
HAL Id: lirmm-00090366
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00090366

Submitted on 30 Aug 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Full RNS Implementation of RSA
Laurent Imbert, Jean-Claude Bajard

To cite this version:
Laurent Imbert, Jean-Claude Bajard. A Full RNS Implementation of RSA. 02068, 2002. �lirmm-
00090366�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00090366
https://hal.archives-ouvertes.fr

A Full RNS Implementation of RSA

Laurent Imbert Jean-Claude Bajard

Research Report – LIRMM No 02068

May 2002

Submitted to

IEEE Transactions on Computers

Special Issue on Cryptographic Hardware and Embedded Systems

Corresponding author:

Laurent Imbert

Laboratoire d’Informatique de Robotique et de Microélectronique de Montpellier

161 rue Ada - 34392 Montpellier cedex 5 - France

Tel. (33) 467 418 549 – Fax. (33) 467 418 500

Laurent.Imbert@lirmm.fr

A Full RNS Implementation of RSA

Laurent Imbert Jean-Claude Bajard

LIRMM - CNRS

Montpellier – France

Abstract

In this paper we propose an efficient hardware implementation of

RSA based on the Residue Number System (RNS) which allows for fast

parallel arithmetic. We propose RNS versions of Montgomery multi-

plication and exponentiation algorithms and illustrate the efficiency of

our approach with two implementations of RSA. For the very first time

a very attractive conversion-free RSA encryption/decryption scheme is

proposed. Compared to previously proposed methods our solution re-

quires less elementary operations and is very promising.

Keywords: RSA, Montgomery multiplication, RNS, base extension.

1

1 Introduction

During the last decade fast hardware implementations of public-key cryp-

tosystems have been widely studied [2, 3, 12] while confidentiality and se-

curity requirements were becoming more and more important. From this

time, key-length has kept growing. Nowadays it is assumed that a 1024-

bit key-length makes a reasonable choice for RSA [11] and current analysis

predict that 2048-bit or 4096-bit key will become the standard in a near

future. The ability to perform fast arithmetic on large integers is then still

a major issue for the implementation of public key cryptography and digital

signature, particularly from an hardware design viewpoint.

Different approaches have been proposed to accelerate the implemen-

tation of RSA. For the decipherment a well known solution performs the

computations over Z/pZ and Z/qZ independently and reconstructs the final

result via the Chinese Remainder Theorem (CRT) [10]. This first applica-

tion of the CRT to RSA was restricted to this special case (the isomorphism

Z/nZ ' Z/pZ× Z/qZ, with n = pq) but it can also be useful in other situ-

ations and is not restricted to the decipherment step. More recently, other

CRT based solutions have been proposed [9, 4, 8, 1]. They all use a quite

similar version of Montgomery multiplication based on the Residue Num-

ber System (RNS) [15] which is well adapted to fast parallel arithmetic.

The complexity of all those algorithms mainly depends on two RNS base

extensions that are required for each modular multiplication.

In this paper we detail the implementation and complexity of an efficient

Montgomery multiplication algorithm based on the Residue Number System

(RNS) previously proposed by the authors in [1]. This algorithm uses two

different techniques for the first and second base extensions and requires

less elementary operations than other previous methods. We illustrate the

2

efficiency of our approach with two full textbook implementations of RSA

in RNS. In the first implementation (RSA with conversions) we consider the

message we want to encrypt as a number, convert it in RNS, perform the

exponentiation and convert the result back to a classical binary notation.

The second solution we propose is a lot more attractive since it does not

require any conversion to and from the residue number system. We directly

consider the message as a value represented in RNS. For this technique to

work, both parties must have agreed beforehand on the RNS bases since the

message will transit between them in its RNS form.

2 The Residue Number System

In a residue number system (RNS) [14, 15, 5] numbers are represented ac-

cording to a base B = (m1,m2, . . . ,mk) of relatively prime moduli which

size k is its number of elements. An integer x is represented by the sequence

(x1, x2, . . . , xk) of positive integers, where xi = x mod mi, i = 1...k. The

Chinese Remainder Theorem (CRT) ensures the uniqueness of this represen-

tation within the range 0 6 x < M , where M =
∏k

i=1 mi. The constructive

proof of this theorem can be used to convert x back from its residue repre-

sentation:

x =
k∑

i=1

xi Mi

∣∣M−1
i

∣∣
mi

mod M, (1)

where Mi =
M

mi
and

∣∣M−1
i

∣∣
mi

is the inverse of Mi modulo mi. In the

following of the paper we shall use |x|m to denote the value (x mod m).

The advantages of RNS is that addition, subtraction and multiplication

are very simple and can be implemented in constant time on a parallel archi-

tecture. If x and y are given in their RNS form (x1, . . . , xk) and (y1, . . . , yk)

3

one have
x± y = (|x1 ± y1|m1 , . . . , |xk ± yk|mk

) ,

x× y = (|x1 × y1|m1 , . . . , |xk × yk|mk
) .

On the other hand, one of the disadvantages of this representation is that

we can not easily decide whether (x1, . . . , xk) is greater1 than (y1, . . . , yk).

Consequently divisions are very difficult to perform2 and overflows that can

occurred during computations are not easily detected.

From a cryptographic viewpoint, these difficulties are not to be con-

sidered as real drawbacks. In public key cryptography most of the algo-

rithms perform the computations in a finite field or ring which eliminates

the overflow problem. Moreover, they do not require comparisons and di-

visions. Modular reduction (the computation of x mod m), multiplication

(xy mod m) and exponentiation (xy mod m) are the most important op-

erations. They can be efficiently computed without division using Mont-

gomery’s algorithms [7].

3 Modular exponentiation

Let us briefly recall the principles of Montgomery’s techniques. Given R >

N , gcd(R,N) = 1 and 0 6 x < RN , Montgomery reduction technique

evaluates xR−1 mod N by computing the value q < R such that x + qN

is a multiple of R. Hence y = (x + qN)R−1 is performed without division

and verifies y < 2N and y ≡ xR−1 (mod N). The final result x mod N

can be computed using the same algorithm with inputs y and (R2 mod N).

In the same way Montgomery modular multiplication algorithm computes

xyR−1 mod N . For practical implementations the Montgomery constant R

1According to the CRT, testing the equality of two RNS numbers is trivial.
2Exact division is easy since it simply consists of a multiplication by the inverse.

4

is chosen as a power of 2 to reduce the multiplication by R−1 to simple shifts.

A more detailed discussion on Montgomery reduction and multiplication

algorithms can be found in [6].

In the next sections we present a RNS version of Montgomery multi-

plication and the conditions for its use within a modular exponentiation

algorithm based on the classical technique which combines Montgomery

reduction and a binary or k-ary method, also known as the square-and-

multiply algorithm. Assuming we aim at computing xa mod n, the input

x is first transformed into x′ = xR mod n, often called the Montgomery

representation. This is done using a first Montgomery multiplication with x

and (R2 mod n) as inputs. This representation has the advantage of being

stable over Montgomery multiplication:

x′ × y′ mod N = xR× yR×R−1 mod n = xyR mod n.

The output of the exponentiation, z′ = xaR mod n, is converted back into

the expected value z = xa mod n using a last call to Montgomery multi-

plication with z′ and 1 as inputs. The efficiency of this exponentiation then

clearly relies on the ability to perform the Montgomery modular multiplica-

tion.

4 RNS Montgomery multiplication

In the RNS version of Montgomery multiplication algorithm we use

M =
k∏

i=1

mi

as the Montgomery constant (R) and we compute

r = abM−1 mod N,

5

where r, a, b and N are represented in RNS according to a predefined base

B. As in the classical Montgomery algorithm we are looking for a number q

such that (ab + qN) is a multiple of M , which will allow us to perform the

division (ab + qN)/M . Since this division is exact it reduces to the product

of (ab+qN) with the inverse of M . Unfortunately the inverse of M does not

exist modulo M , which force us to use an extended base B′ = (m′
1, . . . ,m

′
l)

with gcd(m′
i,M) = 1 for i = 1 . . . l, M ′ =

∏
i m

′
i and M ′ > M . Another

reason for which we need this second base comes form the fact that the

dynamic range provided by the base B is not large enough to represent

(ab+ qN) > M . For simplicity we will consider in the rest of the paper that

both B and B′ are of the same size k and we shall denote them

B = (m1, . . . ,mk) and B′ = (mk+1, . . . m2k).

Now, in order to determine q, we use the fact that r = (ab + qN) is a

multiple of M , which implies that its representation in the base B is merely

composed of 0:

r ≡ 0 (mod mi), for i = 1 . . . k.

The RNS representation of q is then given by the solutions of the equations

(aibi + qini) ≡ 0 (mod mi) ∀i = 1 . . . k, (2)

which gives

qi = aibi | − n−1
i |mi ∀i = 1 . . . k. (3)

As pointed out previously we can not compute r in base B but only in

base B′. Moreover, one can remark that since r is solely composed of 0,

multiplication by M−1 would have no effect. Before we evaluate r = (ab +

qN) we must extend q in base B′. We shall discuss this first base extension

in detail in the section 4.1. We then compute r = (ab + qN) in base B′

6

and extend the result back to the base B for future use. The second base

extension is discussed in section 4.2. Algorithm 1 clarifies the situation. It

computes the product abM−1 mod N , with a, b, N represented in RNS in

both bases B and B′.

Algorithm 1 – MM(a,b,N) : RNS Montgomery Multiplication
Input : Two RNS bases B = (m1, . . . ,mk), and B′ = (mk+1, . . . ,m2k),

such that M =
∏k

i=1 mi < M ′ =
∏k

i=1 mk+i and gcd(M,M ′) = 1 ; a

redundant modulus mr, gcd(mr,mi) = 1 ∀i = 1...2k ; a positive integer

N represented in RNS in both bases such that 0 < (k + 2)2N < M and

gcd(N,M) = 1 ; two positive integers a, b represented in RNS in both

bases, with ab < MN .

Output : A positive integer r̂ ≡ abM−1 (mod N) represented in RNS in

both bases, with r̂ < (k + 2)N .

1: q ← (a× b)× (−N−1) in B

2: [q in B] −→ [q̂ in B′] First base extension

3: r̂ ← (a× b + q̂ ×N)×M−1 in B′

4: [r̂ in B]←− [r̂ in B′] Second base extension

Instructions 1 and 3 consist in full RNS operations and can be performed

in parallel. As a consequence the complexity of the algorithm clearly relies

on the two base extensions on lines 2 and 4. This algorithm is very similar

to those of Posch and Posch [9] and Kawamura and al. [4] which also require

two base extensions. In their approaches, the same technique is applied for

both the first and second base extensions.

We propose a different solution which do not use the same algorithm for

the two extensions on lines 2 and 4. We show in section 6 that our choice

requires less elementary operations than those previously proposed methods.

7

4.1 First base extension

The instruction in line 2 consists of converting q obtained in its RNS form

(q1, . . . , qk) in the base B to its RNS representation in base B′. If we evaluate

the sum in (1) by first computing the values

σi = qi

∣∣M−1
i

∣∣
mi

mod mi,

we have

q =
k∑

i=1

Miσi − αM. (4)

where α is an integer less than k. But instead of extending the exact value

of q in base B′, we only extend

q̂ = q + αM

by only computing the residues

q̂j =
∣∣∣ k∑

i=1

∣∣Mi

∣∣
mj

σi

∣∣∣
mj

, ∀j = k + 1 . . . 2k. (5)

Compared to previous methods the advantage comes from the fact that we

do not need to compute the value of α in (4). This is the first difference

with [9] and [4] where a rational approximation of α is evaluated.

In instruction 3 we compute in the base B′ the value

r̂ = (ab + q̂N)M−1 = (ab + qN)M−1 + αN < M ′. (6)

After instruction 3 we are then provided with a value r̂ such that

r̂ ≡ r ≡ abM−1 (mod N)

which is sufficient for our purpose. The conditions α < k, q < M and

ab < MN gives q̂ < (k + 1)M and thus r̂ < (k + 2)N < M ′.

In order to use algorithm MM within the exponentiation algorithm (see

section 3), we must be able to compute x2 mod N , where x is the output

8

of algorithm MM verifying x < (k + 2)N . The condition ab < MN then

implies (k + 2)2N2 < MN which rewrites:

(k + 2)2N < M. (7)

If N is a 1024-bit number and if we use 32-bit modulus, we need base B

to be of size k > 33. In fact condition (7) is verified as soon as k > 34.

As we shall see further for the second base extension, we need to know the

value of q̂ for an additional modulus. This is done by extending q̂ using (5)

for a redundant modulus mr, which gives q̂r = q̂ mod mr.

As in [4] we evaluate the cost of our algorithms in terms of elementary

operations which, in this case, is a modular multiplication of size the size

of the modulus mi and operands (qi,
∣∣M−1

i

∣∣
mi

and
∣∣Mi

∣∣
mj

) ; for instance

32-bit numbers. This easily generalizes to other choices for the bases ; for

example smaller bases with larger modulus, say 64-bit numbers. The first

base extension then requires k2 + 2k elementary operations.

An interesting implementation option is to choose a power of 2 for the

redundant modulus mr
3. Since the reduction modulo a power of 2 is a lot

easier than for any modulus, we can omit them when counting the elemen-

tary operations. This reduces the cost of the first base extension to k2 + k.

4.2 Second base extension

For the second base extension we use a different algorithm due to Shenoy

and Kumaresan [13]. As previously, we first evaluate

ξj = r̂j

∣∣M ′−1
j

∣∣
mj

mod mj , ∀j = k + 1 . . . 2k,

3Of course, since all the moduli have to be relatively prime, we can only choose one

even modulus.

9

and we consider the sum given by the CRT reconstruction algorithm in

equation (1)

r̂ =
k∑

j=1

M ′
jξj − βM ′, (8)

where β < k. Once β is known we can extend r̂ back in base B by evaluating

|r̂|mi =
∣∣∣∣ k∑

j=1

∣∣M ′
j

∣∣
mi

ξj −
∣∣βM ′∣∣

mi

∣∣∣∣
mi

, ∀i = 1...k. (9)

In order to compute β we have to know the value of r̂ for an additional

modulus. This is done by evaluating r̂ (line 3 of algorithm 1) for the redun-

dant modulus mr for which we have computed q̂r in the first base extension.

From eq. (8) we have

βM ′ =
k∑

j=1

M ′
jξj − r̂,

∣∣βM ′∣∣
mr

=
∣∣∣∣ k∑

j=1

∣∣M ′
j

∣∣
mr

ξj − |r̂|mr

∣∣∣∣
mr∣∣β∣∣

mr
=

∣∣∣∣∣∣∣∣M ′−1

∣∣∣∣
mr

(k∑
j=1

∣∣M ′
j

∣∣
mr

ξj − |r̂|mr

)∣∣∣∣∣
mr

.

Since β < k, choosing mr > k ensures β < mr and equation (10) gives the

correct result.

β =

∣∣∣∣∣∣∣∣M ′−1

∣∣∣∣
mr

(k∑
j=1

∣∣M ′
j

∣∣
mr

ξj − |r̂|mr

)∣∣∣∣∣
mr

. (10)

The sum in eq. (10) requires a total cost of 2k + 1 elementary mod-

ular multiplications distributed as follow: k to compute the values ξj =∣∣∣r̂j

∣∣M ′−1
j

∣∣
mj

∣∣∣
mj

, k for each
∣∣∣∣∣M ′

j

∣∣
mr

ξj

∣∣∣
mr

, and one for the multiplication by∣∣M ′−1
∣∣
mr

. Since the values ξj have already been computed for all j, the

number of operations needed to evaluate eq. (9) is k + 1 for each modu-

lus mi in B, which results in k2 + 3k + 1 elementary modular multiplica-

tions. If mr is a power of 2 the cost of the second base extention reduces to

k + k(k + 1) = k2 + 2k.

10

In the next sections we illustrate our algorithm with two textbook RSA

implementations. The first version uses conversions to and from the residue

number system. We present this version for completeness and since it al-

lows more freedom in the implementation of the RSA protocol. The second

version without conversion is a lot more attractive.

5 RSA Implementations

At the end of the classical Montgomery multiplication the result is less than

2N . A correction step is necessary if the result is greater than N and in this

case a subtraction by N gives the correct value. As mentioned previously,

in our RNS version the output r̂ of algorithm MM is less than (k+2)N . For

the same reason a correction step may be needed.

In the next paragraphs we present two implementations of RSA which

address this problem.

5.1 RSA with conversions

To address the final correction step, a straightforward solution consists of

subtracting N from r̂ until r̂ < N . This technique can not be performed

efficiently in RNS since it requires a comparison after each subtraction.

Furthermore, for practical values of k the overhead is important.

Another solution, however, is to perform, for the very last Montgomery

multiplication, (i.e. the last call to MM(xaM mod N ,1,N) which suppress

the Montgomery constant M and gives the expected result xa mod n), the

first base extension exactly. This can efficiently be done via the Mixed Radix

System (MRS) has suggested in 1967 by Szabo and Tanaka [14]. For each

11

mj , we evaluate

|q|mj =
∣∣∣t1 + t2m1 + t3m1m2 + · · ·+ tkm1...mk−1

∣∣∣
mj

, (11)

where

t1 = q mod m1 = q1

t2 =
(
q2 − t1

)
c12 mod m2

...

tk =
(
· · ·

((
qk − t1

)
c1k − t2

)
c2k − · · · − tk−1

)
c(k−1)k mod mk

and cij = m−1
i mod mj .

Example

We illustrate our algorithm with an implementation of RSA with small val-

ues. We first define the classical RSA parameters. Let us define 2 prime

numbers p = 479 and q = 317. We compute n = pq = 151843, φ(n) = (p −

1)(q− 1) = 151048 ; find a value a such that gcd(a, φ(n)) = 1, and compute

b = a−1 mod n using the extended Euclid algorithm: a = 173, b = 79453.

The couple (b, n) is the public key. a, p, q, φ(n) are kept secret.

Now, we define the RNS parameters: the bases B = (3, 7, 13, 19, 29, 67)

and B′ = (5, 11, 17, 23, 31, 37), the redundant modulus mr = 8. The dynamic

ranges M = 10078341 and M ′ = 24666235 provided by the two bases satisfy

the conditions (k + 2)2n = 64n < M < M ′.

Let x = 132976 be the message less than n we want to encrypt. The

first step consists of converting the values x and n in their RNS form X and

N 4. We have:

X = (1, 4, 12, 14, 11, 48)B, (1, 8, 2, 13, 17, 35)B′

4In the examples, we use uppercases for RNS numbers and lowercases for their corre-

sponding value.

12

N = (1, 6, 3, 14, 28, 21)B, (3, 10, 16, 20, 5, 32)B′

We compute in RNS the encrypted value Y = Xb mod N :

Y = (0, 6, 7, 14, 12, 3)B, (3, 2, 1, 5, 18, 8)B′ ,

which correspond in decimal to y = 118593. According to the RSA algo-

rithm, we decrypt this value by computing Z = Y a mod N . The result in

RNS is

Z = (1, 4, 12, 14, 11, 48)B, (1, 8, 2, 13, 17, 35)B′ ,

and correspond to the original message z = 132976 = x.

For this example we have used the same bases for both the encryption

and decryption. If this situation occurs in a practical case it is important to

note that we do not need to convert the encrypted value Y back in binary

before transmission. We can directly send the RNS value Y to the other

part.

5.2 RSA without conversion

An easy way to consider the message x =
∑

i xi2i we want to encrypt as a

valid RNS number is to split it in blocs, which size depends on the size of

the moduli of the base B. For example if B is composed of 32-bit modulus,

splitting x in blocs of at most 31 bits makes it possible to consider each

bloc as a value xi < mi and provides what we have just called a valid RNS

number.

In order to correct the value obtained at the end of the exponentiations

we consider the last modulus of B as a special modulus. This extended

modulus plays a crucial role in the correction step of our algorithm and, as

a consequence, in its validity. Once the message x is expressed in the RNS

form (x1, . . . , xk−1) for the k−1 first modulus, we consider the number which

13

RNS representation in the base B = (m1, . . . ,mk−1,mk) is (x1, . . . , xk−1, 0).

By doing this we are constructing a number less than M , that we do not

know explicitly, which is a multiple of mk.

To encrypt a message with RSA we have to compute y = xb mod N .

As we have seen previously our algorithm do not return y exactly but

ŷ = xb mod N + βN, with β < k + 2.

At the end of the decryption step we should obtain a value z congruent to

x modulo N and less than N . Our algorithm returns

ẑ = xba mod N + γN

with γ < k + 2. The returned value ẑ verifies ẑ ≡ x (mod N) but it may be

greater than N .

In order to correct this result if necessary, we use the extra information

we have thanks to the last modulus mk. We know that the result z must be

a multiple of mk. Thus its RNS representation should be

z = (z1, . . . , zk−1, 0).

In practice we will almost always obtain a value

ẑ = (ẑ1, . . . , ẑk−1, ẑk),

with zk 6= 0, which is not a multiple of mk.

The solution we propose consists of looking for a value t such that z̃ =

ẑ+tN is a multiple of mk. We compute t by solving the equation ẑk+tN ≡ 0

(mod mk) which gives

t = ẑk(−n−1
k) mod mk,

14

where nk = N mod mk is given by the RNS representation of N . We then

compute tN = (tn1, . . . , tnk−1, tnk) and z̃ = ẑ + tN in RNS to obtain

z̃ = (z̃1, . . . , z̃k−1, 0).

At this point we are provided with a value z̃ such that:

z̃ ≡ x (mod N)

z̃ ≡ x (mod mk)

Then from the Chinese Remainder Theorem, it maps back to a unique num-

ber within the interval [0,mkN). Since x = (x1, . . . , xk−1, 0) < M , taking

M 6 mkN ensures that the computed RNS number z̃ has actually the same

RNS representation than x. We have then obtained the correct result. This

gives us the final conditions for our algorithm:

(k + 2)2N < M 6 mkN,

which implies mk > (k + 2)2.

It is yet important to note that the validity of our algorithm is based on

an important assumption. Since the message is always considered in RNS

and never converted back in binary, even for the transmission, it is clear

that both parties must choose a common set of RNS bases, in particular the

same value for mk. This exchange can be a part of the protocol initialization

between the two communicants and is beyond the scope of this paper.

Example

We use the same parameters than in the previous example:

• p = 479, q = 317, n = 151843

• φ(n) = 151048, a = 173, b = 79453 = a−1 mod φ(n)

15

The RNS bases are also identical ; the last element of B playing the role of

the special modulus mk = 67.

• B = (3, 7, 13, 19, 29, 67), M = 10078341,

• B′ = (5, 11, 17, 23, 31, 37), M ′ = 24666235,

For the second base extension we use the redundant modulus mr = 8.

Let us first verify the conditions of our algorithm:

(k + 2)2N = 9717952 < M = 10078341 6 mkN = 10173481.

Let x = 11010101001101 the binary representation of the message we

aim at encrypting. Instead of converting it from its binary representation

to its RNS form in base B, we split it in blocs such that it corresponds to a

valid RNS number. In this example the modulus do not have all the same

size which implies us to consider an irregular splitting of x. If we express

the moduli set in binary we have B = (11, 111, 1101, 10011, 11101, 1000011).

A valid splitting of x is then x = 1 10 101 0100 1101. The size of each bloc

is 1 minus the size of the corresponding modulus. In a real implementation

we can simply consider 32-bit moduli and split x in 31-bit blocs. The value

we are going to encrypt is then in RNS

X = (1, 2, 5, 4, 13, 0)B.

The first operation consists of extending X is the base B′. This has to be

done exactly via the mixed radix representation as explained in section 5.1.

X = (1, 2, 5, 4, 13, 0)B, (1, 10, 11, 18, 8, 22)B′ .

The first step in the computation of Y = XbM mod N is the call to

MM(Y, (M2 mod N), B) which transforms Y into the Montgomery-like no-

tation Y M mod N + βN

Y M mod N + βN = (2, 0, 0, 16, 11, 13)B, (0, 6, 10, 9, 5, 17)B′ .

16

The exponentiation then gives:

Y = (1, 4, 7, 2, 7, 21)B, (1, 7, 11, 11, 13, 33)B′ .

At this step we are still in the Montgomery notation. We send this value

to the other part who decrypt it. Since the transmitted value Y is already

in the Montgomery notation the first call to MM to get into this form can

be omitted. We directly perform the exponentiation by computing Z =

Y a mod N . The last call to MM(Z, 1, B) gets out from the Montgomery

notation and gives:

Z = (2, 6, 2, 3, 8, 26)B, (2, 8, 13, 16, 22, 28)B′ .

Since Zk = 26 6= 0 we do not have a multiple of mk = 67 and thus a

final correction step is needed. We compute

t = Zk(−N−1
k) mod mk = 53,

and

53N = (2, 3, 3, 1, 5, 41)B.

A final addition gives the correct result

Z + 53N = (1, 2, 5, 4, 13, 0)B.

If we express it back in binary according to the same splitting and with-

out considering the last residue, this actually is the original message x =

11010101001101.

6 Complexity and comparisons

We compare our approach with a previously proposed method by Kawa-

mura, et al. [4] that has itself been demonstrated more efficient than an-

other efficient solution proposed in 1995 by Posch and Posch [9]. Since the

17

modular exponentiation algorithms we compare only differ in the way mod-

ular multiplication, and more specifically the two embedded base extensions,

are performed, we only compare the elementary operations needed for one

Montgomery multiplication. Even if the values reported in table 1 do not

Our algorithm Kawamura & al.

Lines 1 and 3 of algo MM 5k 5k

First base extension k2 + k 2k2 + 2k

Second base extension k2 + 2k 2k2 + 2k

Total 2k2 + 8k 4k2 + 9k

1024-bit key-length (k = 34) 2584 4930

Table 1: Number of elementary modular multiplications needed for two

different RNS implementations of Montgomery multiplication. In our algo-

rithm we consider that the redundant modulus mr is a power of 2

take into account the fact that many of those elementary operation (single-

precision modular multiplication) can be performed in parallel, our modular

multiplication algorithm is clearly more efficient.

If we compare the whole implementations of RSA our solution without

conversion is also more efficient. We can decompose our algorithm and

Kawamura et al.’s one in three main parts: the mapping in, the modular

exponentiation and the mapping out (see figure 1). As shown in table 1 our

modular exponentiation requires less operations. Our mapping in procedure

only consists in a base extension and we no not use any operation for the

mapping out. Our conversion-free implementation is thus very efficient.

18

Our algorithm
without conversion Kawamura et al.

Mod Exp. Mod Exp.

Mapping

CRT

Base ext.

Figure 1: Comparisons of two encryption/decryption implementations of

RSA in RNS.

7 Conclusion

We have presented a new implementation of Montgomery multiplication in

RNS and have shown its efficiency with two implementations of RSA. The

first solution uses an embedded RNS arithmetic which maps the values in

RNS before the computations and convert them back in binary at the end.

But the real novelty is a full RNS cryptosystem. The message is never

considered as a binary number but rather in RNS all along the protocol.

Thus no conversion are needed. This approach requires both parties to agree

on a set of RNS parameters beforehand. Compared to previously proposed

solutions [9, 4, 8] our algorithms requires less elementary operations and use

only integer arithmetic (no rational approximation of α in (4) are computed).

Furthermore the conditions on our parameters are easier to satisfy than the

ones we have in these other methods.

References

[1] J.-C. Bajard, L.-S. Didier, and P. Kornerup. Modular multiplication
and base extension in residue number systems. In N. Burgess, editor,

19

Proceedings of Arith15, the 15th IEEE symposium on Computer Arith-
metic, pages 59–65, Vail, Colorado, USA, June 2001.

[2] E. F. Brickell. A survey of hardware implementation of RSA. In
G. Brassard, editor, Advances in Cryptologie - CRYPTO ’89, LNCS-
453, pages 368–370. Springer-Verlag, 1990.

[3] S. E. Eldridge and C. D. Walter. Hardware implementation of Mont-
gomery’s modular multiplication algorithm. IEEE Transactions on
Computers, 42(6):693–699, June 1993.

[4] S. Kawamura, M. Koike, F. Sano, and A. Shimbo. Cox-rower archi-
tecture for fast parallel montgomery multiplication. In Advances in
Cryptology - EUROCRYPT 2000 (LNCS 1807), pages 523–538, May
2000.

[5] D. E. Knuth. The Art of Computer Programming, Vol. 2: Seminumer-
ical Algorithms. Addison-Wesley, Reading, MA, third edition, 1997.

[6] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of
applied cryptography. CRC Press, 2000 N.W. Corporate Blvd., Boca
Raton, FL 33431-9868, USA, 1997.

[7] P. L. Montgomery. Modular multiplication without trial division. Math-
ematics of Computation, 44(170):519–521, April 1985.

[8] H. Nozaki, M. Motoyama, A. Shimbo, and S. Kawamura. Implemen-
tation of RSA algorithm based on RNS montgomery multiplication.
In Cryptographic Hardware and Embedded Systems CHES 2001 (LNCS
2162), pages 364–376, September 2001.

[9] K. C. Posch and R. Posch. Modulo reduction in residue number systems.
IEEE Transactions on Parallel and Distributed Systems, 6(5):449–454,
May 1995.

[10] J.-J. Quisquater and C. Couvreur. Fast decipherment algorithm for
RSA public-key cryptosystem. IEE Electronics Letters, 18(21):905–907,
October 1982.

[11] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public key cryptosystems. Communications of the ACM,
21(2):120–126, February 1978.

20

[12] M. Shand and J. Vuillemin. Fast implementation of RSA cryptography.
In E. E. Swartzlander, M. J. Irwin, and G. A. Jullien, editors, Pro-
ceedings of the 11th IEEE Symposium on Computer Arithmetic, pages
252–259, Windsor, Canada, June 1993. IEEE Computer Society Press,
Los Alamitos, CA.

[13] A. P. Shenoy and R. Kumaresan. Fast base extension using a redundant
modulus in RNS. IEEE Transactions on Computers, 38(2):292–296,
February 1989.

[14] N. Szabo and R. I. Tanaka. Residue Arithmetic and its application to
Computer Technology. McGraw-Hill, 1967.

[15] F. J. Taylor. Residue arithmetic: A tutorial with examples. IEEE
Computer, 17(5):50–62, may 1984.

21

