
HAL Id: lirmm-00106685
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00106685

Submitted on 16 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Speedy, Mini and Totally Fuzzy: Three Ways for Fuzzy
Sequential Patterns Mining

Céline Fiot, Anne Laurent, Maguelonne Teisseire

To cite this version:
Céline Fiot, Anne Laurent, Maguelonne Teisseire. Speedy, Mini and Totally Fuzzy: Three Ways for
Fuzzy Sequential Patterns Mining. 05035, 2005, 9 p. �lirmm-00106685�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00106685
https://hal.archives-ouvertes.fr

SPEEDY, MINI AND TOTALLY FUZZY: THREE WAYS FOR FUZZY SEQUENTIAL PATTERNS MINING 1

Speedy, Mini and Totally Fuzzy:
Three Ways for Fuzzy Sequential Patterns Mining

Céline Fiot, Anne Laurent, Maguelonne Teisseire
LIRMM - UMII, UMR CNRS 5506

161 rue Ada
34392 Montpellier Cedex 5, France

Email: {fiot, laurent, teisseire}@lirmm.fr

Abstract— Most real world databases are constituted from
historical and numerical data such as sensors, scientific or even
demographic data. In this context, algorithms extracting sequen-
tial patterns, which are well adapted to the temporal aspect of the
data, do not allow processing numerical information. Therefore
the data are pre-processed to be transformed into a binary
representation which leads to a loss of information. Algorithms
have been proposed to process numerical data using intervals
and particularly fuzzy intervals. With regards to the search
of sequential patterns based on fuzzy intervals, both existing
methods are incomplete either in the processing of sequences
or in the support computation. Therefore this paper proposes
three methods to mine fuzzy sequential patterns (SPEEDYFUZZY,
MINIFUZZY and TOTALLYFUZZY). We detail these algorithms
by highlighting their different fuzzification levels. Finally we
have assessed them through different experiments carried out
on several datasets.

Index Terms— Sequential patterns, numerical data, fuzzy in-
tervals.

I. INTRODUCTION

MOST real world databases are constituted from
historical and numerical data (sensors, scientific,

demographic data, . . .). Within the context of large database
mining, few works have been carried out to process this kind
of data and most works are restricted to association rules
[1]–[3]. A first proposal [3] processes quantitative data for
association rules mining thanks to the attribute discretization
into crisp intervals. However some frequent associations could
be lost because of too restrictive bounds. Recently, the use
of the fuzzy set theory has permitted less stark cuts between
intervals leading thus to more relevant rules. [2] has presented
a new definition of support and confidence based on fuzzy
set theory, in the context of extracting association rules from
quantitative attributes. Rules will go from “75% of people
who buy butter also purchase bread” to the new type “60%
of people who eat a lot of candies purchase few potato chips”.

By contrast to association rule based approaches, sequential
pattern algorithms take the temporal aspect of data
(monitoring, evolution phenomena, ...) into account. They are
thus well adapted to historical data. However they do not
allow numerical data processing. Indeed such data must be
pre-processed into a binary representation, which necessarily
leads to a loss of information.
In this paper we present a complete and efficient fuzzy

approach for sequential pattern mining which enables the
processing of numerical data. Our approach is based on the
definition of intervals and more precisely on the definition
of fuzzy intervals. Obtained patterns are of the type “60% of
people purchasing a lot of candies and few video games buy
later a lot of toothpaste”. These patterns are characterized by
their support, which is by definition the percentage of clients
who have bought these products. We define three approaches
SPEEDYFUZZY, MINIFUZZY and TOTALLYFUZZY that differ
one from each other by their definition of the support. The
end-user is allowed to choose between speed of results
extraction and accuracy of obtained frequent patterns. The
implementation of the different solutions is based on an
efficient and original data scanning, which extends the PSP
algorithm proposed by F. Masseglia and al [4]. Experiments
have been carried out on synthetic datasets. They highlight
the feasibility of a fuzzy approach and its robustness.
This paper is structured as follows: Section II presents
an introduction to sequential patterns and describes the
lacks in the former proposals of fuzzy sequential patterns.
Section III presents our three algorithms (SPEEDYFUZZY,
MINIFUZZY and TOTALLYFUZZY) detailing the different
support definitions and their involvement on the database
scanning. TOTALLYFUZZY, the most complex algorithm
is then detailed and illustrated through a short example.
Section IV presents the implementation of the algorithms
and the experiments. Section V concludes on the different
perspectives associated to this work.

II. FROM SEQUENTIAL PATTERNS TO FUZZY SEQUENTIAL
PATTERNS

In this section we briefly describe the basic concepts of
sequential patterns then we take a look at the earlier proposals
of fuzzy sequential patterns, highlighting their weaknesses.

A. Sequential Patterns

Let DB be a set of customers transactions where each
transaction T consists of three informations: a customer-id, a
transaction timestamp and a set of items in the transaction.
Let I = {i1, i2, ..., im} be a set of items. An itemset is a
non-empty set of itemsets, denoted by (i1i2 . . . ik). It is a
non-ordered representation. A sequence s is a non-empty
ordered list of items, denoted < s1s2...sp >. A n-sequence is

SPEEDY, MINI AND TOTALLY FUZZY: THREE WAYS FOR FUZZY SEQUENTIAL PATTERNS MINING 2

a sequence of n items (or of size n).

Example 1: Let us consider purchases of products 1, 2, 3, 4,

and 5 made by the customer Smith according to the sequence
s =< (1) (2 3) (4) (5) >. It means that all items of the
sequence were bought separately except the products 2 and 3
which were purchased at the same time. In this example, s is
a 5-sequence.
One sequence < s1 s2...sp > is a subsequence of another one
< s′1 s′2 ...s′m > if there exist integers l1 < l2 < ...lj ... < lp
such that s1 ⊆ s′l1 , s2 ⊆ s′l2 , ...,

sp ⊆ s′lp .

Example 2: The sequence s′ = <(2) (5)> is a subsequence
of s because (2) ⊆ (2 3) and (5) ⊆ (5). However, <(2) (3)> is
not a subsequence of s since items were not bought together.
All transactions from the same customer are grouped together
and sorted in increasing order of their timestamp. They are
called a data sequence. A customer supports a sequence s

if it is included into the data sequence of this customer (s
is a subsequence of the data sequence). The support of a
sequence is defined as the percentage of customers supporting
s. In order to decide whether a sequence is frequent or not,
a minimum support value (minSupp) is specified by the
user and the sequence is said to be frequent if the condition
supp(s) ≥ minSupp holds. Given a database of customers
transactions the problem of sequential patterns mining is to
find all maximal sequences of which the support is greater
than a specified threshold (minimum support) [5]. Each of
these sequences represents a sequential pattern, also called
a maximal frequent sequence. Note that items are processed
using a simple binary evaluation: present or not present.

B. Fuzzy Sequential Patterns
In order to mine fuzzy sequential patterns, the quantity

universe of each item is partitionned into several fuzzy sets.
Then those fuzzy sets are used to mine frequent sequences.
T.-P. Hong and al [6] have presented the first proposal of
a fuzzy sequential patterns mining approach. Their proposal
is based on the discretization of data into fuzzy intervals.
However to minimize the number of items being processed,
they only keep, for each of them, the fuzzy set having the
highest cardinal over the whole database (by Σ-count).

Customer Date little medium lot

C1 d1 0.6 0.4 0
C1 d2 0 0.7 0.3
C1 d3 1 0 0

Max(C1) 1 0.7 0.3
C2 d1 0 0 0
C2 d2 0 0.5 0.5
C2 d3 0 0.3 0.7

Max(C2) 0 0.5 0.7
C3 d1 0 0.6 0.4
C3 d2 0.9 0 0
C3 d3 0 0.2 0.8

Max(C3) 0.9 0.6 0.8

Count (Σ(Max)) 1.9 1.8 1.8

Fig. 1. Transactions for the fuzzy partition Candy

Example 3: Let us consider the database shown on Fig.1
describing the purchases of 3 customers for the attribute

Candy.
In this case, the only column that will be taken into account in
[6] for the item Candy is little, whereas it is not the quantity
that is the most present into the data sequences (it is in fact
medium or lot).
It is thus obvious that such a decision is reducing and can lead
to erroneous knowledge. The consequences of this strategy on
the discovery of sequential patterns will be pointed out in our
experiments, section IV-D.
Y.-C. Hu and al [7], [8] have adopted a very theoretical
approach without any algorithm or implementation. Moreover
their proposal presents ambiguous formalism and notations for
the support computation of a fuzzy itemset and so far a fuzzy
sequence. It is notably hard to identify differences between
the support computation of the sequences <(a)(b)(c)> and
<(a)(b c)>. This point is however fundamental in the context
of sequential patterns mining because the timestamps associ-
ated to the items play an important part. In conclusion previous
works propose neither a complete approach nor clearly defined
algorithms. Thus we claim that a new useful and efficient
approach has to be defined: we propose three algorithms to
mine fuzzy sequential patterns.

III. PROPOSAL: FROM LOW FUZZY TO HIGH FUZZY

In order to offset lacks of existing methods for extracting
fuzzy sequential patterns, we firstly give a clear and non
ambiguous definition of associated concepts (item, itemset, g-
k-sequence and fuzzy support). The core of this paper is the
proposal of three algorithms according to the adopted counting
method.
We consider the four classical ways to compute fuzzy cardi-
nality:

1) counting all elements for which the membership degree
is not null;

2) considering only the elements for which the membership
degree is greater than a defined threshold. This counting
method is called thresholded count;

3) adding the membership degrees of each element. This
counting method is called sigma-count;

4) adding the membership degrees greater than a defined
threshold, this is called thresholded sigma-count.

Each algorithm corresponds to one precise support definition,
thus allowing three levels of fuzzification during the mining
of fuzzy sequential patterns.

A. Preamble: item, itemset, g-k-sequence

The concepts of item and itemset have been redefined
compared to classical sequential patterns.

Definition 1: A fuzzy item is the association of one item
and one corresponding fuzzy set. It is denoted by [x, a] where
x is the item (also called attribute) and a is the associated
fuzzy set.

Example 4: [candy, lot] is a fuzzy item where lot is a fuzzy
set defined by a membership function on the quantity universe
of the possible purchases of the item candy.

SPEEDY, MINI AND TOTALLY FUZZY: THREE WAYS FOR FUZZY SEQUENTIAL PATTERNS MINING 3

Definition 2: A fuzzy itemset is a set of fuzzy items. It
can be denoted as a pair of sets (set of items, set of fuzzy sets
associated to each item) or as a list of fuzzy items.

We use the following notation: (X, A) where X is a set of
items and A a set of corresponding fuzzy sets.

Example 5: (X, A) = ([candy, lot][soda, little]) is a
fuzzy itemset and can be also denoted by
((candy, soda)(lot, little)).

One fuzzy itemset only contains one fuzzy item related
to one same attribute. For example, the fuzzy itemset
([candy, lot][candy, little]) is not a valid fuzzy itemset,
because it contains twice the attribute candy.
Lastly we define a g-k-sequence.

Definition 3: A g-k-sequence S =< s1 · · · sg > is a
sequence constituted by g fuzzy itemsets s = (X, A) grouping
together k fuzzy items [x, a].

Example 6: The sequence S =< ([soda, lot][candy, lot])
([video games, little]) > groups together 3 fuzzy items into
2 itemsets. It is a fuzzy 2-3-sequence.

In the next sections of this article we use the following
notations: let C represent the set of customers and Tc the set of
transactions for one customer c. Let I be the set of attributes
and t[i] the value of attribute i in transaction t.
Each attribute i is divided into fuzzy sets. For example, we
use the dataset described on Fig.2 (an empty cell indicates that
the product has not been purchased).

Items
Customers Date candy toothpaste soda ball videogame

C1 d1 2
d2 1 3 1
d3 4 1
d4 1 5
d5 2 2

C2 d1 2 1
d2 2
d3 4 1
d4 3

C3 d1 3
d2 3 1
d3 4 5
d4 2
d5 2

C4 d1
d2
d3 2 4
d4 3
d5 2
d6 2

Fig. 2. Transactions grouped by customers and ordered by their timestamp

First the quantitative database is converted into a membership
degree database. Each attribute is partitionned into several
fuzzy sets, as shown on Fig.3 which represents the member-
ship functions for each attribute. These partitions are automat-
ically built by dividing the universe of quantities into intervals.
Each interval groups the same proportion of customers. It is
then fuzzified in order to ensure a better generalization.

Fig. 3. Membership functions for the fuzzy sets of the database attributes

From these membership functions we get the membership
degrees for each transaction and each fuzzy set. Fig.4 describes
these values for customer 1.

Items
candy toothpaste soda ball videogame

D. li. L. li. m L. li. L. f. L. f. m. L.

d1 0.75 0.25
d2 1 0.5 0.5 0.5 0.5
d3 0.25 0.75 0.5 0.5
d4 0.5 0.5 1
d5 1 1

Fig. 4. Membership degrees for customer 1

Fig.4 is used below to illustrate the computation of the
different supports for the sequence <([candy, lot])([soda,
lot])>.

B. Fuzzy Supports

The support of a fuzzy itemset is computed as the
percentage value of customers supporting this fuzzy itemset
compared to the total number of customers in the database:

FSupp(X,A) =

∑

c∈C

[

S(c, (X, A))
]

|C|
(1)

where the support degree S(c, (X, A)) marks whether the
customer c supports the fuzzy itemset (X, A) or not.
As previously presented, the cardinality of a fuzzy set depends
on the counting method. We transpose here three of those
technics in the framework of fuzzy sequential patterns and
we propose three definitions for the fuzzy support:

• SPEEDYFUZZY is based on the count “supports / does
not support” (first counting method). Computing the support
of a fuzzy itemset consists in counting all customers who
purchased at least once the itemset. Whatever the membership
degree of the purchase for the fuzzy itemset is, if it is greater
than zero, the customer has the same weight:

SSF (c, (X, A)) =
{

1 if ∃t ∈ Tc|∀[x, a] ∈ (X, A), µa

`

t[x]
´

> 0
0 else

(2)
Example 7: With the SPEEDYFUZZYcount, the first customer

supports the sequence since one transaction is found contain-
ing the regarded itemset with a membership degree greater

SPEEDY, MINI AND TOTALLY FUZZY: THREE WAYS FOR FUZZY SEQUENTIAL PATTERNS MINING 4

than zero. It corresponds to the underlined fuzzy items in the
Fig.4.

• MINIFUZZY is based on a thresholded count (second counting
method). In this method, the number of customers supporting
the fuzzy itemset is only incremented when each item of the
candidate sequence has a membership degree greater than a
specified threshold in the data sequence of the customer:

SMF (c, (X, A)) =
{

1 if ∃t ∈ Tc|∀[x, a] ∈ (X, A), µa

`

t[x]
´

> ω
0 else

(3)

Example 8: With the second count, MINIFUZZY, we con-
sider that customer 1 supports the sequence since a succession
of transactions is found containing the items with a member-
ship degree greater than the threshold (ω=0.49). These items
are boldfaced in the Fig.4.

• TOTALLYFUZZY carries out a thresholded Σ-count (fourth
counting method). In this approach the importance of each
fuzzy itemset in the data sequence is taken into account in
the support computation. To do so the threshold membership
function α is defined as:

αa

(

t[x]
)

=
{

µa

`

t[x]
´

if µa

`

t[x]
´

> ω
0 else (4)

The support counting formula becomes:

STF (c, (X, A)) = ⊥θc

j=1>[x,a]∈(X,A)

[

αa

(

tj [x]
)

]

(5)

where > and ⊥ are the generalized t-norm and t-conorm
opertators.
The Σ-count (third counting method) is actually a thresholded
Σ-count, with a threshold ω=0, so it is not worse a particular
case.

Example 9: With TOTALLYFUZZY, customer 1 supports the
sequence if a following of transactions is found containing
the fuzzy items of the sequence, with a membership degree
greater than the threshold ω. The best value for the sequence
is kept. In our example, these items are underlined twice in
the Fig.4.
The support of a fuzzy g-k-sequence is computed as the
percentage value of customers supporting this fuzzy sequence
compared to the total number of customers in the database:

FSupp(X,A) =

∑

c∈C

[

S(c, gS)
]

]

|C|
(6)

where the support degree S(c, gS) indicates if the customer
c supports the fuzzy sequence gS. This support degree is
computed using the algorithms CalcSpeedySeq, CalcMiniSeq
or CalcTotallySeq described in subsections III-C and III-D.

C. SpeedyFuzzy and MiniFuzzy Algorithms

The way the algorithms SPEEDYFUZZY and MINIFUZZY work
is quite similar. For each customer it is a matter of scanning
the transactions set to find the candidate sequence. For each
itemset in the sequence it is necessary to check whether the
membership degree is not zero for SPEEDYFUZZY or greater
than the threshold ω for MINIFUZZY. As soon as the candidate
sequence has been validated (the ordered set of items is
supported by the customer), the scanning of the customer’s
transactions is stopped and the support of the sequence is
incremented.

The algorithm SPEEDYFUZZY (resp. MINIFUZZY) is based
on two functions: CalcSpeedySupp (resp. CalcMiniSupp)
computes the support while FindSpeedySeq (resp.
FindMiniSeq) searches for a candidate sequence in the
transaction set of a customer.

D. TotallyFuzzy

The TOTALLYFUZZY algorithm is more complex than
the two previous ones because it is based on a thresholded
Σ-count. Thus for each customer and each sequence, the
best membership degree must be considered. This degree is
computed as the aggregation of the itemset supports. The
order of the fuzzy items must also be taken into account.
That leads to an exhaustive scanning of the transaction set,
as performed for association rule mining. We present here
an efficient implementation of such a scanning through
the notion of path. One path corresponds to a possible
instantiation of the candidate sequence itemsets into the
customer’s transaction set. Several paths may be initialized
for one customer. For the global support computation we
only keep the complete one having the best degree.

As an illustration we run TOTALLYFUZZY to compute
the support of the candidate sequence g-S = <([candy,
little])([soda, lot])> for customer 1 from figure 4, with a
threshold ω= 0.2. One path is a triplet containing the already
found sequence, the following itemset and the membership
degree for each found itemset.

To initialize the process, one first empty path pth1 = (∅,
([candy, little]), 0) is created corresponding to the already
found sequence seq, the currently searched itemset curIS and
the current membership degree curDeg. For transaction d1,
curIS = d1[1], the path pth1 is so updated with <([candy,
little])>, ([soda, lot]), 0.75).
Then for transaction d2, a new path pth2, pth2 ←

(<([candy,little])>, ([soda, lot]), 1) is created because d2
contains the item [candy, little], first itemset of the candidate
sequence. pth1 is updated because [soda, lot] is included
into d2. pth1 is closed because it contains all the elements
of the g-S sequence. Transaction d3 is then checked. It
contains pth2.curIS, the path pth2 is so modified to (<([candy,
little])([soda, lot])>, ∅,0.75). This path is closed since it
contains all the itemsets from gS. Nevertheless the scanning
is optimized and only keeps, for two paths at the same step,
the one with the best membership degree. Thus pth1 is deleted

SPEEDY, MINI AND TOTALLY FUZZY: THREE WAYS FOR FUZZY SEQUENTIAL PATTERNS MINING 5

Fig. 5. Example of scanning for customer 1

of customer 1’s list of paths because of a membership degree
lower than pth2.curDeg. The scanning then continues as shown
on Fig.5.

The algorithm TOTALLYFUZZY uses the function
FindTotallySeq to carry out an ordered scanning in one
customer’s transaction set. When the first itemset of the
sequence is found, one path is created with the itemset
support. The next transactions are checked to find whether the
following part of the sequence or once again the beginning of
the sequence or an improvement of the paths, already created.
All the possible paths are thus completed step-by-step at each
transaction. The support degree of the best path for the whole
sequence is then returned.

The Update function allows the update of each path.
The Optimize algorithm, not presented in this paper, enables
to delete unecessary paths. The function CalcTotallySupport

computes the support for one candidate sequence by adding
for each customer the aggregation value of the optimal path
for this sequence.

CalcTotallySupport - Input: gS, candidate g-k-sequence ;
Ouput: FSupp fuzzy support for the sequence gS ;

FSupp,nbSupp,m← 0 ;
For each customer client c ∈ C do

m← FindTotallySeq(g-S, Tc);
[the customer’s support degree is aggregated to the current support]
nbSupp += m ;

end For
FSupp← nbSupp/Γ;
return FSupp;

Fig. 7. CalcTotallySupport

FindTotallySeq - Input: g-S, candidate g-k-sequence;
T, transaction set to run

Ouput: m, support degree of the best g-S representation
instanciated in the transaction set T

Paths : list of paths → (seq, curIS, curDeg)
[seq is the subsequence of g-S, already found,
curIS is the following itemset in g-S,
curDeg is the list of membership degrees for the itemsets of seq]
Paths←Path(∅, gS.first, 0)
For each transaction t ∈ T do

For each path pth ∈ Paths, not updated at t do
If (pth not closed) then

If (pth.curIS ∈ t) then
[It is considered that t contains the itemset if the degree of
each item in the itemset is greater than the threshold ω]
pth.curDeg ← pth.curDeg — >[x,a]∈pth.curISαa(t[x]) ;
Update(pth);

end If
end If
For j from 2 to pth.curIS -1 do

[A possible improvement of the current path is searched for]
If ((gS.get(j) ∈ t) &
(>[x,a]∈gS.get(j)αa(t[x]) > pth.curDeg[j])) then

nCurIS ← gS.get(j) ;
For i from 1 to j-1 do

nSeq ← nSeq — gS.get(i) ;
nCurDeg ← nCurDeg — pth.curDeg[i];

end For
nCurDeg ← nCurDeg — >[x,a]∈gS.get(j)αa(t[x]) ;
Paths← Paths∪ update((nSeq, nCurIS, nCurDeg)) ;

end If
end For

end For
If ((gS.first ∈ t) & (not(FirstPass))) then

[a new path is created if the first itemset of the sequence is found]
pth←Path(∅, gS.first, >[x,a]∈gS.firstαa(t[x]));
Paths← Paths ∪ pth ;
Update(pth) ;

end If
Paths.Optimize() ; [deletion of the less pertinent paths]

end For
For each path pth ∈ Paths do

If (pth not closed) then
Cut(pth); [deletion of the paths not containing the whole sequence]

end If
end For
pth← Paths.first ; [Paths only contains the best complete path]

m← �(pth.curDeg) ; [Aggregation to return the support degree]

return m;

Fig. 6. FindTotallySeq

Update - Input: pth, path to update

pth.seq ← pth.seq ∪pth.curIS ;
If (pth.curIS.next 6= ∅) then

pth.curIS ← pth.curIS.next ;
else

Close(pth); [Once the whole sequence is found the path is closed]
end If
Optimize(pth) ;

Fig. 8. Update

Our approach extends the level-wise approach generate-prune
within the context of sequential patterns and more particularly
uses the prefix-tree structure described in [4], in order to
improve the support computation process. For example the tree

SPEEDY, MINI AND TOTALLY FUZZY: THREE WAYS FOR FUZZY SEQUENTIAL PATTERNS MINING 6

on figure 9 represents the sequences <([candy, little][soda,
lot])([soda, lot])>, <([candy, little])([toothpaste, medium])>
and also the subsequences <([toothpaste, medium])> and
<([soda, lot])([soda, lot])>.

[soda, lot]

[soda, lot] [toothpaste, medium]

[candy, little] [toothpaste, medium]

[soda, lot]

[soda, lot]

- - - same itemset —– other itemset

Fig. 9. Storage of sequences as a prefix-tree

Nevertheless, generating fuzzy candidates requires to check
whether two fuzzy items in one fuzzy itemset are not related
to the same attribute. Indeed in our approach it is not
necessary to search for transactions containing both little
candy and a lot of candy. Consequently such candidates are
not generated.

First the fuzzy support of all fuzzy items is computed
and only the items with a support greater than minSupp

are stored as frequent ones of size 1. Then candidates of
size k are the g-k-sequences obtained by combining frequent
sequences of size k − 1. They are stored with their support
into a tree. The fuzzy support of the g-k-sequences is then
computed. The process stops when it is not possible anymore
to generate candidate sequences of size k + 1.

Example 10: As shown on Fig. 10, we obtain the following
1-frequent ones for TOTALLYFUZZY: [candy, little], [soda,
lot], [toothpaste, medium] and [video game, medium]. These
1-frequent patterns enable us to generate candidates of size
two such as <([candy, little])([soda, lot])> or <([toothpaste,
medium][video game, medium])>.

candy toothpaste soda ball videogame
li. lot li. med. lot li. lot few lot few med. lot
75 50 25 62.5 37.5 25 100 25 50 0 62.5 37.5

Fig. 10. Fuzzy support STotallyFuzzy (%) for each fuzzy item

Fig. 11 shows the sequential patterns (maximal frequent
sequences) respectively extracted by SPEEDYFUZZY, MINI-
FUZZY and TOTALLYFUZZY.

Sequential patterns <([video game, medium])> 75%
with <([candy, little])([toothpaste, medium])> 75%
SPEEDYFUZZY <([candy, lot])([toothpaste, medium])> 75%

<([candy, little])([soda, lot])([soda, lot])> 75%
<([candy, lot])([soda, lot])([soda, lot])> 75%

Sequential patterns <([video game, medium])> 75%
with <([candy, lot])> 75%
MINIFUZZY <([candy, little])([toothpaste, medium])> 75%

<([candy, little])([soda, lot])([soda, lot])> 75%

Sequential patterns <([video game, medium])> 62.5%
with <([candy, little])([toothpaste, medium])> 56.3%
TOTALLYFUZZY <([candy, little])([soda, lot])([soda, lot])> 62.5%

Fig. 11. Extracted sequential patterns

It should be noted that the frequent items are the same for all

counting methods. The difference stands in the number and
length of the sequences. For a same minSupp, the number
and length of the mined patterns are indeed greater with
MINIFUZZY or SPEEDYFUZZY than with TOTALLYFUZZY. It
is due to the thresholded Σ-count.
This reduction of the number of patterns can be used for a
database containing really much frequent patterns to find the
most pertinent ones. The advantage of this method is to be
more selective and so to find the most relevant sequential
patterns for the mined database. The user will thus be provided
with a selection of patterns, and not only have to expertise a
selection of patterns and not a really large quantity of them.

IV. EXPERIMENTS

In this section, we present a comparison of performances
between the three algorithms SPEEDYFUZZY, MINIFUZZY and
TOTALLYFUZZY and the algorithm PSP [4]. These experiments
have been carried out on a PC - Linux 2.6.7 OS, CPU
3GHz and 512MB of memory. All the algorithms have been
implemented in Java on the principle of PSP. In particular the
Prefix-Tree structure is used to store the candidate and frequent
sequences.

A. Datasets

We use synthetic datasets which have been created in several
steps. In a first step, quantitative databases have been generated
using an enhancement of DatGen [9]. Then an automatic
partitionning is carried out by a tool based on a module of
Weka [10] using the customer-timestamp-item-quantity file.
This module, DiscretizeFilter, enables us to divide a given
interval into several smaller intervals of equivalent number of
elements (equi-depth). Lastly the membership degree database
is created.

T Number of transactions in the database
C Number of customers in the database
I Average number of items by transaction
X Number of possible items in the database
Q Maximum quantity value
P Number of fuzzy sets by item

Fig. 12. Parameters for Synthetical Databases Generation

Fig. 12 gives the list of parameters used in the data
generation method and Fig.13 shows the databases used and
their properties. For these experiments the number of fuzzy
sets by attribute has been fixed to 3, the maximal quantity by
item to 10 and the number of different items in the database
to 100. These databases are rather dense.

Name C T I
cl5tr100I10 5,000 100,000 10
cl5tr200I10 5,000 200,000 10
cl5tr250I10 5,000 250,000 10
cl5tr350I10 5,000 350,000 10
cl5tr450I10 5,000 450,000 10
cl5tr500I10 5,000 500,000 10
cl10tr250I10 10,000 250,000 10
cl10tr500I10 10,000 500,000 10

Fig. 13. Parameter values for synthetic datasets in experiments

SPEEDY, MINI AND TOTALLY FUZZY: THREE WAYS FOR FUZZY SEQUENTIAL PATTERNS MINING 7

B. Operators

We have chosen to implement our version of
TOTALLYFUZZY with min as a t-norm operator and max
as a t-conorm operator.
Let consider an item. To be said frequent, this item must be
relevant enough for enough customers (regarding the value
of minSupp). It means that its degree must be greater than
ω. Now let IS be an itemset. If we consider that each item
of IS is relevant, we should be allowed to say that this
itemset is relevant. The support of this itemset should thus
not be lower than the minimum support from the items. The
operator for computing this support must thus be idempotent.
For this reason, we have chosen the min operator as t-norm.
As aggregation operator we have chosen the average operator.
Each itemset in the sequence will so be considered equivalent
to the others. However we could have used the min operator
to compute the support of sequences. A sequence is indeed
the intersection, taking into account the temporal order, of
itemsets. It can be computed using the min as explained above.

 0

 500

 1000

 1500

 2000

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

nb
 o

f s
eq

ue
nc

es

minSupp

Number of frequent sequences according to the minSupp value (w=0.5)

TF0.5-moy
TF0.5-min

Fig. 14. Number of frequent sequences according to minSupp depending
on the aggregation operator for cl5tr100I10

Results described on Fig.14 show that the aggregation by
the min is too selective and that it prunes too much sequential
patterns.

C. Fuzzy Algorithms vs. PSP Algorithm

The aim of these experiments is to compare the fuzzy
algorithms with PSP, a sequential pattern algorithm working
with the same efficient structure as our fuzzy algorithms.
Fig.15 shows the mining time according to minSupp. It
can be noted that the extraction time increases as minSupp

decreases. The number of frequent patterns and generated
candidates is indeed higher for a low minSupp. So the
algorithms scan the dataset more times.

 0

 100

 200

 300

 400

 500

 600

 0.6 0.65 0.7 0.75 0.8 0.85 0.9

tim
e

(m
n)

minSupp

Extraction time according to the minSupp value

TF0.6
MF0.6

SF
PSP

Fig. 15. Extraction time according to minSupp (cl5tr100I10)

It can also be noted that SPEEDYFUZZY is as fast as PSP
despite the fact that it scans is three times more items. One
should indeed take into account that each PSP item has
been splitted into three (it could have been more) fuzzy
items to answer our algorithms needs. TOTALLYFUZZY and
MINIFUZZY are slightly slower.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0.6 0.65 0.7 0.75 0.8 0.85 0.9

nb
 o

f s
eq

ue
nc

es

minSupp

Number of frequent sequences according to the minSupp value

TF0.6
MF0.6

SF
PSP

Fig. 16. Number of frequent sequences according to minSupp (cl5tr100I10)

If we compare the number of frequent sequences for a same
minimum support, Fig.16 shows that MINIFUZZY and TO-
TALLYFUZZY extract definitely less frequent sequences than
SPEEDYFUZZY and PSP. It is due to the support definition.
In fact those two fuzzy algorithms, MINIFUZZY and TOTAL-
LYFUZZY, only keep the items which have a degree greater
than ω and so which are considered as relevant by the user.
The number of frequent sequences is then necessarily reduced
compared to SPEEDYFUZZY or PSP.
Finally Fig.17 shows the extraction time according to the
number of transactions in a database describing transactions
for 5000 customers, for minSupp = 0.8. It can be noted that
the fuzzy algorithms have the same behavior as PSP.

SPEEDY, MINI AND TOTALLY FUZZY: THREE WAYS FOR FUZZY SEQUENTIAL PATTERNS MINING 8

 0

 20

 40

 60

 80

 100

 120

 140

 160

 100000 150000 200000 250000 300000 350000 400000 450000 500000

tim
e

(m
n)

nb of transactions

Extraction time according to the number of transactions

TF0.6
MF0.6

SF
PSP

Fig. 17. Extraction time according to the number of transactions

D. Totally Fuzzy vs. Hong and al. approach

The aim of this section is to show the benefits of our
method in comparison to Hong and al. method [6] presented
in section II-B. In particular we study the loss of information
resulting from their approach. So in our experiments we have
compared our algorithm Totally Fuzzy (the closest from their
approach) with an implementation of Hong and al. approach.

Frequent items TOTALLYFUZZY(ω=0.7) Hong and al.
9601 65.12% 65.12%
9701 74.32% 74.32%
9801 85.36% 85.36%
9803 73.18% not found
9901 97.24% 97.24%
9902 70.28% not found
9903 91.46% not found

10001 95.94% 95.94%
10002 66.76% not found
10003 88.44% not found

Nb of frequent items 10 5

Fig. 18. Number of frequent items extracted by TOTALLYFUZZY (ω=0.7)
and Hong and al. method, for minsup = 60% on cl5tr100I10 database.

It can be noted that some items (e.g. 10003 and 9903) with
a very relevant support (resp. 88.44% and 91.46%) are found
by TOTALLYFUZZY and not by Hong and al, they are in fact
deleted during the first step as a peprocessing.
As a consequence, the number of maximal frequent sequences
found by TOTALLYFUZZY is higher than by the Hong and
al. method. The frequent sequences resulting from the five
ignored frequent items are indeed never generated and so
cannot be found.
Fig.19 shows this loss of information. In fact for
minSup=70%, Hong and al. approach only finds two thirds
of the sequential patterns mined by TOTALLYFUZZY.

V. CONCLUSION AND PERSPECTIVES

In this paper we present a complete and efficient fuzzy
approach for sequential pattern mining which enables us to
process historical numerical data such as demographic or
sensors data. Extracting sequential patterns in such databases

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0.65 0.7 0.75 0.8 0.85 0.9

nb
 o

f m
ax

im
al

 s
eq

ue
nc

es

minSupp

Number of sequential patterns (TF, w=0.7 vs Hong and al. method)

TF0.7
Hong

Fig. 19. Number of sequential patterns extracted by Totally Fuzzy (ω = 0.7)
and by [6] for cl5tr100I10

is highly interesting for event sequence detection. However ex-
isting algorithms do not allow numerical data processing. Our
proposal clearly and completely defines the different concepts
and principles associated to fuzzy sequential patterns. The
algorithms, SPEEDYFUZZY, MINIFUZZY and TOTALLYFUZZY,
have been implemented and tested, showing the interest of
our novel approach and the feasibility for the fuzzy methods
described. Thus the user can handle three fuzzification levels
thanks to our three different algorithms. This choice allows
the extraction of frequent sequences by making a trade-
off between relevancy and performance. Experiments have
highlighted that this work could be applied to different kinds
of data and build many perspectives. More particularly we plan
to extend this work for fuzzy generalized sequential patterns.

REFERENCES

[1] A. Fu, M. Wong, S. Sze, W. Wong, , and W. Yu, “Finding fuzzy sets
for the mining of fuzzy association rules for numerical attributes,” in
the First International Symposium on Intelligent Data Engineering and
Learning (IDEAL), 1998, pp. 263–268.

[2] C. M. Kuok, A. W.-C. Fu, and M. H. Wong, “Mining fuzzy association
rules in databases,” SIGMOD Record, vol. 27, no. 1, pp. 41–46, 1998.

[3] R. Srikant and R. Agrawal, “Mining quantitative association rules in
large relational tables,” in Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data, Montreal, Quebec,
Canada, 4–6 1996, pp. 1–12.

[4] F. Masseglia, F. Cathala, and P. Poncelet, “The PSP approach for mining
sequential patterns,” in Principles of Data Mining and Knowledge
Discovery, 1998, pp. 176–184.

[5] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Eleventh
International Conference on Data Engineering. Taipei, Taiwan: IEEE
Computer Society Press, 1995, pp. 3–14.

[6] T. Hong, K. Lin, and S. Wang, “Mining fuzzy sequential patterns from
multiple-items transactions,” in Proceedings of the Joint 9th IFSA World
Congress and 20th NAFIPS International Conference, 2001, pp. 1317–
1321.

[7] R.-S. Chen, G.-H. Tzeng, C.-C. Chen, and Y.-C. Hu, “Discovery of
fuzzy sequential patterns for fuzzy partitions in quantitative attributes,”
in ACS/IEEE International Conference on Computer Systems and Ap-
plications (AICCSA), 2001, pp. 144–150.

[8] Y.-C. Hu, R.-S. Chen, G.-H. Tzeng, and J.-H. Shieh, “A fuzzy data
mining algorithm for finding sequential patterns,” International Journal
of Uncertainty Fuzziness Knowledge-Based Systems, vol. 11, no. 2, pp.
173–193, 2003.

[9] G. Melli, “Synthetic classification data set generator.”

SPEEDY, MINI AND TOTALLY FUZZY: THREE WAYS FOR FUZZY SEQUENTIAL PATTERNS MINING 9

[10] I. H. Witten and E. Frank, “Data mining: Practical machine learning
tools with java implementations,” 2000.

