1-multiplicative DLS
are called exact DLS.

In this paper we are interesting in constructing DLS for several family
of graphs, in particular distance-hereditary graphs. This latter family have
bounded clique-width, a graph parameter related to a particular graph decom-
position (see [9] for more details about this decomposition). The reader inter-
ested in that labeling problem has to keep in mind the following deep result due
to [10].

Theorem 1.2 ([10]) The family of n-vertex bounded clique-width graphs en-
joys an exact distance labeling scheme using labels of length O(log2 n) bits.
Moreover the distance can be computed in O(log2 n) time.

In our point of view, this result has to be considered carefully. It shows the
existence of exact DLS with relatively short labels and fast distance queries.
However the scheme is not explicit (the decomposition must be given) and the
hidden constants in the label length and in the query time complexity are huge
(a stack of exponentials). Note that computing the clique-width of a graph
(and its optimal decomposition) is a wide open problem. For fixed k > 3, it
is not known whether there exists a polynomial time algorithm that recognizes
graphs of clique-width at most k (recently [8] have showed that the case k = 3 is
polynomial). So finding an explicit and polynomial time constructible distance
labeling scheme with constant time query for bounded clique-width graphs is a
challenging problem.

2

In this paper, for the family of n-vertex distance-hereditary graphs, we ex-
plicitly construct (in polynomial time) an exact DLS with O(log2 n) bit labels,
and a (1 + o(1))-multiplicative DLS with O(log n log log n) bit labels. We show
that our schemes are asymptotically optimal w.r.t. the label length and the ap-
proximation. Moreover the distance estimate can be computed in constant time
under a standard word-RAM model providing standard arithmetic operations
on O(log n) bit words in constant time. We show how the split decomposition
of a graph [11] can be used to design efficient labeling schemes. Our technique
allows to combine different types of schemes. Applying this technique, we show
that the optimal schemes for trees obtained by [13, 15] can be generalized to
distance-hereditary graphs. Our results are extended to other classical families
of graphs.

The paper is organized as follows. Section 2 presents how the split de-
composition can be used to compute an tree-like auxiliary graph in which the
distances in the original graph can be refound. Then Section 3 shows how dif-
ferent approximate DLS can be arranged together when a graph has a suitable
block-partition, a graph decomposition in 2-connected components. The tech-
nique is applied in the last section to some graph families. First we illustrate
our technique on a simple example of graph family, namely the block-graphs.
Then we apply the technique to graph families related to distance-hereditary
graphs, namely all the graphs G whose the distance between x, y in any con-
nected induced subgraph is at most s · dG(x, y) + r. In particular we show that
distances in a distance-hereditary graph (s = 1 and r = 0) can be reconstructed
from distances taken from two block-graphs of linear size.

2 On the Split Decomposition

By the use of the split decomposition on a graph G, we show in this section how
to produce a new graph T and a tree T̃ from G such that the distances in G
can be deduced from the distances in T and in T̃ , expecting that efficient DLS
on T exists. The split decomposition has been originally introduced by [11].

In a graph G, the neighborhood of a vertex x ∈ V (G) is denoted by N(x).
The neighborhood of a set of vertices S ⊆ V (G) is the set N(S) =

⋃
s∈S N(s)\S.

Definition 2.1 ([11]) A split in a graph G = (V,E) is a partition of V into
two sets V1 and V2 such that |V1| > 2, |V2| > 2, and such that for all x1 ∈ Ṽ1 =
V1 ∩N(V2) and x2 ∈ Ṽ2 = V2 ∩N(V1), {x1, x2} ∈ E.

A graph without split is called prime, in particular a graph with 3 vertices
or less is prime. When a graph G has a split (V1, V2), it can be decomposed into
two graphs G1 and G2 as follows: G1 (resp. G2) is induced by V1 ∪ {v1} (resp.
V2∪{v2}) where v1 (resp. v2) is a virtual vertex adjacent to all the vertices of Ṽ1

(resp. Ṽ2). One can then decide to decompose recursively G1 and/or G2. The
graphs obtained at the end of a split decomposition are the split-components.

It is important to note that each split-component is isomorphic to an induced
subgraph of G. In particular split-components that are prime graphs are induced
subgraphs of G. A split decomposition is not unique, however, it has been

3

shown in [11] that every connected graph have a unique split decomposition
into a minimal number of split-components that are cliques, stars (i.e., a tree of
depth 1), or prime graphs. This unique split decomposition is obtained if during
the decomposition maximal splits are chosen (maximal w.r.t. the inclusion of
Ṽ1 ∪ Ṽ2).

Let G be an unweighted n-vertex graph. From G and from any split de-
composition applied to G we construct a graph T , called tree-like graph of G,
obtained recursively as follows (cf. Fig. 1 and 2): If G is a split-component (e.g.
G is prime), then T is G. Otherwise, let G1, G2 be the two graphs into which G
is decomposed. Then T consists in joining the graphs T1 and T2, the tree-like
graphs of G1 and G2, by connecting the vertices v1 with v2 by an edge called
virtual edge.

V1 V2

v1

G1 G2

v2

Figure 1: A step in a split decomposition and the tree-like graph construction.

A similar construction of T appears in [24]. The split-components of G are
exactly the connected components – called hereafter simply component of T –
obtained by removing all the virtual edges of T . Fig. 2 shows three tree-like
graphs of a graph G, the last one denoted T has 5 components.

8 9

5v1 v2

6

3

1
4

2

7

8 9

5

7

6

3

1
4

2

5

6

9

4

3

u1
1

2
7 8

w2

w1u2 v1 v2

G

T
5

4

3

u1
1

2

u2 v1 v2

9

7

6

w2

w1

z2z1

8

Figure 2: A tree-like graph T obtained from G with the 4 splits: (V1, V2) =
({1, 2, 3} , {4, 5, 6, 7, 8, 9}), then (U1, U2) = ({1, 2} , {v1, 3}) and (W1,W2) =
({5, 6} , {4, v2, 7, 8, 9}), and finally (Z1, Z2) = ({w1, 7} , {4, v2, 8, 9}). The com-
ponent {4, v2, z1, 8, 9} can still be decomposed.

For every tree-like graph T of G, we define T̃ be the graph obtained from
T by contracting each component into a single vertex. So the vertices of T̃

4

are seen as the components of T , and its edges are the virtual edges of T . By
construction of T , T̃ is a tree. In the example depicted on Fig. 2, T̃ is a path of
length 4.

Lemma 2.2 Let T be a tree-like graph of G, let x and y be two vertices of G,
and let X (resp. Y) be the component of T containing x (resp. y). Then,
dG(x, y) = dT (x, y)− 2dT̃ (X, Y).

Proof: The property holds if T = G, in particular whenever n 6 3. For an
induction on n, assume that n > 3, and that the property holds for every tree-
like graph of a graph of at most n− 1 vertices. Finally, assume that T consists
in joining the tree-like graphs T1 and T2 for a split (V1, V2) of G.

Let n1 = |V1| and n2 = |V2|. Let v1 (resp. v2) be the vertex of T1 (resp.
T2) connected to all the vertices of Ṽ1 (resp. Ṽ2). Note that T1 (resp. T2) is a
tree-like graph of a graph G1 (resp. G2) with n1 + 1 vertices (resp. with n2 + 1
vertices). Since n = n1 +n2 and n1, n2 > 2, it follows that n1 +1, n2 +1 6 n−1,
thus that Lemma 2.2 holds for G1 and G2. Let P be a shortest path from x to
y in G. We consider two cases.

Case 1: x, y ∈ V1 (or both in V2).
Let us first show that P is isomorphic to a path P ′ wholly contained in G1. If
P ⊆ V1, then one can set P ′ = P and we are done. If P∩V2 6= ∅, then P contains
one (and only one) vertex of V2 and P has the form P = (x,A, u, w, v,B, y)
where A and B are sequences of vertices of V1, u, v ∈ Ṽ1, and w ∈ Ṽ2. Since
v1 is adjacent to u and v in G1, P is isomorphic to P ′ = (x,A, u, v1, v, B, y), a
path wholly contained in G1.

Since P is isomorphic to a path P ′ wholly contained in G1, we have dG1(x, y) 6
dG(x, y). However, since G1 is isomorphic to an induced subgraph of G, we
have dG1(x, y) = dG(x, y). By induction, dG1(x, y) = dT1(x, y) − 2dT̃1

(X, Y).
Since the edge joining T1 to T2 is a bridge, dT1(x, y) = dT (x, y) and dT̃1

(X, Y) =
dT̃ (X, Y). It follows that dG1(x, y) = dT (x, y)−2dT̃ (X, Y), hence that dG(x, y) =
dT (x, y)− 2dT̃ (X, Y), completing the proof of Case 1.

Case 2: x ∈ V1 and y ∈ V2 (or the reverse).
Note that removing the edges between Ṽ1 and Ṽ2 disconnects G. Thus P has
the form P = (x,A, u, w,B, y) where A ⊆ V1, B ⊆ V2, u ∈ Ṽ1, and w ∈ Ṽ2. It
follows that

dG(x, y) = dG1(x, u) + dG2(w, y) + 1 . (1)

By Case 1, dG1(x, u) = dT (x, u) − 2dT̃ (X, U) and dG2(w, y) = dT (w, y) −
2dT̃ (W,Y), where U (resp. W) is the component of T containing u (resp.
w). {U,W} is an edge of T̃ that disconnects the component X from Y , thus
dT̃ (X, Y) = dT̃ (X, U) + 1 + dT̃ (W,Y). Hence

dT̃ (X, U) + dT̃ (W,Y) = dT̃ (X, Y)− 1 .

The vertex v1 is connected to u in T1, v2 is connected to w in T2, and {v1, v2}
is a bridge of T , thus (u, v1, v2, w) is a shortest path in T . Hence dT (x, y) =
dT (x, u) + dT (u, w) + dT (w, y), that implies

dT (x, u) + dT (w, y) = dT (x, y)− 3 .

5

Plugging in Eq. 1, we have:

dG(x, y) =
(
dT (x, u)− 2dT̃ (X, U)

)
+

(
dT (w, y)− 2dT̃ (W,Y)

)
+ 1

= dT (x, u) + dT (w, y)− 2
(
dT̃ (X, U) + dT̃ (W,Y)

)
+ 1

= dT (x, y)− 3− 2
(
dT̃ (X, Y)− 1

)
+ 1

= dT (x, y)− 2dT̃ (X, Y),

completing the proof of Case 2 and of Lemma 2.2. 2

Lemma 2.3 Let T be a tree-like graph of G. Then, T contains no more than
max {n− 3, 0} < n virtual edges.

Proof: The property holds if T = G, in particular whenever n 6 3. For an in-
duction on n, assume that n > 4, and that the property holds for every tree-like
graph of a graph of at most n − 1 vertices. Finally, assume that T consists in
joining the tree-like graphs T1 and T2 for a split (V1, V2) of G. Let n1 = |V1| and
n2 = |V2|. As already said in the proof of Lemma 2.2, T1, T2 are tree-like graphs
of graphs with n1+1, n2+1 6 n−1 vertices. So by induction T1 and T2 have re-
spectively at most n1+1−3 and n2+1−3 virtual edges. It follows that T has at
most 1+(n1+1−3)+(n2+1−3) = n−3 virtual edges, completing the proof. 2

It follows that T has less than 2n virtual vertices, and less than 3n vertices.

3 Distance Labeling Schemes Combination

It is known that there exist some n-vertex graphs that need exact distance labels
of Θ(n) bits [15]. Therefore we do not expect the design of short distance labels
by the use of split decomposition in the general case, despite the uniqueness
decomposition result of [11]. However, there is hope for families of graphs whose
prime components have suitable properties, like bounded tree-width, bounded
chordality, planarity, etc. Widely based on the schemes of trees [13], we show in
this section how to combine DLS of prime components in order to derive DLS
for the whole graph. For that purpose we need to investigate labeling schemes
on graphs having a suitable block-partition, notion we introduce below. Recall
that a cut-vertex of a graph G is a vertex whose deletion disconnects G in two
or more non-empty connected components.

Definition 3.1 A block-partition of a graph G is a set of subgraphs of G, called
blocks of G, such that: 1) every vertex of G is contained in a block; 2) every
edge of G is contained in exactly one block; 3) the blocks intersect at some
cut-vertices only.

Note that if two blocks intersect they have in common exactly one cut-vertex.
Given a block-partition P we associate a tree T defined as follows:

V (T) = P ∪ C, where C = {V (B) ∩ V (B′) | B 6= B′ ∈ P}
E(T) = {{B,X} | B ∈ P,X ∈ C ∩ V (B)} .

6

Roughly speaking T is obtained from P by replacing every block by a star whose
leaves are the intersections with all its intersecting blocks (see Fig. 3). Note that
we made no restrictions on the blocks. They may contain, for instance, some
cut-vertices of the graph that are not in the set C.

Figure 3: A block-partition of an arbitrary graph, and its associated tree.

Lemma 3.2 |V (T)| 6 2|P | − 1 and |P | 6 n− 1, where n = |V (G)|.

Proof: Let us root T at a vertex of P . Consider c ∈ C. Because c is the inter-
section of two blocks, c is not a leaf in T . Thus, in T , every non-root block of P
has an unique father of C, proving that |P | − 1 > |C|. Thus, |V (T)| 6 2|P | − 1.
Consider now any spanning tree S of G (G is connected). By Rule 2 of Defini-
tion 3.1, every edge of S belongs to at most one block, thus |P | 6 n− 1. 2

In this section we deal with weighted or unweighted graphs with n vertices.
Given an integer w > 0, let us denoted by w-diameter graph any weighted graph
whose edge cost is a non-null integer, and such that the weighted diameter is
at most w. Unweighted n-vertex graphs are n-diameter graphs. Hereafter, we
assume a word-RAM model of computation providing constant time standard
arithmetic operations on O(log n) bit words.

Given a real s > 1 and an integer w > 0, a pair of functions 〈λ, δ〉 is an
(s, w)-estimator if λ : {1, . . . , w} → {0, 1}α, δ : {0, 1}α → N, and for every
x ∈ {1, . . . , w}, x 6 δ(λ(x)) 6 s x. Intuitively, we think of λ as a function
“compacting” x, (typically α � log w) and of δ as a decoding function attempt-
ing to reconstruct x from λ(x). The size of the estimator is α, and its time
complexity decoder is the worst-case time complexity of the function δ. For
every w, there is a trivial (1, w)-estimator of size dlog we consisting in repre-
senting in binary each integer of {1, . . . , w}. More sophisticated estimators can
be constructed. For instance, in [13] it is built the following range of estimators:

Lemma 3.3 ([13]) For all k and m ∈ {0, . . . , k}, there exists a (polynomially
constructible) (1 + 2−m, 2k)-estimator of size α = m + dlog(k −m + 1)e and of
constant time decoder if k = O(log n).

Choosing k = dlog we and m = dlog ke, Lemma 3.3 gives an (1+1/ log w,w)-
estimator of size 2 log log w + O(1), and of constant time decoder if log w =

7

O(log n).

The main result of this section is the following theorem:

Theorem 3.4 Let α be the size of an (s, w)-estimator with constant time de-
coder. Let F and B be two families of w-diameter graphs with at most n-vertices
such that every G ∈ F has a block-partition P ⊂ B such that |P | 6 p. Assume
that B has an (s, r)-approximate DLS with labels of length at most β and with a
constant time distance decoder. Then, F has an (s, r)-approximate DLS using
labels of length at most (α + β) log(4p) + O(log n) bits and with a constant time
distance decoder.

Intuitively, Theorem 3.4 means that distances in G can be approximated
by the combination of O(log p) DLS, each one being defined inside a block of
G. It is important to note that despite the fact that each block can be of
unbounded size, β can be of constant size. In Definition 1.1, it is just required
that distances can be computed from labels of distinct vertices, two vertices
can have the same label. For instance, if each block is an unweighted clique
with Ω(

√
n) vertices, then Ω(log n) is not a lower bound for β: constant length

labels suffice to compute the distances in cliques of arbitrary size! To prove
Theorem 3.4 we need some preliminaries.

The separator of a rooted tree T is the vertex s obtained by performing a
traversal of T from its root, and defined as follows: Let u be the current vertex
(initially u is the root). If all the connected components of T \ {u} have n/2
vertices or less, then s = u. Otherwise update u to the unique child of u having
more than n/2 descendants. It is not difficult to see that the above procedure
ends on a vertex s such that T \{s} is composed of connected components of at
most n/2 vertices. Moreover, in the case of a rooted tree, s is unique and can
be founded in linear time.

Given a vertex x of T (rooted and with n vertices), the separator-sequence
of x, is the sequence of vertices (s1, . . . , sh) such that: 1) s1 is the separator of
T ; 2) either x = s1 and h = 1, or (s2, . . . , sh) is the separator-sequence of the
tree T ′ = T \{s1} containing x and rooted at the neighbor of s1 contained in T ′.
The separator-sequence of all the vertices of T can be constructed in O(n log n)
time, and we have h 6 1 + log n.

By construction, every path from x to y in T (with x 6= y) must traverse
a vertex s common to the separator-sequence of x and of y. More precisely,
if the separator-sequence of x is (s1 = x1, x2, . . . , xhx

= x), and the separator-
sequence of y is (s1 = y1, y2, . . . , yhy

= y), then we have: dT (x, y) = dT (x, xi0)+
dT (xi0 , y), where i0 is the largest index i such that xi = yi. Actually, i0 is the
length of the longest common prefix of the separator-sequence of x and of y,
that we denote hereafter by lcp(x, y).

Assume that T is a w-diameter tree, and assume that some (s, w)-estimator
of size α is given. A simple s-multiplicative DLS on T can be described. The
vertex x has a label Sx representing its separator-sequence and a table Dx of
hx binary strings such that Dx[i] = λ(dT (x, xi)) for every i ∈ {1, . . . , hx − 1}
(since dT (x, xhx

) = 0, we can save the last entry of Dx). Similarly, y has a label
Sy and a table Dy[j] = λ(dT (y, yj)) for every j ∈ {1, . . . , hx − 1}. From the
above discussion, dT (x, y) can be estimated as follows:

8

1. compute i0 = lcp(x, y) from Sx and Sy;
2. compute d̃(x, y) = δ(Dx[i0]) + δ(Dy[i0]).

We check that dT (x, y) 6 d̃(x, y) 6 s · dT (x, y). As shown in [13], the labels Sx

and Sy can be coded (in polynomial time) on O(log n) bits if we are interested
only in extracting lcp(x, y) in constant time2. Therefore, provided that the
(s, w)-estimator has constant time decoder, one can estimate the distances in
constant time in n-vertex trees using labels of α log n + O(log n) bits. This is
mainly the scheme used for trees in [13].

One need to extend this construction to complete the proof of Theorem 3.4.

Proof: (of Theorem 3.4) Let 〈λ, δ〉 be an (s, w)-estimator of size α and with
constant time decoder. Let 〈LB, fB〉 be an (s, r)-approximate DLS on B with
labels of length at most β and with a constant time distance decoder. Consider
an n-vertex w-diameter graph G ∈ F having a block-partition P ⊂ B. Let
C = {V (B) ∩ V (B′) | B 6= B′ ∈ P}. Let T be the associated tree of P , and let
us root T in an arbitrary vertex.

We construct an approximate DLS 〈L, f〉 on F as follows. For every x ∈
V (G), we set:

L(x, G) = (hX , SX ,MX , Dx, PX)

where X ∈ P is a block containing x (if several blocks contains x, choose
one arbitrarily). hX is the length of the separator-sequence of X in T . SX

is the label assigned to the separator-sequence of X that allows to efficiently
compute lcp(X, Y) from the corresponding label of any vertex Y of T . Assume
that the separator-sequence of X is (X1, . . . , XhX

). From this sequence we
construct a new sequence of vertices of G, (x1, . . . , xhX

), such that, for every
i ∈ {1, . . . , hX}: if Xi ∈ C, then xi = Xi; xhX

= x; and if Xi ∈ P and
i 6= hX , then xi is the unique vertex of C that neighbors Xi on the path
from X to Xi in T (xi exists since X, Xi ∈ P and X 6= Xi). MX is a table
such that, for every i ∈ {1, . . . , hX − 1}: MX [i] = 1 if xi = Xi (i.e., if Xi ∈
C), and MX [i] = 0 otherwise. Finally, Dx and PX are tables such that: for
every i ∈ {1, . . . , hX − 1}, Dx[i] = λ(dG(x, xi)), and for every i ∈ {1, . . . , hX},
PX [i] = LB(xi, Xi) if Xi ∈ P (if Xi ∈ C, PX [i] is not defined – the entry is
empty).

Let x, y be any two distinct vertices of G with labels:

L(x,G) = (hX , SX ,MX , Dx, PX)
L(y, G) = (hY , SY ,MY , Dy, PY)

The distance decoder f is computed as follows (for short, we let d̃(x, y) =
f(L(x, G), L(y, G))):

1. compute i0 = lcp(X, Y) from SX and SY ;
2. If i0 = hX = hY , then return d̃(x, y) = fB(PX [i0], PY [i0]);
3. If MX [i0] = 1, then return d̃(x, y) = δ(Dx[i0]) + δ(Dy[i0]);
4. return d̃(x, y) = δ(Dx[i0]) + fB(PX [i0], PY [i0]) + δ(Dy[i0]).

2The idea is the following. Instead of storing (s1, . . . , sh) in extenso with h log n =
O(log2 n) bits, we associate to each si a number ci > 1 that identifies the subtree containing
x whenever si is removed from the current tree component. Sorting the subtrees by size one
can show that

∏
i ci 6 n, and thus one can encode (c1, . . . , ch) on O(log n) bits.

9

Let us show that 〈L, f〉 is an (s, r)-approximate DLS, that is dG(x, y) 6
d̃(x, y) 6 s · dG(x, y) + r.

1. If i0 = hX = hY , then X = Y and x and y belongs to the same block B
of P . Therefore the local (s, r)-approximate DLS on B, namely 〈LB, fB〉,
can be used and the approximation follows.

2. If MX [i0] = 1, then Xi0 = Yi0 ∈ C is a cut-vertex that separates x from
y. In other words, dG(x, y) = dG(x, Xi0) + dG(y, Yi0). The first term is
stored in the table Dx and the second in the table Dy. Therefore the
result follows by using 〈λ, δ〉.

3. If MX [i0] = 0, then Xi0 = Yi0 ∈ P is a block B that separates x from y.
Therefore any shortest path from x to y has to cross xi0 and yi0 , both in
B. In other words, dG(x, y) = dG(x, xi0) + dB(xi0 , yi0) + dG(yi0 , y). Note
xi0 6= yi0 so dB(xi0 , yi0) can be estimated thank to the labels LB(xi0 , B)
and LB(yi0 , B). Since Dx[i0] = λ(dG(x, xi0)), Dy[i0] = λ(dG(y, yi0)) and
since the local label of xi0 and yi0 are stored respectively in PX [i0] and
PY [i0], the approximation follows.

Let us upper bound the length of L(x, G). Note that hX 6 1+log |V (T)|. By
Lemma 3.2, |V (T)| 6 2|P |−1 < 2p, thus hX < log(4p). The label length of x is
therefore bounded by: dlog hXe = O(log log p) bits for hX , plus O(log p) bits for
SX , plus hX −1 = O(log p) bits for MX , plus α(hX −1) < α log(4p) bits for Dx,
and plus at most β ·hX < β log(4p) bits for PX . By Lemma 3.2, p < n, thus hX ,
SX and MX cost O(log n) bits. All together, we obtain (α+β) log(4p)+O(log n)
bit for L(x, G), and this completes the proof of Theorem 3.4. 2

Theorem 3.4 can be completed by remarking that the scheme constructed
for F is polynomial time constructible if the block-partitions, the estimator, and
the DLS for B are polynomial time constructible.

4 Application to Some Graph Families

Let us now apply the technique presented in the previous section to some graph
families. All the graphs we consider in this section are unweighted.

4.1 Block-Graphs

Theorem 3.4 can be applied in a trivial case: the block-graph family. A graph
is a block-graph if all its maximal 2-connected components are cliques (see [18,
23]). Block-graphs can be seen as graphs constructed from trees by replacing
each edge by a clique of arbitrary size. Every block-graph is chordal i.e., a
graph without induced cycles of length larger than 3. Block-graphs are also the
intersection graphs induced by the block-partition of a graph: the vertex set is
the set of blocks, and the edge set is the blocks that intersect.

Theorem 4.1 The family of unweighted n-vertex block-graphs has an exact
DLS (resp. (1+1/ log n)-multiplicative) with O(log2 n) (resp. O(log n log log n))
bit labels. Moreover the scheme is polynomial time constructible and the distance
decoder has constant time complexity.

10

Proof: We combine Lemma 3.2 (p < n), Lemma 3.3 (choosing α = O(log n) or
O(log log n) depending on the willing approximation), and Theorem 3.4 remark-
ing that β = 0 since exact DLS on the family of cliques can be done without
any label. 2

Since block-graphs contain trees, Theorem 4.1 is optimal according to the
following lower bound due to [13, 15].

Lemma 4.2 ([13, 15]) Let s such that 1 6 s 6 1+6/ log n, and let r > 0. Let
Ls (resp. Lr) be any s-multiplicative (resp. r-additive) DLS on the family of
unweighted n-vertex trees. Then, Ls (resp. Lr) assigns on a vertex of a tree a
label of length Ω(log n log log n) bits (resp. Ω(log2(n/(r + 1))) bits).

4.2 Generalized Distance-Hereditary Graphs

A graph G is distance-hereditary if the distance between any two vertices of any
connected induced subgraph H of G is the same in H and in G. Distance-
hereditary graphs have been investigated to design interconnection network
topologies for their distance property in the case of faulty nodes (see [3] for
references about this family).

We introduce the family of (s, r)-distance-hereditary graphs, with s > 1 and
r > 0, a natural generalization of distance-hereditary graphs.

Definition 4.3 A graph G is a (s, r)-distance-hereditary graph if for every
connected induced subgraph H of G, dH(x, y) 6 s · dG(x, y) + r for any two
vertices x, y of H. We denote by DH(s, r) the family of all (s, r)-distance-
hereditary graphs.

The sub-family DH(1, 0) is exactly the family of distance-hereditary graphs,
and DH(s, 0) has been introduced and investigated in [6, 7]. The sub-family
DH(1, r) have been in studied in [5]. Observe that the family DH(s, r) is close
under taking induced subgraphs.

Recall that a graph is k-chordal if it does not contain any induced chordless
cycle of length larger than k. Chordal graphs, are exactly 3-chordal graphs.

Lemma 4.4 Every (s, r)-distance-hereditary graph is (2s + r + 2)-chordal.

Proof: Let C be a cycle of length `. Observe that if ` > 2s + r + 2, then
C /∈ DH(s, r). Indeed, the deletion of a vertex of C induces a subgraph P of C
(a path) with two vertices x, y such that dP (x, y) = `−2 > 2s+r = s·dC(x, y)+r,
contradicting C ∈ DH(s, r). Since DH(s, r) is close under taking induced sub-
graph, every G ∈ DH(s, r) has no induced cycle of length ` > 2s+r+2, implying
that G is (2s + r + 2)-chordal. 2

For k-chordal graphs we have the following result:

Lemma 4.5 ([13]) The family of n-vertex k-chordal graphs has a bk/2c-additive
(resp. (1+1/ log n, bk/2c)-approximate) DLS with O(log2 n) (resp. O(log n log log n))

11

bit labels. Moreover the scheme is polynomial time constructible and the distance
decoder has constant time complexity.

Lemma 4.4 and Lemma 4.5 give us an immediate DLS for the family DH(s, r).

Theorem 4.6 The family of n-vertex (s, r)-distance-hereditary graphs has an
(s+br/2c+1)-additive (resp. (1+1/ log n, s+br/2c+1)-approximate) DLS with
O(log2 n) (resp. O(log n log log n)) bit labels. Moreover the scheme is polynomial
time constructible and the distance decoder has constant time complexity.

The scheme of [13] for k-chordal graphs is optimal in term of label length
for every k 6 nε, for arbitrary constant ε < 1. Indeed, trees are k-chordal, and
there is no r-additive DLS on trees with labels shorter than O(log2(n/(r + 1)))
bits (cf. Lemma 4.2). However, for the family DH(s, r) there is a little hope to
do better because Lemma 4.4 is not a complete characterization3.

It is not difficult to check that, for all s > 1 and r > 0, the graph C(s, r)
composed of two cycles sharing an edge of length respectively `1 = s+ br/2c+3
and `2 = s + dr/2e+ 2 satisfies: C(s, r) is (s + br/2c+ 3)-chordal (thus is also
(2s+r+2)-chordal), but C(s, r) /∈ DH(s, r). For that it suffices to delete a vertex
of degree 3 in C(s, r) to get a path P with two vertices x, y at distance two in
C(s, r) and such that: dP (x, y) = `1−2+`2−2 = 2s+r+1 > s ·dC(s,r)(x, y)+r.

Let us investigate the sub-family DH(1, 0) in more details, and let us try to
improve Theorem 4.6 for s = 1 and r = 0. By Theorem 4.6, distance-hereditary
graphs have a 2-additive DLS with O(log2 n) bit labels. It is known [13] that 3-
chordal graphs (and 4-chordal graphs as well) need Θ(n) bit labels for any exact
DLS. However, the counter-example C(1, 0) taken from the above discussion –
it is named domino in [17] – shows that many 4-chordal graphs are not distance-
hereditary. So, there is hope to do better, at least from the approximation side.
Effectively, we will see that an exact DLS can be designed with O(log2 n) bit
labels. We use the following result:

Lemma 4.7 ([12, 17]) Distance-hereditary graphs has a split decomposition
such that its split-components are stars and cliques [17]. Moreover, this split
decomposition can be performed in linear time [12].

Consider an n-vertex distance-hereditary graph G. Lemma 4.7 implies that
in linear time one can construct a tree-like graph T from G (as defined in
section 2) whose components are stars and cliques. Therefore, T is a block-
graph. The associated tree of T , namely T̃ , is also a block-graph (it is a tree).
By Lemma 2.3, T and T̃ have O(n) vertices. So, by Theorem 4.1, T and T̃ have
an efficient DLS. By Lemma 2.2, one can rebuilt the distances in G from the
distances in T and T̃ , therefore:

Theorem 4.8 The family of n-vertex distance-hereditary graphs enjoys an ex-
act (resp. (1 + 1/ log n)-multiplicative) DLS (polynomially constructible) using
labels of length O(log2 n) (resp. O(log n log log n)) and constant time decoder.

3To our best knowledge, only the families DH(1, 0) [17], DH(1, 1) [5], and DH(3/2, 0) [6]
have been characterized in terms of forbidden induced subgraphs and have a polynomial time
recognition algorithm. The recognition problem for DH(1, r) (r not fixed) has been shown
Co-NP-complete [5].

12

Again since distance-hereditary graphs contain trees, this result is optimal
by Lemma 4.2.

4.3 Weak-Bipolarizable Graphs

Since we are looking for graphs whose split components have a nice local (s, r)-
approximate DLS, one could think about graphs whose split-components are
k-chordal. But it is easy to see that for any k > 4, if G is k-chordal then its
split-components are also k-chordal. So there is some hope only for 4-chordal
graphs.

Let us consider the family of weak-bipolarizable or HHDA-free graphs [25].
This is the family consists of graphs without House (a square and a triangle
sharing an edge), Hole (a cycle of length larger than 4), Domino (two squares
sharing an edge), and A (a cycle of 4 vertices with two pendant vertices at-
tached to two consecutive vertices on the cycle) as induced subgraphs. Even
though HHDA-free graphs are not necessarily 3-chordal, [25] has showed that
this family has a split decomposition (linear time constructible) such that the
split-components are 3-chordal graphs.

Combining Theorem 3.4 and Lemma 4.5, we have that HHDA-free graphs
enjoy 1-additive DLS with O(log3 n) bit labels. However, one can reduce the
label length to O(log2 n) bits, observing that the tree-like graph obtained by
the split decomposition of [25] is a 3-chordal graphs. So the scheme for a weak-
bipolarizable graph G can be obtained from a simple application of Lemma 4.5
and Lemma 2.2.

Theorem 4.9 The family of weak-bipolarizable n-vertex graphs enjoys an 1-
additive (resp. (1 + 1/ log n, 1)-approximate) DLS (polynomially constructible)
using labels of length O(log2 n) (resp. O(log n log log n)) and constant time de-
coder.

5 Conclusion

This paper presents a way to combine several approximate DLS by the use of the
decomposition techniques (block-partition and split decomposition). The final
results are generalization of known results to larger graphs families. The natural
question is about the use of more general graph decomposition techniques. For
example, one could think about a block-partition based on k-vertices separators.
On the other hand the split decomposition, which uses cutset (set of edges that
splits the graphs into several components) that are complete bipartite graphs,
may be generalized if we consider cutsets that are not complete bipartite graphs.
What kind of bipartite graphs can be interesting to define a generalized split
decomposition? This problem is of wide interest in algorithmic graph theory.

References

[1] S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe, Identifying

13

nearest common ancestors in a distributed environment, Tech. Rep. IT-C
Series 2001-6, ISSN 1600-6100, The IT University of Copenhagen, Aug.
2001.

[2] S. Alstrup and T. Rauhe, Improved labeling scheme for ancestor
queries, Tech. Rep. IT-C Series 2001-5, ISSN 1600-6100, The IT University
of Copenhagen, Aug. 2001.

[3] A. Brandstädt, V. B. Le, and J. P. Spinrad, Graph Classes – A
survey, SIAM Monographs on Discrete Mathematics and Applications,
Philadelphia, 1999.

[4] M. A. Breuer and J. Folkman, An unexpected result on coding the
vertices of a graph, Journal of Mathematical Analysis and Applications, 20
(1967), pp. 583–600.

[5] S. Cicerone, G. D’Ermiliis, and G. Di Stefano, (k,+)-distance-
hereditary graphs, in 27th International Workshop, Graph - Theoretic Con-
cepts in Computer Science (WG), vol. 2204 of Lecture Notes in Computer
Science, Springer, June 2001, pp. 66–77.

[6] S. Cicerone and G. Di Stefano, Networks with small stretch number,
in 26th International Workshop, Graph - Theoretic Concepts in Computer
Science (WG), vol. 1928 of Lecture Notes in Computer Science, Springer,
June 2000, pp. 95–106.

[7] , Graphs with bounded induced distance, Discrete Applied Mathemat-
ics, 108 (2001), pp. 3–21.

[8] D. G. Corneil, M. Habib, J.-M. Lanlignel, B. Reed, and
U. Rotics, Polynomial time recongition algorithm of clique-width 6 3
graphs, in Latin American Symposium on Theoretical Informatics (LATIN),
vol. 1776 of Lecture Notes in Computer Science, 2000, pp. 126–134.

[9] B. Courcelle, J. Engelfriet, and G. Rozenberg, Handle-rewriting
hypergraph grammars, Journal of Computer and System Science, 46 (1993),
pp. 218–270.

[10] B. Courcelle and R. Vanicat, Query efficient implementation of graphs
of bounded clique width, Discrete Applied Mathematics, (2001). To appear.

[11] W. Cunninghan, Decomposition of directed graphs, SIAM Journal on Al-
gebraic and Discrete Methods, 3 (1982), pp. 214–228.

[12] E. Dahlhaus, Efficient parallel and linear time sequential split decom-
position, in 14th Conference on Foundations of Software Technology and
Theoretical Computer Science (FST&TCS), vol. 880 of Lectures Notes in
Computer Science, Springer, Dec. 1994, pp. 171–180.

[13] C. Gavoille, M. Katz, N. A. Katz, C. Paul, and D. Peleg, Ap-
proximate distance labeling schemes, in 9th Annual European Symposium
on Algorithms (ESA), vol. 2161 of Lecture Notes in Computer Science,
Springer, Aug. 2001, pp. 476–488.

14

[14] C. Gavoille and D. Peleg, Compact and localized distributed data struc-
tures, Research Report RR-1261-01, LaBRI, University of Bordeaux, 351,
cours de la Libération, 33405 Talence Cedex, France, Aug. 2001. Submitted
to PODC 20-Year Special Issue (Journal of Distributed Computing).

[15] C. Gavoille, D. Peleg, S. Pérennes, and R. Raz, Distance labeling in
graphs, in 12th Symposium on Discrete Algorithms (SODA), ACM-SIAM,
Jan. 2001, pp. 210–219.

[16] R. L. Graham and H. O. Pollak, On embedding graphs in squashed
cubes, Lecture Notes in Mathematics, 303 (1972), pp. 99–110.

[17] P. Hammer and F. Maffray, Completely separable graphs, Discrete Ap-
plied Mathematics, 27 (1990), pp. 85–99.

[18] E. Howorka, On metric properties of certain clique graphs, Journal of
Combinatoric Theory B, 27 (1979), pp. 67–74.

[19] S. Kannan, M. Naor, and S. Rudich, Implicit representation of graphs,
SIAM Journal on Discrete Mathematics, 5 (1992), pp. 596–603.

[20] H. Kaplan and T. Milo, Parent and ancestor queries using a compact in-
dex, in 20th ACM Symposium on Principles of Database Systems (PODS),
ACM-SIAM, May 2001.

[21] , Short and simple labels for small distances and other functions, in
7th International Workshop on Algorithms and Data Structures (WADS),
vol. 2125 of Lecture Notes in Computer Science, Springer, Aug. 2001,
pp. 32–40.

[22] M. Katz, N. A. Katz, A. Korman, and D. Peleg, Labeling schemes
for flow and connectivity, Tech. Rep. MCS01-01, The Weizmann Institute
of Science, Aug. 2001.

[23] K. C. Kay and C. Chartrand, A characterization of certain ptolemaic
graphs, Canadian Journal of Mathematics, 17 (1965), pp. 342–346.

[24] J.-M. Lanlignel, Autour de la décomposition en coupes, PhD thesis, Uni-
versité Montpellier II – Sciences et Techniques du Languedoc, June 2001.

[25] S. Olariu, Weak-bipolarizable graphs, Discrete Mathematics, 74 (1989),
pp. 159–171.

[26] D. Peleg, Informative labeling schemes for graphs, in 25th International
Symposium on Mathematical Foundations of Computer Science (MFCS),
vol. 1893 of Lecture Notes in Computer Science, Springer, Aug. 2000,
pp. 579–588.

[27] , Proximity-preserving labeling schemes, Journal of Graph Theory, 33
(2000), pp. 167–176.

[28] J. P. Spinrad, Efficient Graph Representations, 2000. In preparation.

15

