
HAL Id: lirmm-00106693
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00106693

Submitted on 16 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Revisiting T. Uno and M. Yagiura’s Algorithm
Binh-Minh Bui-Xuan, Michel Habib, Christophe Paul

To cite this version:
Binh-Minh Bui-Xuan, Michel Habib, Christophe Paul. Revisiting T. Uno and M. Yagiura’s Algorithm.
05049, 2005, 14 p. �lirmm-00106693�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00106693
https://hal.archives-ouvertes.fr

Revisiting T. Uno and M. Yagiura’s Algorithm

Binh Minh Bui Xuan Michel Habib Christophe Paul

Juin 2005

Rapport de Recherche Lirmm RR-05049

161, rue Ada - F. 34394 Montpellier cedex 5 - Tél. 33 (0) 4 67 41 85 85 - Fax. 33 (0) 4 67 41 85 00 - www.lirmm.fr

Abstract.
In 2000, T. Uno and M. Yagiura published an algorithm that computes all the K common intervals
of two given permutations of length n in O(n + K) time. Our paper first presents a decomposition
approach to obtain a compact encoding for common intervals of d permutations. Then, we revisit
T. Uno and M. Yagiura’s algorithm to yield a linear time algorithm for finding this encoding.
Besides, we adapt the algorithm to obtain a linear time modular decomposition of an undirected
graph, and thereby propose a formal invariant-based proof for all these algorithms.

B.-M. Bui Xuan

buixuan@lirmm.fr

M. Habib

habib@lirmm.fr

C. Paul

paul@lirmm.fr

1

1 Introduction

T. Uno and M. Yagiura’s algorithm [27] computes all the K common intervals of two permutations
of length n in O(n +K) time. Therein, each genome is regarded as a permutation on a finite set of
genes, and a common interval of two genomes refers to a set of genes that are consecutive on each
genome. This notion formalises the concept of a gene cluster. Afterwards, F. de Montgolfier pointed
out strong relationships between modules of a permutation graph and common intervals of any of its
realiser (made of two permutations) [26]. This allows to define the common interval decomposition
tree for this case. From recent works, the tree turns out to own some important biological mean-
ing [2, 22]. Particularly, common intervals help out with finding evolutionary distances between the
corresponding species [3, 4, 16, 22]. Finally, common intervals can be interpreted as pieces of each
genome that have been conserved all along an evolutionary scenario between the involved species
and their common ancestor [2].

The seminal algorithmic result on common intervals is due to T. Uno and M. Yagiura (Fig. 1).
This really is a masterpiece among combinatorial algorithms as it uses a unique scan on one of
the two permutations and could be seen as a sweep plane paradigm as used in computational
geometry [14]. However, its correctness proof is a little hard to understand. Later, S. Heber and
J. Stoye pointed out a smaller and generating sub-family, so-called the family of irreducible common
intervals, and succeeded in adapting T. Uno and M. Yagiura’s algorithm to find all irreducible
common intervals of d permutations in O(d × n) time [20]. Besides, generating all the K common
intervals from this sub-family is in O(K) time [20]. While they used T. Uno and M. Yagiura’s
scheme as a black box, they did not give further explanations for the correctness proof.

T. Uno and M. Yagiura’s general scheme:

1. Let Potential be an empty list
2. For i = n down to 1 Do

3. (Filter): Remove all known boundaries r in Potential such that
for all l ≤ i, (l, r) is not a common interval

4. (Add): Add i to the head of Potential
5. (Extract): While there still is some boundary r of Potential such

that (i, r) is a common interval, output (i, r)
6. End of for

Fig. 1. A list Potential is used. It contains at each step i all boundaries r ≥ i such that there is some l ≤ i with
(l, r) a common interval. Then, Potential is (partially) traced to output the common intervals of the form (i, r).
Though Potential is filtered as many time as possible, the main difficulty of this approach relies on the linear time
complexity while the idea is based on a double iteration.

In this paper, we first show how T. Uno and M. Yagiura’s algorithm can easily be adapted
to compute in O(n) time a tree representation of all common intervals of two permutations on
n elements. As a by-product we propose a complete invariant-based proof of the algorithm, and
detailed the complexity analysis. In Section 3, we generalise T. Uno and M. Yagiura’s algorithm to
be a central step for modular decomposition algorithms of undirected graphs. To close the paper,
we discuss on the important role that this combinatorial algorithm could play in the near future.

2

2 Common Interval Decomposition

Let us denote
�

n = J1, nK = {1, 2, . . . , n}. A permutation π on a finite set V is regarded indifferently
as a bijection from

�
|V | to V , a total order on V , or a word in V ∗ without multiple occurrence. The

support of a factor of π is called an interval of π, noted π(Jl, rK) with l, r ∈
�
|V | its left and right

boundaries. A common interval of two permutations on V is interval of each (see Figure 2). There
could be a quadratic number of those, e.g. when the permutations are identical. The decomposition
addressed in this paper is based on the seminal works on weakly partitive families [9, 25]. Let us
recall some useful formalisms.

1 :

σ : 3 5 7 21 6 8 9 4

1 2 3 4 5 6 7 8 9

.

.

1 :

σ : 3 21 9 457 8 6

1 2 3 4 5 6 7 8 9

.

.

i. ii.

Fig. 2. In both examples, σ(J3, 6K) = {5, 6, 7, 8} = � (J5, 8K) is a common interval.

2.1 Combinatorial Decomposition Aspects

Let be given a finite set V . By convention, a member of a family F ⊆ 2V is referred to as a subset
(of V) in F : a subset A in F satisfies A ∈ F while a subset S of F is such that S ⊆ F . Two subsets
of V overlap when none of their intersection and differences is empty. A family F ⊆ 2V is weakly
partitive if and only if ∅ /∈ F , F contains the trivial subsets (singletons and V), and F is closed
by intersection, union, and differences on overlapping subsets. It is partitive if weakly partitive and
closed by symmetric difference on overlapping subsets [9, 25]. A weakly partitive family can have
O(n!) members, e.g. with F = 2V .

Let F ⊆ 2V be weakly partitive. A member S ∈ F is strong when it does not overlap any other
F ∈ F . The subset of F containing all strong members of F is denoted SF . The members of SF

can be organised by inclusion order in a tree, so-called the decomposition tree and noted TF . The
size of TF is O(n).

Theorem 1. [9, 25] Except for binary nodes, an internal node in TF satisfies one and only one
of the following: (Prime node) no union of children belongs to F , except for the node itself;
(Degenerate node) all union of children belongs to F ; (Linear node) there is a children order-
ing such that a union of children belongs to F if and only if they are consecutive in this order.

Roughly, the tree TF is a (compact) encoding of F from which all members of F can easily
be generated. A permutation σ is factorising for F if and only if any strong subset S ∈ SF is an
interval of σ [8]. In other words, a factorising permutation is a visit-order of the leaves of TF by a
depth-first graph search. Though the following property is trivial, it yields a formal decomposition
framework for common intervals. Fig. 3 exemplifies the common interval decomposition.

3

3 21 9 4

P

L

5 6 7 8

.

.

1 :

σ : 3 5 7 21 6 8 9 4

i. ii.

1 2 3 4 5 6 7 8 9

.

.

Fig. 3. Common interval decomposition tree. “L“ stands for Linear and “P“ for Prime.

Property 1 The family CI of common intervals of two permutations σ1 and σ2 satisfies three
following properties: CI is weakly partitive; TCI has no Degenerate nodes; and both σ1 and σ2 are
factorising.

A common interval is reducible if it is union of consecutively overlapping non-trivial common
intervals, and is irreducible when not reducible [20].

Property 2 The irreducible common intervals of two permutations exactly are Prime nodes and
pairs of consecutive children of Linear nodes.

Property 2 is straightforward from the definitions, and establishes a reciprocal link between
the decomposition tree and irreducible common intervals. In particular, it states that one can
compute in O(n) time the tree from this family and conversely. Both the notion of irreducibility
and Property 2 can easily be generalised to any weakly partitive family.

In the following, we give an alternative for computing the common interval decomposition
tree, based on the notion of right-strong intervals. Let it be emphasised that both notions of
irreducibility and right-strong intervals merely are combinatorial tools to remove the term “K“ in
the raw common intervals O(n + K) computing time. Fortunately, both notions can be adapted in
the sweep paradigm of T. Uno and M. Yagiura’s algorithm.

2.2 Right-Strong Intervals

Let σ = σ1 and σ2 be two permutations on V . Let CI refer to the family of their common intervals.
Then, σ is factorising for CI. W.l.o.g., from now on, intervals will stand for intervals of σ. By
definition, a common interval is an interval.

Definition 1 (Right-Strong Interval). Given a factorising permutation σ for a (weakly) parti-
tive family F ⊆ 2V , an interval σ(Ji, jK) ∈ F is right-strong if and only if it does not overlap on
its right any other interval of σ that belongs to F , namely if and only if i < i′ ≤ j < j′ implies
σ(Ji′, j′K) /∈ F .

Roughly, a right-strong interval of CI is a member of CI that does not overlap any other
member of CI on its right in the order σ. Their number is bounded by 2 × n from Corollary 1
below. To formalise their computation, let us define Select(i) as ∀n ≥ i ≥ 1, Select(i) =
{j | σ(Ji, jK) is a right-strong interval }.

Definition 2 (Useless Boundary). While inspecting σ from n down to 1, σ(Jl, rK) is visited at
step i if i < l, unvisited otherwise. Then, r ∈ Ji, nK is useless w.r.t. i if none of the unvisited
right-strong intervals is of the form σ(Jl, rK).

4

Lemma 1. Let mi be the maximum boundary such that σ(Ji,miK) ∈ F . Then, mi = max Select(i)
and for all i < r < mi+1, r is useless w.r.t. i.

Proof. If σ(Ji,miK) overlaps σ(Ji′,m′K) on its right, then σ(Ji,m′K) ∈ F (partitivity) and mi is
not maximum. Therefore, mi ∈ Select(i). Then, mi = max Select(i) is trivial. Besides, for all
l < i + 1 ≤ r < mi+1, σ(Jl, rK) overlaps σ(Ji + 1,mi+1K) on its right. �

Corollary 1. |Select(1)| + . . . + |Select(n)| ≤ 2 × n.

Proof. From Lemma 1, the sets Select(i) \ {max Select(i)} (1 ≤ i ≤ n) are pairwise disjunctive
and their total cardinal is bounded by n. �

2.3 Right-Strong Intervals of Two Permutations Computation

With a slight modification, namely by adding an one-line routine, T. Uno and M. Yagiura’s al-
gorithm computes in O(n) time the family of right-strong intervals of two permutations σ = σ1

and σ2 on V , where n = |V |. However, we will detail its correctness, since the original version is
tough to understand. In this algorithm, the sets Select(i) (n ≥ i ≥ 1) are computed using a list
Potential. At each iteration step i, this list contains the right boundaries r ≥ i of all unvisited
right-strong intervals.

Potential is initialised as an empty list. Each iteration step n ≥ i ≥ 1 aims at removing from
Potential as many useless boundaries w.r.t. i as possible. However, we need some formalisms
before coming to the filtering. Let C2(i, j) refer to the convex hull in σ2 of the interval σ(Ji, jK), i.e.
C2(i, j) = σ2(Jl, rK) where l = min{k | σ2(k) ∈ σ(Ji, jK)} and r = max{k | σ2(k) ∈ σ(Ji, jK)}. We
define Sσ(Ji,jK) = C2(i, j) \ σ(Ji, jK) as the splitter set of σ(Ji, jK). Roughly, a splitter of an interval
makes the interval not a common interval. Let s(σ(Ji, jK)) = |Sσ(Ji,jK)| = si(j) (j ≥ i) count the
number of interval splitters. For all member pj of Potential, we define δi(pj) = si(pj+1)− si(pj) if
pj has a successor pj+1, δi(pj) = +∞ otherwise. Then, Theorem 2 below is fundamental and most
results thereafter rely on it. However, from our standpoint, the theorem is easier to prove and most
comprehensive when generalised to Theorem 4 in Section 3.1.

Property 3 [27] σ(Ji, jK) is a common interval if and only if si(j) = 0.

Theorem 2. [27] δi(pj) < 0 implies pj is useless w.r.t. i.

At the beginning of step i, assume that some Update-Detect routine provides for any member
pj of Potential a pointer to the value of si(pj). Besides, assume that this routine also outputs a
list Detected of pointers to all members pj of Potential with δi(pj) < 0, and possibly to some
other useless boundaries w.r.t. i. Finally, assume that the pointed pj1 < . . . < pjh

are organised
increasingly.

Then, Potential is filtered twice. The first filtering (Pre-Filter) is our only addition to the
original algorithm to make it compute right-strong intervals instead of all common intervals. It
follows from Lemma 1, which states that it is possible to move apart some useless boundaries w.r.t.
i even before considering σ(i). To do this, from the previous computation of Select(i+1), a pointer
to r0 = max Select(i + 1) is kept. Then, members of Potential strictly before r0 are removed.
For use in Section 2.4, if some boundaries were removed, r0 receives the mark Eaten. Those take
linear time on the number of removed boundaries.

5

The second filtering (Customised Filter) backtracks Detected from pjh
down to pj1 . Each pjk

is removed from Potential if still there. If some removing makes the next-left boundary p ′ have
δi(p

′) < 0, p′ is also removed and so on. Thus, only useless boundaries w.r.t. i are removed, and all
remaining boundaries have positive δi. This takes linear time on the number of removed boundaries.

The boundary i is then added to the head of Potential (Add). Notice that δi(i) ≥ 0 as si(i) = 0.
Here, the update of Potential of step i is complete.

Invariant 1 After the update of step i, let pj0 be the first member of Potential with si(pj0) 6= 0.
Then, Select(i) = {r < pj0 | r is a member of Potential}.

Proof. After the update, all pj have δi(pj) ≥ 0. If r ∈ Select(i), then si(r) = 0 and r < pj0 .
Besides, σ(Ji, rK) is unvisited at step i. Hence, r still is a member of Potential, and it is strictly
before pj0 . Conversely, any member r < pj0 of Potential after the update hold si(r) = 0. If σ(Ji, rK)
overlaps some σ(Ji′, r′K) on its right, then i < i′ ≤ r < r′, σ(Ji′, rK) ∈ CI, σ(Ji′, r′K) ∈ CI and the
Pre-Filter at step i′ would remove r from Potential if it was still there. �

Outputting Selected(i) from the list Potential (Extract) follows from Invariant 1. Its com-
puting time obviously is linear on the size of the output.

As for complexity issues, Corollary 1 and the fact that each boundary is inserted and removed
exactly once in Potential imply the following.

Result 1 The right-strong intervals computing time is O(n) if Update-Detect runs in linear time
on the size of the output Detected at each iteration step i.

T. Uno and M. Yagiura’s algorithm revisited:

1. Let Potential be an empty list and Select(n + 1) = ∅
2. For i = n down to 1 Do

3. (Update-Detect): Collect all known useless boundaries w.r.t. i

4. (Pre-Filter): If there are some r < r0(= max Select(i+1)) in
Potential, remove them and mark r0 as Eaten

5. (Customised Filter): Remove all known useless boundaries w.r.t. i

6. (Add): Add the boundary i to the head of Potential
7. (Extract): Find the right-most rq in Potential with si(rq) = 0

and output Select(i) = {r1 . . . rq}
8. End of for

Fig. 4. A sketch of the computation of right-strong intervals of two permutations.

The Update-Detect routine in the case of common intervals can be implemented as follows [27].
Let Potential = [p1(= i + 1), . . . , pl] at the beginning of step i. The routine aims at updating two
lists Min = [Min1, . . . ,Mins] and Max = [Max1, . . . ,Maxt]. Each Minj is a boundary between
1 and n with two pointers first(Minj) and last(Minj) to two members of Potential. All pj

between these two members have to satisfy Minj = min{k | σ2(k) ∈ σ(Ji, pjK)}. It is analogous
for Max. Besides, each member pj of Potential has two pointers Min(pj) and Max(pj) to the cor-
responding members of Min and Max. By supposing V = J1, nK, computing si(pj) from this data
structure is in O(1) time.

6

Let Min = [Min′
1, . . . ,Min′

s′] and Max = [Max′
1, . . . ,Max′

t′] at the beginning of step i. Suppose
inductively that C2(i + 1, pj) = σ2(JMin(pj), Max(pj)K) for all pj and that Min, resp. Max, is strictly
decreasing, resp. increasing. Notice that σ2(Min′

1) = σ2(Max′
1) = σ(i + 1). Now, i′ with σ2(i

′) =
σ(i) can be obtained in O(1) time. Then, either i′ < Min′

1 and Max will be unchanged, or Max′
1 < i′

and Min unchanged. We trace Min, resp. Max, from j = 1 until finding the first j ∗ with Min′
j∗ ≤

i′ < Max′
1, resp. Min′

1 < i′ ≤ Max′
j∗. Notice that j∗ > 1 and let pj0 = first(Min′

j∗−1), resp.
pj0 = first(Max′

j∗−1). The index j0 for members of Potential can be much higher than the index
j∗ for members of Min or Max.

Lemma 2. [27] pj is useless w.r.t. i if si(pj)−si+1(pj)>si(pj+1)−si+1(pj+1)≥0.

Invariant 2 (equivalent to Lemma 2) pj with 1 ≤ j < j0 is useless w.r.t. i.

W.l.o.g. Min′
j∗ ≤ i′ < Max′

1, we set Min′
j∗−1 to i′; point first(Min′

j∗−1) to p1; and for all
1 ≤ j < j0, point Min(pj) to Min′

j∗−1. Thus, each pj is such that C2(i, pj) = σ2(JMin(pj), Max(pj)K).
It is trivial to maintain this fact after the insertions and deletions in Potential by some simple
updates on the data structure. Hence, the inductive hypothesis for the next step holds. Finally,
we define the list Detected of pointers to respectively p1 < . . . < pj0−1. Now, the only member
of Potential where δi can be negative that is not pointed by Detected is pj1 = last(Minj∗−1).
Thus, if δi(pj1) < 0, we add a pointer to pj1 to the end of Detected. Then, the routine outputs
Detected. The running time of this routine is O(j0 + j∗) = O(j0) = O(|Detected|).

The running of the whole algorithm is exemplified in Figure 5.

Result 2 Right-strong intervals of two permutations computing time is O(n).

Remark 1. Ideally, at each iteration step i, Potential would contain only the right boundaries
r ≥ i of all unvisited right-strong intervals. Could this somehow be proven ?

2.4 Common Interval Decomposition of Two Permutations

After computing the right-strong intervals, a sweep from left-to-right in a symmetric manner gen-
erates the strong common intervals in O(n) time. We recall that those are the nodes of the decom-
position tree. Moreover, the sweep organises these nodes by interval inclusion, i.e. filial order in the
tree. Hence, constructing the tree is in O(n) time. Then, the labelling can be in O(n) time using
the following remarks. Since there are only Prime and Linear nodes, the strong common intervals
that are marked Eaten by the Pre-Filter routine in the right-strong intervals computation also have
this mark in the left-strong intervals computation. Furthermore, the nodes with the mark Eaten
are Linear, the others are Prime.

Finally, Property 3, Theorem 2, and Lemma 2 can easily be generalised to the case of d per-
mutations if one replaces C2(i, pj) with Cj = Sσ(Ji,pj K)] σ(Ji, pjK) = ∪d

h=2Ch(i, pj). Then, at each
iteration step i in the new Update-Detect routine, one has to maintain Cj for any member pj of
Potential rather than just C2(i, pj). The hitch lays on the fact that Ch(i, pj) (2 ≤ h ≤ d) are
not pairwise disjunctive. However, as an element σ(i′) can be added to some Ch(i′′, p′′j) only once
throughout the computation, the total maintenance can be done in O(d × n) time.

Result 3 The common interval decomposing time of d permutations is O(d × n).

7

σ2(i) = � 1 2 3 4 5 6 7 8 9

σ(i) 3 1 5 6 7 8 2 9 4

i 1 2 3 4 5 6 7 8 9

Negative — 6 — — — — 8 — —

Detected 2 6 — — — 7 8 — —

Select(i + 1) 2 3, 6 4, 6 5, 6 6 7 8 9 —

removed by — 3 4 5 — — — — —

Pre-Filter

removed by 2 6 — — — 7 8 — —

Customised Filter

Potential 1, 9 2, 9 3, 6, 9 4, 6, 9 5, 6, 9 6, 9 7, 9 8, 9 9

Select(i) 1, 9 2 3, 6 4, 6 5, 6 6 7 8 9

Fig. 5. The values of some variables at the end of step i of the right-strong intervals computation on the instance of
Fig. 3. We define Negative containing all member pj of Potential at the beginning of step i with δi(pj) < 0.

3 Modular Decomposition

Let be given a loopless simple undirected graph G = (V,E) with n = |V | and m = |E|. A vertex
v ∈ V \ X exterior to a non-empty vertex subset X is adjacent to X if and only if it is adjacent to
each vertex of X, non-adjacent to X if and only if non-adjacent to each vertex of X. In both cases,
v is uniform to X. X is a module of G if all its exterior vertices are uniform to X. Any exterior
vertex that is not uniform to X is defined as a splitter of X. Roughly, the family M of modules of
G refers to the set of subgraphs of G that behave as one single vertex. It is well-known that M is
partitive [9, 25].

Finding efficient algorithms for computing TM from G has been an important challenge of the
last two decades [7, 8, 10, 11, 13, 18, 24, 26]. This results in several algorithms reaching linear time
performance. The factorising permutations of a graph refer to the ones of the family of its modules.
Obtaining one such permutation is in linear time for chordal graphs [21], and inheritance graphs [17].
Recently, for arbitrary graphs, this has also been solved in linear time [18]. The decomposition
approach conducted by C. Capelle [7] is as follows. First find a factorising permutation [18], then
construct the modular decomposition tree [8]. Both computations run in O(n+m) time even if the
latter [8] is somewhat heavily fathered.

There is a link between modular decomposition and common interval decomposition as follows.

Theorem 3. [26] Each permutation of the realiser of a permutation graph is factorising for the
family of modules of the graph.

8

Corollary 2. The family CI of common intervals of two permutations is included in the family
M of modules of the permutation graph that realises this pair of permutations. Furthermore, CI
and M share the same strong subsets, namely SCI = SM. Finally, TCI is the same as TM where
Degenerate labels are replaced by Linear labels.

Proof. directly follows from Theorem 3.

1

3

4

9

2

5

6

7

8

1 2 43 975 6 8

1 5 6 7 8 2 9 43

i. ii.

1 V

2σ = σ :

σ = 1 :

Fig. 6. i. an instance G of permutation graphs. ii. one of the realisers of G.

From Corollary 2, the algorithm of the previous section is equivalent to a O(n) time modular
decomposition algorithm for a permutation graph given by one realiser, yet m = θ(n2). In this
section, given a factorising permutation σ, we compute the modular decomposition tree of G. Let
us first adapt Property 3 and Theorem 2.

3.1 Submodularity on the Size of the Splitter Sets

Let SX refer to the splitter set of a vertex subset X 6= ∅ and s(X) = |SX | count the number of
its splitters. We extend s(∅) = −n. Property 4 and Corollary 3 below are our graph versions of
respectively Property 3 and Theorem 2.

Property 4 σ(Ji, jK) is a module if and only if si(j) = s(σ(Ji, jK)) = 0.

Definition 3 (Submodularity). (see e.g. [28]) A set function µ : 2V → � is submodular when
µ(X) + µ(Y) ≥ µ(X ∪ Y) + µ(X ∩ Y), for all X,Y ⊆ V.

Theorem 4 (Submodularity). The function s counting the splitters of modules of a graph is
submodular.

Proof. Since s(∅) = −n and s(X) ≤ n for X ⊆ V non-empty, the only tricky issue consists
of proving the submodular inequality for a pair (X,Y) of overlapping subsets of V . To do this,

9

we first notice that SX∩Y = (SX∩Y \ Y, SX∩Y ∩ Y) . Besides, SX∪Y = (SX∪Y \ SX , SX∪Y ∩ SX)
can be reduced by definition of splitters to SX∪Y = (SX∪Y \ SX , SX \ (X ∪ Y)). Similarly, SY =
(SY \ SX∩Y , SX∩Y \ Y) . Finally, SX = (SX \ Y, (SX ∩ Y) \ SX∩Y , (SX ∩ Y)∩ SX∩Y) can be reduced
to SX = (SX \ (X ∪ Y), (SX ∩ Y) \ SX∩Y , SX∩Y ∩ Y) . Hence, |SX | + |SY | − |SX∪Y | − |SX∩Y | =
|(SX ∩ Y) \ SX∩Y | + |SY \ SX∩Y | − |SX∪Y \ SX |.

To achieve proving the lemma, we prove that SY \SX∩Y ⊇ SX∪Y \SX . Indeed, let v ∈ SX∪Y \SX .
Then, v is exterior to X and is uniform to X. By symmetry, we suppose w.l.o.g. that v ∈ NX .
Since X ∩ Y 6= ∅, there exists w ∈ X ∩ Y with (v, w) ∈ E. Now, v is a splitter of X ∪ Y , implying
u ∈ Y \ X such that (v, u) /∈ E. Hence, v ∈ SY . It is trivial by v ∈ NX that v /∈ SX∩Y . �

Corollary 3. Let i ≤ pj < pj+1, and δi(pj) = si(pj+1) − si(pj). Then, δi(pj) < 0 implies there is
no k ≤ i such that σ(Jk, pjK) is a module.

Proof. If δi(pj) < 0, then the submodularity on the subsets σ(Jk, pjK) and σ(Ji, pj+1K) for all k ≤ i
implies that sk(pj) > sk(pj+1) ≥ 0. �

3.2 Modular Decomposition Algorithm

Except for the Update-Detect routine and for labelling the decomposition tree, the previous scheme
can easily be adapted to the case of modules. As the Update-Detect routine in this case uses a
particular data structure, its whole implementation will be depicted in Section 3.3 below. The
routine computes at each step i in O(d(i)) with d(i) the degree of the vertex σ(i). Thus, the non-
labelled tree is found in O(n+m) time. Now, it is well-known that a modular decomposition tree has
no Linear nodes, and its Degenerate nodes are divided into Serial – adjacency guaranteed between
all children – and Parallel – non-adjacency between all children [9, 25]. Then, by analogous remarks
as in Section 2.4, nodes with the mark Eaten are Degenerate, others are Prime. Furthermore, thanks
to Adjacency marks (see the Update-Detect routine in Appendix 3.3), we can differ Serial from
Parallel nodes.

Result 4 The modular decomposition is solved in O(n + m) time for any graph.

There exists a O(n) time common interval decomposition algorithm of two permutations [23].
However, the algorithm therein is not that simple and relies on a rather sophisticated algorithm [12].
Moreover their approach is not extended to general modular decomposition. To this aim one could
use the algorithm proposed in [8]. However, this latter produces a rather heavy sequence of trees.
On the other hand, our approach uses a unique paradigm for both computations of common interval
and modular decomposition tree, and not only we unify the two corresponding domains but also
provide very efficient elementary algorithms.

3.3 The Update-Detect routine for Modular Decomposition

Let be given a graph G = (V,E) along with a factorising permutation σ. Let NX , resp. NX , refers to
the set of adjacent, resp. non-adjacent, vertices to X. Then, we here implement the Update-Detect
routine to be used for modular decomposition. Let us recall what has to be done in this routine.

Let [p1, p2, . . . , pk] be the value of Potential at the beginning of iteration step i. After the
computation of Update-Detect, from each pj , one has to be able to compute the value of si(pj) or
δi(pj) in O(1) time. Besides, the routine is to outputs a list Detected of pointers to all members pj

10

of Potential with δi(pj) < 0, plus some other useless boundaries w.r.t. i. In this case of modular
decomposition, we will compute Detected such that the pointed boundaries are exactly those that
have a strictly negative δi. Finally, Detected has to organise increasingly the pointed boundaries
pj1 < . . . < pjh

.

To obtain this, we need another data structure from the one used in the common interval
decomposition. Our implementation aims at a O(n + m) decomposition time, and follows the rule:
each step i only considers the neighbourhood of σ(i). Some notions have to be introduced.

Let Ni,j and N i,j refer to Nσ(Ji,jK) and Nσ(Ji,jK) for short. Let [p′1, . . . , p
′
l] be the value of

Potential at the end of step i in the selection phase. Then, the fact that p′
1(= i) < . . . < p′l

implies Ni,p′1
⊇ . . . ⊇ Ni,p′

l
. Therefore, the neighbourhood of σ(i) in G can be partitioned into l

neighbour wings Ni,i = (NWi,p′1
, . . . , NWi,p′

l
), where each neighbour wing is defined as NWi,p′

j
=

Ni,p′j
\Ni,p′j+1

for all 1 ≤ j ≤ l and Ni,p′
(l+1)

= ∅. The definition of the non-neighbour wings such that

N i,i = (NWi,p′1
, . . . , NWi,p′

l
) is analogous. Then, the level Li,p′j

is defined as Li,p′j
= NWi,p′j

]NWi,p′j
.

We define Hi = {σ(i)} and trivially deduce that V = (Li,p′1
, . . . , Li,p′

l
,Hi). The level threshold does

not depend on i and is defined as θ(p′j) = p′j+1 − p′j for all 1 ≤ j ≤ l and p′l+1 = p′l. Notice that
its obtaining does not require any data structure since it can be directly computed from p ′

j and its
successor in O(1) time.

Property 5 si(p
′
j) = n − (|Ji, p′jK| + |Ni,p′j

| + |N i,p′j
|) for all 1 ≤ j ≤ l.

Proof. a splitter of a vertex subset is an exterior non-uniform vertex.

Corollary 4. δi(p
′
j) = si(p

′
j+1) − si(p

′
j) = |Li,p′j

| − θ(p′j) for all 1 ≤ j ≤ l.

Proposition 1. A data structure representing V = (Li,p′1
, . . . , Li,p′

l
,Hi) with respect to partition

refinements techniques [19] allows to implement the Update-Detect routine for graph modules to
compute in O(|Ni,i|) time per step i.

Indeed, from Corollary 4, the value of delta(p′
j) = δi(p

′
j) can be obtained in O(1) from the

one of |Li,p′j
|. According to this, we use the partition refinement techniques [19] to maintain the

partition of V into V = (Li,p′1
, . . . , Li,p′

l
,Hi) at the end of each step i.

Let us assume a partition refinement function Refine, which takes as input a pivot set S ⊆ V
and a data structure P representing a partition of (X1, . . . , Xp). Each Xi (1 ≤ i ≤ q) has a pointer
Size(Xi) to its cardinal. Then, Refine(S, P) proceeds in O(|S|) and splits any Xi with Xi∩S 6= ∅ to
an intersection subset Ii = Xi ∩ S and a different subset Di = Xi \ S. The two subsets has pointers
to each other. The details of Refine are in [19].

We then define a data structure holding the following. At the beginning of each step i, besides
the list Potential = [p1, . . . , pk], a data structure Partition is maintained with respect to the
partition refinement techniques to represent Partition =

(

Np1 , N p1 , . . . , Npk
, Npk

,H
)

. Each pj

points to both Npj
and Npj

. The pointer delta(pj) does not exists: it is replaced by the addition

of Size(Npj
) and Size(N pj

), to which pj can access in O(1) time.

Now, an inductive hypothesis provides Npj
= NWi+1,pj

, Npj
= NWi+1,pj

and H = Hi+1. We
will prove the inductive hypothesis for the next step by describing the Update-Detect routine.

To begin with, {σ(i)} can be removed from Partitionwith a call to Refine({σ(i)}, Partition).
Indeed, there only is one single intersection subset HTemp = {σ(i)}, which is temporally stored
apart. All the remaining is redefined Partition, where any member (wings or H) is the old one

11

excluded σ(i). This takes O(1) time. Besides, an empty N ′
i is created with a pointer Size(N ′

i) to
0, as well as an empty N ′

i with Size(N ′
i) to another 0. Furthermore, Modified is initialised to be

an empty list (of pointers). This takes O(1) time.

After this, Refine(Ni,i, Partition) is called with some extra rules. When it splits a neighbour
wing Npj

= Ni+1,pj
\Ni+1,pj+1 \{σ(i)} in Partition into two subsets, it also perform the following.

First, as the intersection subset holds Npj
∩ Ni,i = Ni,pj

\ Ni,pj+1 , the old neighbour wing in

Partition is replaced by this. Second, as the difference subset Npj
\ Ni,i = L1

pj
∩ N i,i is included

in N i,i \ N i,p1 , it is concatenated to N ′
i and the involved pointers Size are updated. Last, a

pointer to pj is added to the end of the list Modified. It is analogous when a non-neighbour wing
Npj

= N i+1,pj
\N i+1,pj+1 \{σ(i)} is split since the difference subset holds N pj

\Ni,i = Npj
∩N i,i =

N i,pj
\ N i,pj+1 and the other holds N pj

∩ Ni,i ⊆ Ni,i \ Ni,p1 . When splitting H, we replaced it by

HTemp = {σ(i)}, and concatenate H ∩ Ni,i to N ′
i and H \ Ni,i to N ′

i. All these operations are in
O(1) time per splitting operation. Therefore, the refinement is in O(|Ni,i|). At this point, the value
(

NNp1 , NNp1 . . . , NNpk
, NNpk

,HH
)

of Partition holds NNpj
= NWi,pj

, NNpj
= NWi,pj

, and

HH = Hi. Thus, acceding to |Li,pj
| − θ(pj) = Size(NNpj

) + Size(NN pj
) − (pj+1 − pj) = δi(pj)

from each pj takes O(1) time, which is one of the two main results of Update-Detect. Now, we
deduce by elimination that N ′

i = Ni,i \Ni,p1 and N ′
i = N i,i \N i,p1 . Therefore, the routine outputs

s = Size(N ′
i)+Size(N ′

i)− (p1 − i) = si(i+1) for further use in the Add routine.. This takes O(1)
time.

Finally, it is obvious to state that Modified contains the pointers to all pj such that δi+1(pj) =
δi(pj). Therefore, Detected is a sublist of Modified since δi is positive elsewhere. Besides, the
pointed boundaries by Modified are increasing since Partition has a specific order of increasing
levels (the increasing monotonicity of boundaries pointed by Modified is not necessarily strict
though: a boundary might be introduced twice when either Npj

and Npj
have been split). Hence,

obtaining Detected by tracing Modified is straightforward in O(|Modified|) = O(|Ni,i|). This is
the second of the two main results of Update-Detect.

Now, we have to prove the inductive hypothesis for the next step. To obtain this, the filtering
routines (Pre-Filter, Customised Filter) have to perform some extra works: when a boundary pj is
removed, if it predecessor pj−1 in Potential exists, we concatenate the involved neighbour wings
with respect to Ni,pj−1 \ Ni,pj+1 = Ni,pj−1 \ Ni,pj

] Ni,pj
\ Ni,pj+1 . It is similar for the involved

non-neighbour wings. If pj is at the head of Potential, the wings are concatenated to N ′
i and N ′

i.
Besides, the values of delta have to be updated accordingly. If pj is at the head of Potential,
delta(pj) is added to s so that we always have s = si(pj) with pj at the head of Potential. The
cost of each removing still is O(1). Besides, for use in Section 3.2, when the Pre-Filter removes
some r < r0(= max Select(i + 1)) and gives r0 the mark Eaten, we mark r0 as Adjacency if and
only if NWi,r is not empty. Notice that either NWi,r is not empty and NWi,r is empty or NWi,r is
empty and NWi,r is not empty. This helps distinguishing Serial from Parallel nodes. Finally, when
the Add routine inserts i to the head of Potential, it also has to insert N ′

i and N ′
i to the head

of Partition, and make i point to both of them. Let p1 = i and p2 be the two first members of
Potential at this state, the Add routine uses the value of s = si(p2) = δi(p1) to create the pointer
delta(p1) for this boundary p1 = i. The cost of the Add routine still is O(1). By doing so, it is
straightforward to deduce the inductive hypothesis for the next step.

As for complexity issues, at each step i, the computing time of the Update-Detect routine is
O(|Ni,i|) as explained in the above.

12

4 Conclusion and Perspectives

Our results are based on a gateway between both algorithms on permutations and those on graphs.
We show the importance of graph layout approaches, e.g. with factorising permutations. Besides,
whenever some analogous versions of Property 3 and Theorem 2 are provided, T. Uno and M. Yag-
iura’s algorithm can easily be generalised for any weakly partitive family. Thus, the use of this
algorithm would be an important crux for designing future algorithms. Indeed, it would be in-
teresting to adopt the same philosophy conducted throughout our paper to other combinatorial
problems such as decomposition into ”inheritance-blocks” of an inheritance graph in O(n + m)
time, which would yield an alternative to the algorithms proposed in [6, 7, 17]. Besides, it would
also be fruitful to apply the same philosophy on modular decomposition in O(n) time of a bounded
tolerance graph – trapezoid graph with solely parallelograms [5, 15] – when an intersection model
is provided. Then, it would be very interesting to have a O(n) modular decomposition time for an
interval or trapezoid graph on one of its intersection model, which would give interesting links to
works on gene-teams [1].

5 Acknowledgements

Thanks to T. Uno and M. Yagiura for their algorithm and helpful discussions.

References

1. M.-P. Béal, A. Bergeron, S. Corteel, and M. Raffinot. An algorithmic view of gene teams. Theoretical Computer

Science, 320(2-3):395–418, 2004.
2. S. Bérard, A. Bergeron, and C. Chauve. Conserved structures in evolution scenarios. RECOMB04, 2004. to

appear in Lecture Notes in Bioinformatics.
3. A. Bergeron, S. Heber, and J. Stoye. Common intervals and sorting by reversals: A marriage of necessity. In

ECCB02, pages S54–S63, 2002.
4. A. Bergeron and J. Stoye. On the similarity of sets of permutations and its applications to genome comparison.

In COCOON03, volume 2697, pages 68–79, 2003.
5. K. P. Bogart, P. C. Fishburn, G. Isaak, and L. Langley. Proper and unit tolerance graphs. Discrete Appl. Math.,

60:99–117, 1995.
6. C. Capelle. Block decomposition of inheritance hierarchies. WG97, pages 118–131, 1997.
7. C. Capelle. Décomposition de Graphes et Permutations Factorisantes. PhD thesis, Université Montpellier II,

1997.
8. C. Capelle, M. Habib, and F. de Montgolfier. Graph decomposition and factorizing permutations. Discrete

Mathematics and Theoretical Computer Sciences, 5(1):55–70, 2002.
9. M. Chein, M. Habib, and M.C. Maurer. Partitive hypergraphs. Discrete Mathematics, 37:35–50, 1981.

10. A. Cournier and M. Habib. A new linear algorithm for modular decomposition. In S. Tison, editor, Trees in

algebra and programming–CAAP 94, volume 787 of LNCS, pages 68–84, 1994.
11. D.D. Cowan, L.O. James, and R.G. Stanton. Graph decomposition for undirected graphs. In R.B. Levow eds.

F. Hoffman, editor, 3rd S-E Conf. Combinatorics, Graph Theory and Computing, Utilitas Math, pages 281–290,
Winnipeg, 1972.

12. E. Dahlhaus. Parallel algorithms for hierarchical clustering, and applications to split decomposition and parity
graph recognition. Journal of Algorithms, 36(2):205–240, 2000.

13. E. Dahlhaus, J. Gustedt, and R.M. McConnell. Efficient and practical algorithms for sequential modular decom-
position. Journal of Algorithms, 41(2):360–387, 2001.

14. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational geometry. Springer-Verlag, 1991.
15. S. Felsner. Tolerance graphs and orders. J. Graph Theory, 28:129–140, 1998.
16. M. Figeac and J.-S. Varré. Sorting by reversals with common intervals. Lecture Notes in Bioinformatics, 3240:26–

37, 2004.

13

17. M. Habib, M. Huchard, and J.P. Spinrad. A linear algorithm to decompose inheritance graphs into modules.
Algorithmica, 13:573–591, 1995.

18. M. Habib, F. de Montgolfier, and C. Paul. A simple linear-time modular decomposition algorithm. SWAT04,
LNCS(3111):187–198, 2004.

19. M. Habib, C. Paul, and L. Viennot. Partition refinement : an interesting algorithmic tool kit. IJFCS, 10(2):147–
170, 1999.

20. S. Heber and J. Stoye. Finding all common intervals of k permutations. CPM04, LNCS(2089):207–218, 2001.
21. W.-L. Hsu and T.-M. Ma. Substitution decomposition on chordal graphs and applications. In Proceedings of the

2nd ACM-SIGSAM International Symposium on Symbolic and Algebraic Computation, number 557 in LNCS,
pages 52–60, 1991.

22. G. M. Landau, L. Parida, and O. Weimann. Gene proximity analysis across whole genomes via PQ Trees, 2004.
Submitted.

23. R. M. McConnell and F. de Montgolfier. Algebraic Operations on PQ Trees and Modular Decomposition Trees,
2005. To appear in Proceedings of WG05.

24. R.M. McConnell and J.P. Spinrad. Modular decomposition and transitive orientation. Discrete Mathematics–

SODA94, 201:189–241, 1999.
25. R.H. Möhring and F.J. Radermacher. Substitution decomposition for discrete structures and connections with

combinatorial optimization. Annals of Discrete Mathematics, 19:257–356, 1984.
26. F. de Montgolfier. Décomposition modulaire des graphes. Théorie, extensions et algorithmes. PhD thesis, Uni-

versité Montpellier II, 2003.
27. T. Uno and M. Yagiura. Fast algorithms to enumerate all common intervals of two permutations. Algorithmica,

26(2):290–309, 2000.
28. D.J.A. Welsh. Matroids: Fundamental concepts. In R.L. Graham, M. Grötschel, and L. Lovász, editors, Handbook

of Combinatorics, volume 1, pages 481–526. North-Holland, 1995.

14

