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Abstract

This paper describes a method for additive abrupt fault
detection and isolation. Parameter estimation is applied off
line to obtain a discrete model. The contribution of sensor or
actuator faults on the output error residual is analysed. Fault
occurrence is detected using a Page-Hinkley algorithm. Then
the parameters of several output error models of the residual
are estimated. The analysis of these models allows fault
isolation. As soon as a fault is diagnosed, the measurements
provided to the fault detection and isolation algorithm are
modified so that the detection of a consecutive fault is allowed
even if the first fault is not corrected.

1 Introduction

In model-based fault diagnosis methods, the residuals are
computed by the deviation between the measurements and the
model computations. The basic model-based fault diagnosis
methods are: parity equations [Gertler 90], [Gertler 97], state
and output observers [Patton 97], identification and parameter
estimation [Isermann 93].

Parameter estimation methods are based on different criteria,
which are minimised in order to estimate the model
parameters. These criteria can be considered as residuals.
Links between these criteria and parity equations can be made
[Isermann 97].

These residuals become different from zero as soon as either
input or output is affected by an additive fault. Redundancy
between different transfer function identification increases the
number of residuals, and thus increases the fault isolation
capability [Weber 98]. The isolation is only possible when the
incidence matrix structure is deterministically isolable

[Gertler 92]. Nevertheless in practice, the number of
equations is limited by the process structure and the
robustness to multiplicative fault is difficult to guarantee.

Parameter estimation is well adapted to multiplicative faults.
Nevertheless, parameter estimation methods need rich
excitation. A persistent excitation allowing on line diagnosis
is difficult to fulfil. In addition, the parameters do not
converge immediately, so the fault is not detected as fast as
with parity equation methods. Moreover, additive faults
disturb the estimates.

This work presents a method to avoid the increasing number
of equations required for additive fault isolation; it uses a
parameter estimation technique to analyse an output error
residual whereas [Alcorta 96] identified observer based
residuals.

The paper is organised as follows: section two presents the
basic concepts of the proposed method. The implementation is
detailed in section three: the fault is detected using Page
Hinkley algorithm; fault isolation and identification are
performed by several  parameter estimation and the reset of
the algorithms allows consecutive fault diagnosis. Section four
presents the application to a winding system simulation,
before the conclusion.

2  The proposed method

Consider small signal deviations around an operating point;
the behaviour of a multiple input single output (MISO)
process with m inputs can be described by a linear discrete
model:

)(+ )()()( kekqky uG ⋅= (1)

where [ ]T
m kukuk )(...)()( 1=u  are the inputs and y(k) is

the output of the process, q is the delay operator,



[ ])(...)()( 1 qGqGq m=G  represents the discrete transfer

function of parallel models, each one related to one particular
input and )(ke  represents the measurement noise.

The Output Error (OE) model is estimated off-line on fault-
free data set. It is further used to compute an on-line
estimation )(ˆ ky  of the measured variable. Independent

parallel models are fed by each actuator values:

)(...)()(ˆ 1 kwkwky m++= (2)

where wi(k) are the outputs of the independent parallel
models.

The OE model is defined by:
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An OE identification algorithm allows the estimation of the
model parameters [Ljung 87]:
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di is the input delays, nbi and nfi are the degrees of the

polynomials )(ˆ qBi  and )(ˆ qFi , lb̂ and lf̂  are the estimates.

Thus parallel model outputs are computed as:
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Taking faults into account, )(ky  is rewritten as:

( ){ }

{ } )(+)(+ )()(+        

 )()()(ˆ)(

1=i

1

kekykuqG

kuqqGky

m

ii

m

i
iii

∆∆⋅

⋅∆Γ+=

∑

∑
=

(8)

where )(ky∆  represents the sensor fault, )(kui∆  represents

the actuator faults, and )(qi∆Γ  represents the multiplicative

faults and/or modelling errors.

The Output Error Residual (OER) is computed by the
difference between the measurement (8) and its estimate (2):
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The residual computed by (9) is sensitive to each fault:

• additive input faults )(kui∆ : the actuator faults affect the

residual through the transfer function )(qGi ;

• additive output faults )(ky∆ : the sensor faults affect

directly the residual;
• multiplicative faults )(qi∆Γ : they affect also the residual,

in the following it will be supposed that 0)( =∆Γ qi .

In single fault hypothesis, the OER has the following
representation:

Actuator fault on ui(k)

)()()()( kekuqGkr ii +∆⋅= (10)

Sensor fault on y(k)

)()()( kekykr +∆= (11)

The OER behaviour depends only on the additive faults, and
the noise. When an actuator fault occurs, the residual response
is the fault filtered by )(qGi . Using parallel models easily

separates the effects of each fault. In the case of sensor fault,
the residual response is directly proportional to the fault. Thus
the idea used in the following for fault isolation is to
determine which model describes better the residual response.

3  Method implementation

In the proposed method, the diagnosis is performed in three
steps. The first step is to detect if a fault occurred. The second
step is the fault isolation and identification, in order to
determine which actuator or sensor is faulty and the amplitude
of the fault. This step is started only if a fault is detected. The
final step is the reset of the algorithms in order to diagnose
new faults even if the previous faults are not yet corrected.

3.1 Fault Detection

Considering an abrupt fault as a step signal [Isermann 97],
when a fault occurs the OER mean changes. The Page-
Hinkley Algorithm (PHA) detects this change. This method is
simple, efficient and robust to noise [Basseville 86].
Moreover, PHA permits to define the detection sampling time
kd, more or less precisely depending on the fault and the noise.
When an abrupt sensor fault occurs the OER actually follows
a step (Figure 1), thus PHA is applied in the right conditions
and kd is close to the real sampling time of the fault



occurrence kf. Nevertheless, when the actuator is faulty, the
residual response is the fault filtered by the process (Figure 2).
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Figure 1: Page-Hinkley test for a sensor fault

0 10 20 30 40 50 60 70
-5

0

5

10

15
x 10

-3 Page-Hinkley detection time kd

Real actuator fault

r(k)

Real actuator fault effect on the residual

sampling time kkf=20

Figure 2: Page-Hinkley test for an actuator fault

Under this condition, PHA detects the fault at time kd delayed
with respect to kf. This delay is due to the dynamic of )(qGi .

This method assumes the static gains of )(qGi  are different

from zero. In order to increase the detection ability, the OER
might be filtered to guarantee that the mean of the residual
changes significantly.

In conclusion, PHA allows fault detection, but the exact
sampling time of the fault occurrence is uncertain due to noise
and the dynamic of the process.

3.2 Fault Isolation and Identification (FII)

The FII algorithm is launched only if a fault is detected.
Finding which model, (10) or (11), better explains the residual

response leads to fault isolation. The first step tests the
actuator fault hypothesis, and isolates the faulty input. If no
actuator fault is diagnosed, then the sensor fault hypothesis is
tested.

3.2.1 Actuator fault isolation and identification

The fault )(ku i∆  is assumed to be an abrupt fault modelled

by a step input, the eq (10) is written as:

)()()( )( kekkUgqGkr f
u
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where ug ∆  is the actuator fault amplitude and )( fkkU −  is

unit step input applied at time kf. Each actuator fault
hypothesis is tested successively estimating the transfer
function between r(k) and )(ku i∆ . If the transfer function is

identical to )(qGi , the hypothesis is considered valid and the

ith  actuator is considered faulty. Successive identifications are
carried until one actuator is suspected. In the following, the
indices i are omitted for the sake of simplicity.

The problem here to apply a conventional identification

method is that neither the amplitude ug ∆  nor the time kf of

application of the fault are known. These two problems are
tackled in the following.

a) Amplitude estimation

Dividing (12) by the estimation K̂  of the static gain K  of
)(qG , the following relation is obtained:
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Assuming KK ˆ≈ , the static gain of )(ˆ qG u∆  is equal to the

fault amplitude ug ∆ .

The transfer function )(ˆ qG u∆  is estimated using the same

model structure (nb, nf, d) as in )(ˆ qG . uF ∆ˆ  converges to F̂

if the actuator is faulty and ug ∆  is estimated as:
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The sensitivity to a small actuator fault is limited by the
residual signal to noise ratio. The signal to noise ratio depends
on the amplitude of the fault, on the static gain of )(qG  and

on the measurement noise variance. Thus, the estimation must



be robust to the noise in order to estimate small additive
faults.

The OE optimisation algorithm is used over a window of L
sampling times. The window length L must be greater than the
time response of )(qG  leading to a good static gain

estimation. Using a step input, the coefficients u
lb ∆ˆ  may be

badly estimated, but only their sum is used for computing
ug ∆ˆ . The time window must include l0 sampling times before

the fault occurrence for a better convergence of uF ∆ˆ

[Foulard 87]. Nevertheless, the window must be as short as
possible to limit the computation time, and the fault isolation
delay.

b) kf  estimation

The diagnosis is achieved through the analysis of the )(ˆ qG u∆

estimated parameters, which must be close to those of )(qG .

However, if kd is not equal to kf, then uF ∆ˆ  may be inaccurate.
Taking this uncertainty into account, several estimations

)(ˆ qG u
j
∆  are computed successively, using a step input shifted

(Figure 3), where j is equal to the number of shifting times.
When the shifting makes jkk df −= , then the parameters are

precisely estimated and uF ∆ˆ  is close to F̂ .
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Figure 3: the fault occurrence time estimation

c) decision

The actuator is faulty if )(ˆ qG u∆  is “close to” )(qG . This is

decided using two tests:

The parameters of uF ∆ˆ  are assumed to be random variables.

The OE parameter estimation results in the mean u
lf ∆ˆ  and the

variance )ˆ(2 u
lf ∆σ  of each parameter. The model structure is

validated if parameter variances are bounded:
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where γ  is tuned according to the noise and the desired

sensitivity.

A second criterion tests if uF ∆ˆ  is close to F̂ , using the
normalised parameter distance:
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If all estimates respect these two criteria, then uF ∆ˆ  is well

estimated and close to F̂ . Thus the actuator is assumed to be

faulty and the amplitude of the fault is ug ∆ˆ . The fault

occurrence sampling time is estimated as jkk df −=ˆ .

However, several uF ∆ˆ  might satisfy those criteria and the

estimation minimising )ˆˆ( FF u −∆D  is used to determine j.

3.2.2 Sensor fault isolation and identification

This step is computed only if a fault has been detected and if
no actuator fault is diagnosed. Considering the abrupt fault
hypothesis, )(ky∆  is assumed to be a step input. Thus, the

transfer function between )(ky∆ and r(k) is a simple gain:

)()(ˆ)( kekkUgkr f
y +−⋅= ∆ (18)

where yg ∆ˆ  is the sensor fault amplitude and )(kU  is a unit

step input.

The window used to estimate yg ∆ˆ  must be large enough to

filter the noise effect. The window includes l0 sampling times
before kd. The procedure for the sensor fault isolation and
identification is the same as the actuator fault procedure.
Nevertheless, the estimated structure is a simple gain, and
only one criterion is tested. The criterion is based on the

variance of yg ∆ˆ  as defined in (16) to guarantee that yg ∆ˆ  is

different from zero.

Finally, if the fault is not diagnosed as an actuator or a sensor
fault, then the fault is a multiplicative fault or the abrupt fault
assumption is not valid.



3.3 Reset the residuals and the detection algorithm

After fault isolation PHA and OER must be reset. The fault is
detected at time kd, and (L-l0) sampling times later the fault is
diagnosed. Thus the diagnosis is completed at time:

T = (L-l0) + kd (19)

The variables ui(k) and y(k) are adjusted by subtracting the
estimated fault amplitudes (15) or (18). Thus, the simulation
of the OE equation is calculated again from the sampling time
(T-L) (i.e. before the fault occurrence). The residual r(k)
becomes therefore close to zero at sampling time k>T. PHA is
reset to detect other residual variation. Consequently a new
additive fault can be further diagnosed.

4  Application to a winding machine

This approach has been applied to the simulation of the plant
represented in Figure 4. This winding process is composed by
three DC-motors (M1, M2, M3). Their angular velocities are
represented by Ω1(k), Ω2(k) and Ω3(k), which are respectively
controlled by u1(k), u2(k) and u3(k). The angular velocity
Ω2(k), and the strip tensions T1(k) and T3(k) between the reels
are measured. The angular velocities Ω1(k), Ω3(k) are not
measured. The parameters are not known a priori.
Identification results in three simplified input-output models
defined as follows:

T1(k) = GT1u1(q).q-1.u1(k)+ GT1u2(q). q-1.u2(k) (20)

Ω2(k) = GΩ2u2(q). q-1.u2(k) (21)

T3(k) = GT3u2(q).q-1.u2(k)+ GT3u3(q). q-1.u3(k) (22)

M1 M3M2

u1(k) u3(k)u2(k)

Ω1(k)

Ω2(k)

Ω3(k)

T1(k) T3(k)

Figure 4: Winding system

Output Error Matlab algorithm estimates the model (20):
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The output error equation leads to r(k):

)()(ˆ)( 11 kTkTkr −= (24)

The figures (Figure 6, Figure 8) represent a simulation of the
residual r(k), with sensor or actuator additive fault.

• A sensor fault is simulated at sampling time kf=600;
its amplitude is 0.0095. Figure 5 shows T1(k), u1(k) and u2(k).
Figure 6 presents the residual response and the diagnosis
results. The residual becomes close to zero at k=650 thanks to
the reset procedure. PHA detects the fault at kd=601, and the

estimation of fk̂  is equal to 600 using γ =0.2. The

identification of the fault is 0097.0ˆ 1 =∆Tg , and

0ˆˆ 21 == ∆∆ uu gg  because 1ˆ uF ∆  and 2ˆ uF ∆  were respectively

different from 1̂F  and 2F̂ .
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Figure 5: Inputs/output behaviour with T1 fault
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Figure 6: Residual, Detection, and Identification of T1 fault



• An u1(k) actuator fault is simulated at time kf=600
(Figure 7); its amplitude is 0.002 corresponding to 20% of
u1(400). Figure 8 represents the residual response and
diagnosis results. The residual becomes close to zero at k=655
thanks to the reset procedure. The detection sampling time is

kd=605, and fk̂  is estimated equal to 601 using γ =0.2;

κ =0.1. The actuator fault amplitude is estimated to
31012.2ˆ 1 −∆ ×=ug  and 0ˆˆ 12 == ∆∆ Tu gg .
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Figure 7: Inputs/output behaviour with u1 fault
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Figure 8: Residual, Detection, and Identification of u1 fault

5 Conclusion

The diagnosis method proposed in this paper is devoted to
sensor or actuator additive abrupt fault isolation. It relies on a
single output error residual, obtained from the nominal model
identified off-line. This residual is used for detection. Then,
the residual behaviour is identified with respect to a step
input. If the model is found to be a simple gain, a sensor fault

is identified; otherwise, if the model is found similar to one of
the transfer functions relating the inputs to the output, the
corresponding actuator is suspected and the fault amplitude is
identified. Because identification is applied to the residual
rather than to the input-output data, the input excitation is
guaranteed when the fault occurs. The isolation relies on
successive estimations of simple models, with a standard
algorithm. It is thus easy to implement. It has given good
results on a winding machine.
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