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France 
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Abstract 
Many years ago Fajans, Kirkpatrick and Bekefi  (FKB) 

studied off-axis orbits in a realistic helical wiggler, both 

experimentally and theoretically.  They found that as the 

distance from the axis of symmetry to the guiding center 

increased, both the mean axial velocity and the precession 

frequency of the guiding center varied.   They proposed a 

clever semi-empirical model which yielded an excellent 

description of both these variations.  We point out that a 

approximate model proposed by us several years ago can 

be made to predict these delicate effects correctly, 

provided we extend our truncated quadratic Hamiltonian 

to include appropriate cubic and quartic terms. We 

develop an argument similar to the virial theorem to 

compare time averaged and fixed-point values of 

dynamical variables.  Illustrative comparisons of our 

model with numerical calculation are presented. 

INTRODUCTION 

In 1985 Fajans, Kirkpatrick and Bekefi performed an 

experiment with a low-energy free electron laser (FEL) 

operating in the amplifier mode in the microwave 

region[1].  The wiggler was helical, and a uniform axial 

field was present.  The electron beam was furnished by a 

pulse-line diode in single shot operation.  Among other 

studies, they investigated what happened when the beam 

was injected off axis, simply by displacing their wiggler 

in the transverse direction. Both beam and FEL 

measurements were carried out. In general, they found 

that for small displacements, the FEL operation remained 

satisfactory.  Two properties of the beam were measured 

quantitatively as a function of the off-axis injection 

distance.  The mean axial velocity was observed to satisfy  

a simple quadratic law 

 ( ) ( ) 2
0

z z
y K yββ β= + +⋅ ⋅ ⋅  

where Kβ is a number which depends on the FEL 

parameters, and y denotes the displacement of the beam 

centroid from the wiggler axis at injection. The symbol 

denotes the time average of the corresponding 

dynamical quantity Throughout this paper we shall use 

only dimensionless quantities with mc as the unit of 

momentum, 1/kw the unit of length and ckw the unit of 

frequency. A second important property was the 

precession of the displaced quasi-circular FEL orbits.  

Again, for small displacements, a simple quadratic 

behavior was found for the precession frequency ωP. 

 ( ) ( ) 2
0

P P P
y K yω ω= + + ⋅ ⋅ ⋅ 

where KP denotes another constant.  Since the quantities 

( )0
z

β and ( )0
P

ω are just the values on the ideal orbit, 

they may be considered as known.  The real task is to 

compute the quantities Kβ and KP . 

 

The authors analyzed the wiggler magnetic field in 

detail, and proposed two formulas to describe the 

modification of the mean axial velocity and the 

precession frequency.  The former is described by 
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where γ is the dimensionless energy.  The quantities Ω0 

and Ωw  are 
2

0
/

w
eB mc k  and 

2
/

ww
eB mc k , respectively,  

yg denotes the off-axis injection distance, and λ is 
w

k ρ± , 

where ρ is the radius of the FEL motion. A somewhat 

simpler expression had been proposed by Freund and 

Ganguly [2],   
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For the precession, FKB proposed the formula 
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In the three cases investigated by FKB, their formula 

were remarkably successful.  That of Freund and Ganguly 

for the diminution of the mean axial speed was  somewhat 

less precise, but adequate. 

 

 

Given the success of these formulas at describing the 

data, one might well consider the problem solved.  

However, having proposed an analytic (but approximate) 

method of calculating the trajectories in a helical wiggler 

with axial guide field [3], we felt challenged to show that 

our model could be used to generate equally successful 
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expressions, perhaps in a more systematic way. We don�t 

know the details of the adiabatic magnetic field used by 

FKB to inject into the wiggler, so we address a related but 

slightly different problem.  Suppose that an electron is on 

the ideal axially centered helical  trajectory, and then 

displace the electron by a small amount in a transverse 

direction, leaving its velocity vector unchanged. We 

remind the reader that the ideal orbit satisfies two 

conditions: 

 

( )
0 1 2

0 Group  II
,

Group  I

1
2 1 cos ,

z w

z

I

ψ φ
π

γβ ρ ψ
ρ

= − =

= Ω − Ω +

 
 
 

 
 
 

 

where ρ denotes the constant radius of the helix.  The 

notation Group I corresponds to 
0z

γβ > Ω  and Group II  

to 
0z

γβ < Ω .  There is also the reversed field 

configuration, studied by Conde and Bekefi [4], where the 

axial velocity is anti-parallel to the axial field, or 

0
0

z
γβ Ω < .  If one chooses the z-direction such that 

0
0Ω > , then the reversed field is a special case of Group 

II, typically with a very small radius.  The effect of a 

small displacement is then calculated by linearizing the 

equations of motion around the ideal helix.  This 

procedure is described in detail in the monograph of 

Freund and Antonsen [5].  The electron then has two 

independent normal modes of oscillation, whose 

frequencies are well-known.  It turns out that one of these 

two frequencies is numerically close to the unperturbed 

constant axial velocity βz. 

 

 In our approach to calculating the trajectories, the key 

role is played by the Helical Invariant, Pz, a conserved 

quantity which is a consequence of the screw symmetry 

of the wiggler field [6].  We find the fixed point of the 

Hamiltonian (where the first derivatives with respect to 

our chosen dynamical variables vanish), expand to second 

order in our variables, and then find the normal modes of 

oscillation of the resulting quadratic system. If we denote 

the complex normal mode amplitudes in our model 

by A+ and A− , with the Poisson brackets { }*

,A A i
α β αβ

δ= , 

our Hamiltonian may be written as 

  

 ( )2 2 3

fp
H H A A O A+ + − −= + Ω + Ω + . 

Neglecting the cubic and higher order terms, we find the 

simple dynamics,  

 ( ) ( )0
i t

A t A e α

α α
Ω= . 

 

 With our rather complicated choice of dynamical 

variables the  transformation to normal modes was 

straightforward, and we obtained a quantitatively accurate 

description of the transverse motion as a Ptolemaic 

superposition of three independent circular motions.  One 

is the projection of the standard FEL helix, the second, 

driven mainly by the mismatch in transverse velocity, 

occurs at a frequency near the relativistic cyclotron field 

0
/ γΩ , while the third is a very slow motion, whose 

effective frequency is 
z ββ − Ω , where 

β
Ω  denotes 

that oscillation frequency which is close to 
z

β .  It is this 

slow motion that is the precession seen by FKB. 

In terms of our model, the calculation of the effects 

observed by FKB is straightforward.  Displacing the 

electron from the ideal helical orbit produces a change in 

the Helical Invariant that is second order in the 

displacement.  The resulting changes in the axial velocity 

and frequency are readily computed, and can be compared 

to experiment.  Proceeding in this way, we find extremely 

poor agreement between our calculations and experiment.  

  

TIME AVERAGES AND FIXED POINTS 

The difficulty encountered in attempting to calculate 

the mean axial velocity was traced to the source, the fact 

that the time average of a dynamical variable in the 

neighborhood of a fixed point is not its value at the fixed 

point.  The time averages of our normal modes of 

oscillation, which we had assumed to be zero, were in fact 

different from zero.  If our quadratic approximation to the 

Hamiltonian were exact, this would not occur.  However, 

the cubic terms in the Hamiltonian generate such non-

zero time average values.  While the inclusion of the 

cubic terms into our model makes it non-soluble, it is 

possible by using a perturbation approach to obtain the 

lowest order corrections by calculating third derivatives at 

the fixed point. The required labor is greatly facilitated by 

using symbolic manipulators such as MAPLE or 

Mathematica.  If one is interested in calculating the 

dependence of the precession frequency on the 

displacement, some fourth derivatives at the fixed point 

are also needed.  We present below a sketch of our 

method.   

 

The essential tool in our approach is a proposition 

similar to the virial theorem in classical mechanics.  

Given a general Hamiltonian, and a complex dynamical 

variable A(t) of the sort we use, we consider the time 

average of the following quantity 

 ( )( ) ( ) ( )0
lim 0

i T

i t

T

A T e Qd
A t e

dt T

ω
ω

→∞

−
= =  

provided the variable is A(t) bounded. But by Hamilton�s 

equations 

( )( ) ( )
*

i t i td H
A t e i A t e

dt A

ω ωω
∂

= +
∂

 
 
 

. 

For technical reasons, it is more convenient to compute 

the higher order terms using the squared Hamiltonian, and 

we arrive the following result 
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A t e e
H A

ω ω
α α

α

ω
∂

+ Ω = −
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where  represents the cubic and higher order terms in the 

multi-variable Taylor series expansion of the squared 

Hamiltonian at the fixed point.  For our purposes, we 

keep only the cubic terms, and find non-vanishing 

contributions only for the nine following values of the 

arbitrary frequency ω,  

 

( ) ( ){ }0, 2 2 , ,
j

ω + − + − + −= ± Ω ± Ω Ω ± Ω − Ω ± Ω . 

This means we may write, correct to second order in the 

displacement,  

 ( ) ( )
9

1

0 j
i ti t

j

j

A t A e a e
ω

+
−Ω

+ + +
=

= +∑  

with a similar expression for ( )A t− .  Here the quantities 

j
a + are second order in the displacement. We find 

 ( ) ( )
( ) ( )

2

*

0

1

2

j

i t

i tcubic

j j

A t A e

H
a e

H A

ω

α

ω
Ω

+ +

=

∂−
+ Ω =

∂
 

where on the right-hand-side only the first approximation 

to the variables is to be used. 

HIGHER ORDER TERMS 

 

In order to compute the quantities 
j

a + , we need the 

cubic part of the squared Hamiltonian, which we write as 

 

( ) ( ) ( )
( ) ( ) ( )

2 2 3

2 2 *

2

cubic
iK A A cc iL A A cc iR A cc

iS A A cc iT A A cc

H
+ + + + − + + +

+ + − + + −

− − − − − −

− − − − + + ↔ −

=

where cc denotes complex conjugate. The ten quantities 

K+ etc. may be computed most easily if we  write the 

squared Hamiltonian in cylindrical coordinates, as in ref. 

[7], 

( )
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The complex dynamical variables A+ and A- are linearly 

related to the usual variables,  

 

( ) ( )( ) ( )
( ) ( ) ( )

f ff

f

A a p ib ic p p d

p p id A cc id A cc

ρ ψ ψ

ψ ψ

ρ ρ ψ ψ± ± ± ± ±

+ + − −

= + − + − + −

= + − + −

 

where ρf, ψf  and ( )
f

pψ denote the values of the variables 

at the fixed point. The time averaged axial velocity is then 
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Explicit calculation yields  

 
( )2 2
2

2

i K A L A
A

H

+ + + −

+

+

− +
=

Ω
 

and similarly for  A
−

.  In these expressions the 

amplitudes are linear in the displacement y, and we thus 

can calculate the coefficient of y2 in 
z

β , Kβ . 

 

CHANGES IN TIME AVERAGED 

FREQUENCIES 
 

In order to calculate the slope of the FKB precession 

frequency, we must calculate the change in the time 

average of the oscillation frequencies caused by the 

higher order terms in the Hamiltonian. The relevant 

equation is  

 

2

*

ln 1

4

d A H
cc

dt H A A

+
+

+ +

ℑ ∂
Ω = = +

∂
. 

This receives contributions from both  the cubic part and 

from three of the many quartic contributions.  These may 

be written as 

2 4 4 2 2
H M A M A N A A

quartic
+

= + + + ⋅ ⋅ ⋅+ + − − + −  

The details of the explicit calculation are too long to be 

given in this paper, and we give only the final result: 
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2 2
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Ω Ω
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For the quantity −Ω a similar expression holds 

provided one makes the substitution + ↔ − throughout. 

Note that C C+− −+= .  

COMPARISON WITH NUMERICAL 

SIMULATIONS 

At this point we can calculate Kβ and KP.  However, in 

order to verify this analysis, we carried out numerical 

calculations of the trajectories using solvers of differential 
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equations available on MAPLE and Mathematica.  Our 

approach is simple.  We start with an electron on the ideal 

trajectory suited to its energy.  We then displace the 

position of the electron tangentially through a distance y, 

keeping the velocity unchanged.  We then calculate the 

trajectory of the electron for long times, typically 100 

periods, in order to obtain reliable numerical estimations 

of the time averaged axial velocity and the precession 

frequency.  We performed this calculation for the three 

cases studied by FKB. In each of these, the frequency 

concerned by the precession was Ω+ so we added two 

more, for which  the relevant frequency was Ω-.   These 

include a Group II configuration with a large axial field, 

which we label low-ρ, and a reversed field configuration, 

of the sort investigated by Conde and Belkefi.  The results 

are summarized in the Table, which indicates various 

properties of the trajectory, the frequencies, the 

precession frequency intercept ωP(0) (in the FKB units of 

108s-1).  The last eight lines show comparisons of our 

theory (denoted by T) with the simulations (S).  The 

agreement between these is quite good.   

 
 FKB a 

group I 

FKB b 

group II 

FKB c 

group II 
low ρ,  

Group II 

reversed 

βz B0 < 0

B0 (T) 0.16 1.312 0.4 1.8 1 

Bw  (T) 0.025 0.16863 0.05833 0.025 0.063 0.147 

V (MeV) 0.16863 1.2264 0.16863 0.750 0.750 

λw (cm) 3.30 3 3.30 3.18 3.18 

kw (cm-1) 1.904 2.094 1.904 1.97584 1.97584 

γ 1.33 3.4 1.33 2.46771 2.46771 

ρf    
0.22461 0.31543 0.21602 0.06073 0.08433 

 (βz) f 0.64327 0.911498 0.644436 0.912532 -0.9110 

ψ f π 0 0 0 0 

Ω+ 0.65416 0.90481 0.640016 1.25171 2.10919 

Ω− -0.23792 0.19576 0.286011 0.91155 -0.90526

ωP(0)  -6.217 4.199 2.523 0.5812 -3.389 

d+ -0.00110 -0.00304 -0.00230 -0.0991 -0.1018 

d− -0.11976 -0.38085 -0.16418 0.00047 -0.0008 

2y

A+ℑ
T 

-1.580 -3.290 -2.793 -13.46 -7.133 

2y

A+ℑ
S 

-1.575 -3.292 -2.795 -13.15 -7.128 

2y

A−ℑ
T 

-1.085 -1.246 -1.525 -20.68 -10.69 

2y

A−ℑ
S 

-1.085 -1.247 -1.524 -20.88 -10.76 

Kβ  T -0.00952 -0.0165 -0.0076 -0.00094 0.0017 

Kβ  S -0.0095 -0.0165 -0.0076 -0.00094 0.0017 

KP  T -2.4868 1.3272 0.89201 0.2112 0.07146 

KP  S -2.56 1.31 0.88 0.20 0.072 

TABLE 

Comparison of theoretical (T) and simulation (S) values 

for various quantities.  Five different configuration were 

studied FKB a, b and c, low ρ Group II, and reversed 

field. 

 

CONCLUSION 

 

We may thus conclude that our approach of calculating 

the contributions of the higher perturbatively is 

successful. However, one word of caution is necessary. 

The generally small values we find for KP, especially in 

columns 5 and 6, are the result of cancellations of much 

greater changes in the separate pieces.  Indeed, the change 

in the fixed point frequency due to the displacement is 

almost exactly cancelled by the contribution of the higher 

order cubic and quartic terms.  This suggests that in a yet 

more sophisticated approach such cancellations could be 

avoided. 
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