
HAL Id: lirmm-00108544
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108544

Submitted on 23 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

STAR: An Algorithm to Search for Tandem
Approximate Repeats
Olivier Delgrange, Eric Rivals

To cite this version:
Olivier Delgrange, Eric Rivals. STAR: An Algorithm to Search for Tandem Approximate Repeats.
Bioinformatics, 2004, 20 (16), pp.2812-2820. �10.1093/bioinformatics/bth335�. �lirmm-00108544�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108544
https://hal.archives-ouvertes.fr

BIOINFORMATICS Vol. 1 no. 1 2004
Pages 1–9

STAR: an algorithm to Search for Tandem
Approximate Repeats
Olivier Delgrange† and Eric Rivals

Université de Mons Hainaut, Service d’Informatique Générale, Avenue du champ de
Mars, 6, Mons, 7000, Belgique and LIRMM, CNRS UMR 5509, 161, rue Ada,
Montpellier Cedex 5, 34392, France

ABSTRACT
Motivation: Tandem repeats consist in approximate and
adjacent repetitions of a DNA motif. Such repeats account
for large portions of eukaryotic genomes and have also
been found in other life kingdoms. Because of their
polymorphism, tandem repeats have proven useful in
genome cartography, forensic and population studies, etc.
Nevertheless, they are not systematically detected nor
annotated in genome projects. Partially because of this
lack of data, their evolution is still poorly understood.
Results: In this work, we design an exact algorithm to
locate approximate tandem repeats (ATR) of a motif in
a DNA sequence. Given a motif and a DNA sequence,
our method named STAR, identifies all segments of
the sequence that correspond to significant approximate
tandem repetitions of the motif. In our model, an Exact
Tandem Repeat (ETR) comes from the tandem duplication
of the motif and an ATR derives from an ETR by a series of
point mutations. An ATR can then be encoded as a number
of duplications of the motif together with a list of mutations.
Consequently, any sequence that is not an ATR cannot be
encoded efficiently by this description, while a true ATR
can. Our method uses the Minimum Description Length
Criterion to identify which sequence segments are ATR.
Our optimization procedure guarantees that STAR finds a
combination of ATR that minimizes this criterion.
Availability: for use at http://atgc.lirmm.fr/star.
Contact: rivals@lirmm.fr
Supplementary information: an appendix is available at
http://atgc.lirmm.fr/star under Paper and contacts.

INTRODUCTION
Approximate Tandem Repeats (ATR) consist in approxi-
mate and adjacent repetitions of a DNA motif. ATR are
widespread in eukaryotic genomes and thus important
from an evolutionary view-point. Surprisingly, ATR are
not annotated consistently in database entries of sequence
repositories. Actually, systematic detection of significant

†also at Université de Lille, LIFL UMR CNRS 8022 , 59655 Villeneuve
d’Ascq, France

ATR in a way that is independent on the motif or on the
sequence length is beyond the scope of present methods.
Nevertheless, locating ATR represents a relevant issue as
polymorphic ATR play an important role in population
genetics, forensic medicine, and also in the development
of diseases like cancer, epilepsy, and others (Buard &
Jeffreys (1997)).

In biology, tandem repeats are classified according to
the length of the repeated motif into micro- (below 6 bp),
mini-satellites (from 7 to 100 bp) and satellites (above).
Computer scientists distinguish between tandem repeats,
which contain two copies of the motif, and multiple
repeats, with more than two copies.

Related works
Some methods allow to identify in the sequence windows
with unusual words composition (Hancock & Armstrong
(1994), Claverie & States (1993), Wootton & Federhen
(1993)). The sequence of such windows may depart from
an ATR. Well known in biology is the RepeatMasker pro-
gram (see http://repeatmasker.genome.washington.edu),
which given a set of repeat sequences (not necessarily
tandem repeats) locally aligns the input sequence with
any repeat from the set. It is used to mask repeats in
a sequence before further analyses. Its ability to find
tandem repeats depends on the repeat set. It is not a
method devoted to search for ATR.

Among the algorithms that aim at precisely locating
tandem repeats, one can identify three classes. In the field
of computer science, several fast algorithms deal with
searching only two-duplication or exact tandem repeats
(among others see Main & Lorentz (1984); Kolpakov &
Kucherov (1999); Stoye & Gusfield (2002)). These may be
used as filters to point out possible duplicated motifs, but
are not appropriate for practical issues in biology. Other
methods search for ATR where the copies of the motif
may only differ from each other only by substitutions
(Kolpakov & Kucherov (2001); Landau et al. (2001)). A
similar approach (Coward & Drabløs (1998)) discovers
periodicities in a sequence without finding the boundaries
of the ATR. It performs alignment without indels. These
algorithms have good complexities and short computation

c© Oxford University Press 2000 1

STAR

time in practice, but will miss ATR having undergone any
insertion or deletion.

Among the algorithms that locate ATR and authorize
substitutions and indels are the works of Rivals et al.
(1997); Sagot & Myers (1998); Benson (1999). The
method in Rivals et al. (1997) is limited to small motifs
and allows only indels between two occurrences of the
motif inside an ATR. Sagot and Myers’s method first filters
out non repetitive parts of the sequence using statistical
properties. On the remaining segments, it enumerates all
ATR that fulfill criteria fixed by parameters: minimal
number of repeats, range of motif size, maximal number
of differences between the repeats and a motif. This is a
combinatorially exhaustive approach that identifies several
possible motifs and alignments for each ATR, and whose
complexity depends exponentially on some parameters.
The software Tandem Repeat Finder (Benson (1999)) first
searches for significant exact repetitions in the sequence.
It then uses these repetitions as anchors and checks if the
alignment of the region with an ETR scores above a user-
defined threshold. The numbers of ATR reported varies
with the threshold and for a given threshold the level of
approximation allowed depends on the motif length. So,
choosing a threshold for systematic annotation remains an
open question.

In this work, we design a new algorithm that detects all
significant ATR of a given motif, where significance is
assessed using the Minimum Description Length (MDL)
criterion. MDL provides an absolute measure of the
significance of an ATR independently of the motif. It
evaluates how many mutations are allowed in an ATR
when compared to an ETR of the best possible length. Our
algorithm, STAR, needs no threshold value and optimally
locates ATR of any input motif with respect to (w.r.t.) the
MDL criterion.

ALGORITHM
Given a sequence s of length n, and a motif m of length
p, our algorithm, STAR locates all significant ATR of m
in s. It uses the MDL criterion to distinguish between
significant ATR segments and “random” ones. The MDL
criterion is a formal version of the Occam’s Razor
principle which dates back to the 14th century: “One
should not increase, beyond what is necessary, the number
of entities required to explain anything”. In other words,
if there are several hypothetical causes for a phenomenon,
the simplest or shortest one is more probably the real one.
Following the MDL criterion, lossless data compression
was used to analyze genetic sequences in Milosavljevic̀
& Jurka (1993); Grumbach & Tahi (1993); Rivals et al.
(1997, 1996). The mathematical foundations of such
approach lies in Kolmogorov Complexity Theory (Li &
Vitanyi (1997)).

A DNA sequence s is the description of a DNA
molecule. Now consider a lossless compressor that
given s outputs s′. s′, the compressed version of s, is
another complete description of s; indeed, s can be
exactly recovered from s′. If s′ is shorter than s, if
the method effectively achieved compression (which is
never guaranteed for any sequence), then s′ is a better
“description” than s according to the MDL criterion.
In fact, a compression method tries to reduce the size
of a sequence by exploiting a property P . It re-encodes
s relatively to P and this may compress s or not. The
more relevant the property, the better the compression.
Here, the property P of interest is “s contains segments
that are significant ATR of m”. Kolmogorov Complexity
Theory shows that s can only be compressed by such a
compressor if it fulfills P (at least on some segments).
On the opposite, if s is not compressed, then it does not
satisfy P (cf. non-randomness tests in (Li & Vitanyi,
1997, Ch. 5, p.377).) Therefore, the compression gain,
which measures the size reduction between s and s′, is
an objective and global evaluation of the relevance of the
property P for s. Indeed, it is a significance measure since
the probability of observing a compression gain of d-bits
is less than 2−d (Milosavljevic̀ & Jurka (1993)).

In this setup, the efficiency of the compression method
is of primary importance. The emphasis of our study lies
on the compression optimization. Usually, a compres-
sion method makes a blind exploitation of the property
everywhere in the sequence. If some segments are really
shortened by this way, others are in fact lengthened
because they do not fulfill P . For the latter, call them P
incompressible, the original segment sequence would be a
shorter, better description. Replacing the encoded version
of this segment in s′ by this original description would
improve the global compression gain. For this, the coding
scheme must be adapted to allow switching between the
two codes and additional information must be included.
We design such a coding scheme and an optimization
procedure that allow STAR to find the decomposition
of s into ATR and P incompressible segments that is
optimal w.r.t. the compression gain. It precisely locates
all segments which satisfy our property P . Moreover, it
does not need an arbitrary threshold to do so. However,
an initial compression method is required to efficiently
exploit P everywhere.

STAR operates in three steps. First, STAR aligns the
sequence s with a perfect repeat (ETR) of the motif m
and obtains an optimal list of mutations that convert this
repeat into s and the optimal length for the ETR. This
is done by Wraparound Dynamic Programming (WDP)
(Fischetti et al. (1993)), which computes the optimal
alignments between s and any factor of m∞ in O(np)
time (m∞ denotes the right infinite repetition of m).
From the mutation list, STAR evaluates in a second step

2

O. Delgrange and E. Rivals

the compression gain as if s was a single ATR of m.
For a true ATR, one expects that the mutation list is
short and that it is more economical to encode the motif,
the length of the ETR, and the list of mutations. But
often, only some segments of s are true ATR. In this
step, called COMPWDP, STAR computes the curve of the
compression gain over s. This curve is defined at positions
just before or just after mutations (which are known from
the list). For a true ATR segment of s, it possible to
compute its local compression gain by substracting the
compression gain at its begin and end positions. A little
thinking shows that such a segment does not start or end
by a mutation ensuring that the curve is defined at these
positions. By the theory, a true ATR segment has a positive
compression gain, i.e., the curve increases between its
end-points. For segments that are not ATR, coding them
(nearly) “litteraly”‡ takes less bits. To maximize the
global compression gain over s, it is thus appropriate to
switch between litteral encoding for non-ATR segments
and the above-mentioned compression scheme for ATR
segments. The third step, TURBOOPTLIFT, achieves this
maximization by decomposing s into ATR and non-ATR
segments optimally w.r.t. the global compression gain.

The remaining of this section starts with some prelim-
inaries on compression, and presents the two last steps
of the algorithm COMPWDP, and TURBOOPTLIFT. For
the first step WDP, we refer the reader to Fischetti et al.
(1993). We finish by the analysis of the time complexity.

Preliminaries
Some concepts about sequences, compression, codes and
ATR are formally presented here.

A word is a finite sequence of letters of an alphabet;
it is also called a sequence. For a word s, |s| denotes its
length and si, with 0 < i ≤ |s| denotes its ith letter.
A factor of s is made of consecutive letters of s: for
0 < i ≤ j ≤ |s|, si..j denotes the factor si . . . sj . The
empty word has length 0 and is a factor of every word. The
factor s1..i (resp. s|s|−i+1..|s|) is the prefix (resp. suffix) of
length i of s. The nth power of s, noted sn, is the word
s, concatenated n − 1 times with itself. In this paper, we
consider the nucleic alphabet N = {a, c, g, t} and the
binary alphabet B = {0, 1}. A DNA sequence is as a
word over N .

A code enables us to write items over B. It must be
injective to allow a unique deciphering. Let Nuc be the
code that maps each nucleotide (∈ N) to a two-bit code as
follows: (a, 00), (c, 01), (g, 10), (t, 11). Nuc extends to
DNA sequences: e.g., the sequence s := aggcta is coded
as Nuc(s) := 00 10 10 01 11 00.

Given an input sequence s, a compression method C
computes the compressed sequence s′ such that the entire

‡I.e., coding their length, and the segment as a sequence (see next Section).

sequence s can be reconstructed from s′. Whatever is the
input alphabet, the output alphabet is B. The compression
of a sequence is effective if it reduces its length. To be
able to compare the length of the compressed sequence
with the length of the original sequence, the latter must
be virtually rewritten with Nuc over B before comparison.
Therefore, the compression of a nucleic sequence s, using
method C is effective if |s′| < |Nuc(s)| = 2|s|. The
natural way to rewrite a nucleic sequence over B is to use
Nuc because, without any assumption about the nucleic
frequencies, it uses the same and minimal number of bits
for each nucleotide. The compression gain is the number
of bits saved by the compression and is given by |s′|−2|s|
for a nucleic sequence s.

A code is self-delimiting (SD) if no codeword is a prefix
of another codeword. It allows codewords written one
after the other in a file to be decoded unambiguously. A
compressed sequence is a series of codewords of a SD
code. Nuc is SD because all codewords have identical
length. It is not true for the usual variable-length binary
representation of integers: every codeword (e.g. 10 ≡ 2)
is a prefix of other codewords (e.g. 1000 ≡ 8).

We denote FL(x, l) the fixed length encoding of integer
x < 2l using l bits (each codeword has enough leading
0s to reach length l). For bounded integers, fixed-length
binary representation is a SD code for a given codeword
length. Encoding unbounded integers requires variable-
length SD codes (Apostolico & Fraenkel (1987); Li &
Vitanyi (1997)). We use the Fibonacci code (Apostolico
& Fraenkel (1987)) that represents integers using the
Fibonacci numbers as a basis (see Appendix). With Fibo
the code length grows logarithmically with the integer, i.e.,
|Fibo(x)| ∈ θ(log x). Moreover, this code satisfies the
ICL property needed by our optimization algorithm (see
Section Optimization Algorithm).

Formally, an Exact Tandem Repeat (ETR) e of a word m,
is a factor of a power of m, i.e., e := u.mi.v with i ≥ 0,
u (resp. v) a suffix (resp. a prefix) of m. An Approximate
Tandem Repeat (ATR) of m is defined as an ETR of m
which has undergone a small number of mutations. For
example, t att act cgt a is an ATR of act.

Compression Step (COMPWDP)
COMPWDP computes the curve of the partial compres-
sion gain yield by the ATR compression scheme over the
sequence, i.e., for some position i in s, the compression
gain over s1..i. This value is denoted Cm(i). COMPWDP
takes as input the output of the WDP, which is the length
of the optimal ETR and the list of mutations that transform
this ETR into s. After describing the coding scheme, we
explain how Cm(i) is computed for all valid positions i.

The ATR coding scheme encodes an ATR of motif m by
first writting m in a self delimited format, and then coding
the alignment. This scheme is suited for coding true ATR

3

STAR

(a) WDP: optimal alignment of sequence s (2nd line) with the
motif m := ttc (ETR of ttc on the 1st line).

ttCTTcTTc-TT-CTtCTtCTTCTTcTTcTTCt--Tc---TT--
gaCTT-TTaaTTgCTcCTgCTTCTT-TTtTTCggaTaaagTTgg

(b) COMPWDP: the compressed sequence s′. The 3-bits
codewords S(b) means a substitution of the current letter of m∞

by b, D means its deletion, and I(b) an insertion of a b before the
current position.

s′ = Fibo(2)Nuc(ttc)FL(2, 2) Fibo(0)S(g)Fibo(0)S(a)
Fibo(3)D Fibo(2)S(a)Fibo(0) . . . I(g)Fibo(0)I(g)

Fig. 1. Output of WDP (a) and COMPWDP (b) with motif ttc.

whose alignment to an ETR contains mainly identities and
can be efficiently encoded by the list of mutations. More
precisely, it suffices to write the positions that need to
be mutated and the corresponding mutation that allows to
recover s from the ETR of m. As the ETR may start at
any position in m, the phase of m at the beginning of the
alignment needs to be encoded. The coding scheme starts
with a preamble followed by the encoding of the list. The
preamble includes:
• Fibo(p − 1): the motif length (p) minus one since p > 0,

• Nuc(m): the motif m in natural encoding,

• FL(k, dlog
2
pe): the starting phase k in m of the alignment; we

know that 0 ≤ k < p.

The alignment is coded as a succession of jumps over
segments of identities followed by a mutation. A jump is
a position offset coded as an integer. For a given current
position, we know which character is at this position in
the ETR. It can be shown that there are at most 7 possible
mutations (3 insertions, 3 substitutions, one deletion) as
we know which character is mutated. So, each mutation
can be encoded on a fixed 3-bit codes (since 23 = 8)
with one code being unused. Let us denote by q the
total number of mutations in the alignment. The list is
l1, t1, l2, t2, . . . , lq, tq, lq+1. For 1 ≤ j ≤ q, lj is the jump
from the previous mutation position (lj may equal 0), tj

is the mutation to apply at the current position after the
jump. lq+1 is the length of the last segment of identities to
reach the end of s (it may also equal 0). Each lj is encoded
with Fibo and tj is coded with the associated 3-bit code.
To code the list, one reads the alignment and successively
outputs the code for each lj and tj until the end. See Fig.
1 for an example of the compression step.

For any 1 ≤ j ≤ q, let us map tj to the last position in s
produced by the alignement up to tj , say ij , and map lj to
i′j where i′j := ij if tj is a deletion and to i′j := ij − 1
otherwise. A prefix of the complete code (preamble+list)
up to and including the code of lj encodes s1..i′j , and the
prefix up to and including the code of tj codes for s1..ij

.
The indices ij and i′j are called separating positions. Let

Km(i) denote the code length for the prefix s1..i of s, then
Km(i) is defined only if i is a separating position, since
one cannot interpret an uncomplete prefix of the code. The
partial compression gain up to a separating position i is
the difference between the size of the natural encoding of
s1..i and Km(i), that is |Nuc(s1..i)| −Km(i). So we have
Cm(i) := 2i − Km(i) by definition of Nuc.

Now, the size in bits of the preamble can be computed
in constant time for given m, p and k. Km(i), as well as
Cm(i), can be caculated for all separating positions i by
a single pass through the alignment in O(n) time, since
the alignement is at most 2n long. So, the complexity
of COMPWDP is O(n). Moreover, for two separating
positions 1 ≤ i < j ≤ n, the local compression gain
of the segment si+1..j is given by Cm(i)−Cm(j). Figure
2 shows the partial compression gain on a 1000 bp DNA
sequence.

-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

0 200 400 600 800 1000

P
ar

tia
l g

ai
n

Position

x y

Fig. 2. Compression curve CTTC applied to segment [63700−64699]
of S. Cerevisiæ chromosome XI.

Optimization Algorithm (TURBOOPTLIFT)
The compression gain curve yielded by the ATR scheme
and computed in COMPWDP contains increasing and
decreasing segments. The former are ATR, while the
latter are P incompressible segments. This is illustrated
on Fig. 2. As mentioned above, using a more complex
coding scheme that allows to alternate between the
ATR scheme for increasing segments and the natural
scheme for decreasing segments should improve the
compression gain. In this section, we first describe the
scheme we designed for this purpose and derive the
formula for the global compression gain. Then we explain
TURBOOPTLIFT whose goal is to choose optimal number
and end positions of increasing segments such that the
global gain is maximized.

The general coding scheme The general coding scheme
is like the ATR scheme, except that it enables interrupting

4

O. Delgrange and E. Rivals

this scheme by a rupture flag each time one wishes to
switch to the natural scheme. The natural scheme is
adapted to be Self-Delimited (SD) so that when one reads
the compressed sequence, one knows where it ends and
where the ATR scheme starts again. Moreover, one has to
encode the motif phase of the alignment when the ATR
scheme resumes.

The rupture flag, denoted aR, is the 3-bit code that
does not correspond to any mutation in the ATR scheme
(see page 4), which is a requisite. The natural scheme
encodes the sequence segment with Nuc preceded by its
length encoded with the Fibo code. The motif phase f
is encoded as previously. So, if for some 1 ≤ i <
j ≤ n we need to encode si+1..j in natural encoding, we
write [aRFL(f, dlog2 pe)Fibo(j − i)Nuc(si+1..j)] in the
compressed sequence.

Rx

R y

mC

Crossing point

yx c

Fig. 3. Two potential rupture curves that cross themselves.

As the length of Nuc(si+1..j), i.e. 2(j − i), is
also counted in the original description of s, the
compression gain for such a segment is 2(j − i) −
|aRFL(f, dlog2 pe)Fibo(j − i)| − 2(j − i) =
−(3 + dlog2 pe + |Fibo(j − i)|). In this expression,
all terms are constant w.r.t. the segment length (j − i),
except the term |Fibo(j − i)|. The gain is negative: in
fact, it is a compression loss. Looking at the compression
gain curve, this replaces a decreasing segment of Cm by a
piece of the curve shown Fig. 3. The replacement curve,
which we call rupture, starts with a negative constant
(vertical) drop, and continues as a discrete logarithmic
curve. This curve depends only on the segment length, but
not on its sequence. So, the form of the rupture curve is
always the same whichever segment we choose to replace.
Changing from the ATR scheme to the natural scheme
is termed “applying a rupture”, and will usually lift up
the segment [j, n] of the original curve Cm as shown
Fig. 4. A rupture, which starts necessarily at a separat-
ing position, increases the partial compression gain by
Cm(i) − Cm(j) − 3 − dlog2 pe − |Fibo(j − i)|.
Let us denote by R(l) the negative contribution
of a rupture of length l to the compression gain:
R(l) := −(3 + dlog2 pe + |Fibo(l)|).

The optimization problem and TURBOOPTLIFT. Given
the general coding scheme as described above, we can
formally state the optimization problem solved by TUR-
BOOPTLIFT. Assume one wants to apply k non overlap-

-50

0

50

100

150

200

250

300

0 200 400 600 800 1000

P
ar

tia
l g

ai
n

Position

Fig. 4. Compression curve of Fig. 2 after the application of two
ruptures.

ping ruptures in the coding and that the decomposition of
s is given by the positions and lengths of the correspond-
ing segments. Let (bh, dh) for 1 ≤ h ≤ k be their list,
where bh is the beginning position in s of the h-th rupture
minus one and dh its length. The global compression gain
over s is given by: Cm(n) +

∑k

i=1
(Cm(bi) − Cm(bi +

di) + R(di)) which follows from the partial compression
gain formula written above. The goal of the third step is
to find the optimal decomposition of s that maximizes the
global gain.

We show that if the rupture curve satisfies a given
property, finding the optimal decomposition is feasible in
O(n log n) time. The problem is complex since a brute
force approach would examine an exponential number
of potential decompositions. We first exhibit the crucial
properties of the rupture curves, before explaining the
algorithm and proving its validity. We first need a notation.
Let x be a separating position and Rx denote the potential
rupture starting in x. For all i ≥ x, G(i) is the global
compression gain obtained after optimization up to i and
Rx(i) := G(x) + R(i − x) is the value, at position i,
of the current compression curve improved by rupture Rx

over [x, i]

Rupture curves In fact, we show that fast optimization is
possible whenever the rupture length is encoded by a code
satisfying the Increasing Concave and Limited (ICL)
property (see Appendix). It shapes the rupture curve like a
discrete, stair-like, logarithmic curve with a step height of
one and increasing step’s width for successive steps (see
Fig. 3).

As there is a constant cost for beginning a rupture, an
optimal decomposition will never contain two adjacent
ruptures, otherwise it would be better to continue the
first until the end of the second. Let x < y be the

5

STAR

Algorithm 1: TURBOOPTLIFT

1 I := 0;
2 for i := 1 to n do
3 if i is a separating position then
4 if Rk1

(i) > Cm(i) + I then
// apply Rk1

until i;
5 I := Rk1

(i) − Cm(i); // update I;
end

6 else
// I needs no update;

7 insert rupture Ri in front of Li;
end

8 G(i) := Cm(i) + I;
end

9 // purge Li, and set Li+1 to Li;
10 for each rupture Rk+1 of Li \ {Rk1

} in order do
11 if Rk+1 crosses Rk at pos. i + 1 then
12 remove Rk;

end
end

end

starting points of two ruptures. Comparing G(x) and
G(y) determines if the curves cross or not, and after
which point ones dominates (i.e., is above) the other. If
G(x) > G(y) (Fig.3), Rx crosses Ry at the smallest
c ≥ y for which Rx(c) > Ry(c), and at the right of c,
Rx always dominatesRy. If G(x) ≤ G(y) then Ry never
crosses, and dominates Rx: Ry(i) ≥ Rx(i),∀i ≥ y.

The algorithm The input of TURBOOPTLIFT is the
curve Cm. TURBOOPTLIFT scans Cm with the current
position i going from position 1 until n and at each
iteration optimizes the compression gain up to position
i. For this, it maintains the cumulative increase of the
compression gain up to the current position, denote it
I(i). The improvement is due to the optimal ruptures
applied between positions 1 and i. The sum of Cm(i)
and I(i) gives G(i). TURBOOPTLIFT computes the value
of G(i) for all i and outputs G(n) as the optimal global
compression gain. As I(i) is used only in one iteration, it
is stored in a single variable I rather than in an array.

TURBOOPTLIFT maintains the list of potential ruptures,
denoted Li; it contains all ruptures Rk, with k < i, that
could improve the curve at step i or later. This list is
sorted by decreasing values of Rk(i) and by increasing
rupture length. This is a total order on the ruptures, which,
we will see, is crucial for the list maintenance. Rk(i)
represents the sum of the cumulated increase until position
k, plus the increase obtained by applying Rk until the
current position. Thus, the best applicable rupture up to
i is necessarily the first in Li.

TURBOOPTLIFT is outlined in Algorithm 1. Let us
denote by k1 the start position of the first rupture in Li.

Lines 3 to 8 update G(i) and Li. Line 4 checks whether
a rupture needs to be applied until i. Due to the ordering
of Li, this rupture necessarily is Rk1

. If Rk1
is applied,

the cumulative increase I is correctly updated (line 5).
Moreover, the starting rupture Ri is inserted only if it is
not dominated by Rk1

, otherwise it would not be useful.
All this requires O(1) time. Lines 9 to 12 purge Li by
removing ruptures that are dominated at position i + 1 by
the next rupture in the list. Because Li is sorted according
to the total order, this is done in one left-to-right pass
over Li. Only one test needs to be done for any Rk+1

since, if it also dominates Rk−1, then Rk also dominates
Rk−1 and the latter was removed at the previous iteration.
Thus, the inner for loop is done in O(#Li) time, and as
#Li = O(log n) (see Appendix), the algorithm requires
O(n log n) time in total.

Note that ruptures are considered only at separating
positions, but Li is updated at all positions. Moreover,
ruptures are applied only when they improve G(i) and
the latter is updated properly (line 8). The purge of Li

removes ruptures that are dominated by another one in Li,
which ensures that only useful potential ruptures are in Li.
Also, Ri is inserted in Li only if it can be useful in further
stages (see Appendix). This sketches the correctness proof
of TURBOOPTLIFT.

The output of the algorithm is the list of all segments not
corresponding to ruptures, i.e., that are ATR of m. In the
example of Fig. 4 the increasing segment is easy to see. Of
course on a larger scale such segments are invisible tiny
peaks in the compression curve. Now, we search for all
ATR of ttc in the S. Cerevisiæ chromosome XI (666448
bp) and the optimized compression curve is shown Fig. 5.
Four ruptures are applied and three ATR are located (the
three quasi-vertical peaks of the curve). The first is the one
found in the 1000-base long window of Fig. 4, meaning
that it is not only significant in the small window, but also
at the chromosome’s scale.

Time Analysis
The overall time complexity needed by STAR to find all
ATR of a given motif of length p, in a sequence of length
n, is O(np + n log n). Indeed, the time required by
WDP is O(np), the one of COMPWDP is O(n), and the
time complexity of TURBOOPTLIFT is O(n log n). This
enables STAR to analyze large sequences. In practice, all
ATR of a motif of 6 bp in a sequence of a million bp can
be found in a few seconds on current computers.

RESULTS
Comparison with Tandem Repeat Finder.
In this section, we want to assess STAR’s ability to find
tandem repeats of short motifs (less than 6 bps), i.e.,
microsatellites. As a complete and biologically verified

6

O. Delgrange and E. Rivals

-50

0

50

100

150

200

250

300

0 100000 200000 300000 400000 500000 600000 700000

P
ar

tia
l g

ai
n

Position

Fig. 5. Optimized curve of C∗
TTC for S. cerevisiæ chromosome XI.

set of microsatellites is unavailable, for a given genome
one cannot distinguish the true from the false ATR and
evaluate sensitivity and specificity of the method. We
choose to compare STAR with Tandem Repeat Finder
(TRF Benson (1999)) on the nuclear genome of the baker’s
yeast, which comprises 16 chromosomes (Goffeau et al.
(1996)). TRF requires several parameters the most influent
of which being the alignment costs of matches (M),
substitutions (S), indels (D), and the alignment score
threshold (T) for an ATR. On the TRF website, the default
values for these are M = 2, S = 7, D = 7 and T = 50
(The minimum recommended threshold is T = 30). We
use these costs as well as another set that penalizes more
indels than substitutions M = 2, S = 6, D = 10, and
threshold values among 30, 36, 40, 50.

From the point of view of efficiency, TRF outperforms
STAR. To search for all ATR of a single motif on a
chromosome STAR needs as much time as TRF when it
searches for all ATR of all motifs of length less than 6 bp
(on the order a second). To detect all microsatellites, STAR
is run with all possible Lyndon motifs§ < 6 bp (i.e., 964
motifs) and takes about an hour.

As the two methods differ, TRF and STAR may not de-
tect an ATR exactly with the same begin and end posi-
tions in the sequence. When computing the intersection
of their results, we distinguish between ATR of TRF that
1/ exactly matches, 2/ is strictly included in, 3/ is over-
lapped over more than 80, 4/ more than 50 or 5/ less than
50 percent of its length by an ATR of STAR. The follow-
ing table summarizes the average results over all chromo-
somes for the cost M = 2, S = 7, D = 7 and various
threshold values. In left to right order, the columns give:

§The set of Lyndon words exclude motifs that are rotation of another (e.g.,
tac and cta while act remains in the set) or made of the repetition of a
shorter motif in that set (e.g., atatat when at is in the set).

the threshold value (Min Score), the number of ATR for
TRF and STAR (# TRF and # STAR), five percentages of
ATR found by TRF and STAR in different categories rela-
tively to TRF’s total (P1 and P2 for categories 1/ and 2/,
C3, C4, C5 resp. for the cumulated percentage of all
categories up to 3, to 4 and to 5), and finally the percent-
age of ATR found by TRF among STAR’s ATR.

STAR has no parameter (and does not depend on TRF
threshold value); it explains why the average number
of ATR it finds is constant (column # STAR). Indeed,
decreasing the threshold from 6 points from 36 to 30
results in an increase of 113% in the number of ATR found
by TRF. Above the value of 36, STAR finds more than 92%
of TRF’s ATR (columns C3, C4). This level increases to
more than 98% when the threshold raises to T = 40 or
more. On the other hand, for all values of T , TRF detects
at most 55% of STAR’s ATR.

Another remark is that more than 33% of ATR are
exactly the same in STAR and TRF output (column P1)
and more than 22% of TRF’s ATR (column P2) are
included in an ATR of STAR, meaning that the latter are
longer¶. The same table for the alignment costs M =
2, S = 6, D = 10 displays similar results (see Appendix),
showing that these seem independent of the mutation
penalties.

Min Average #(TRF ∩ STAR)/# TRF
Score # TRF # STAR P1 P2 C3 C4 C5 S

30 162 182 33.06 22.56 63.88 63.94 64.00 55.50
36 76 182 45.00 32.88 92.56 92.62 92.75 38.25
40 54 182 46.06 34.69 98.00 98.12 98.25 28.88
50 26 182 46.06 32.69 99.50 99.75 100.00 13.88

Microsatellites in the genome of M. jannaschii
The genome sequence of the archea Methanococcus jan-
naschii is 1664970 bp long (Bult et al. (1996)). Searching
for microsatellites in the complete sequence we found 41
tandem repeats with lengths in the range [14, 161]bp with
an average of 43bp. 39 repeats are imperfect and many
alignment exhibit insertions, deletions or both. Note that
among these repeats, many features segments of perfect
repetition larger than 12bp. Four repeats may be classi-
fied as composite tandem repeats where several different
but related patterns seem to have undergone tandem du-
plication. For the others, the number of repeats for each
pattern size in [1,6] are respectively 1,0,4,5,29 showing a
majority of hexanucleotides. The two most frequent pat-
terns are nearly periodic: aaaaag‖cttttt, aaaaat‖attttt.
Moreover, 18 microsatellites are located in intergenic re-
gions, 17 inside a gene and 6 span over a gene boundary.

¶Inclusion happens only twice the other way round.

7

STAR

DISCUSSION
The comparison with TRF shows that for a threshold
above 36, STAR is less efficient, but more sensitive than
TRF. Indeed, STAR finds more than 92% of TRF’s ATR,
while TRF finds at most 38% of STAR results. The large
variation of the number of TRF’s ATR shows how difficult
it is to set the threshold. The default value of T = 50
suggests that below that it is difficult to separate true ATR
from spurious pseudo-repeats. This is not the case with
STAR since it uses the MDL criterion and the compression
gain to select only significant ATR.

Redundancy
For a given imperfect ATR one can find several putative
motifs whose exact repetition align well with the ATR
(on sometimes slightly different regions). Each one is a
possible view or explanation of this ATR (see Landau
et al. (2001) for a discussion on good definitions of ATR).
This means it is difficult to exactly find the boundaries
of an ATR and the correct and unique motif. Therefore,
TRF, Sagot-Myers’s method, as well as STAR, would give
several views of the same ATR segment of a sequence.
On one hand, this is an advantage since the biologist may
decide which is the best explanation, on the other hand
it implies that the output will include some redundancy.
Especially, when we search for microsatellites using all
possible Lyndon words as motifs (see Appendix), the same
region may be seen as several ATR of different motifs.

First ATR with motif aaag from 621220 to 621240 bp.

Pat aaagaaaGa-aagaaaga-aa
Seq 621220 aaagaaaAaGaagaaagaGaa

^ ^ ^

Second ATR with motif aaag from 621245 to 621338 bp.

Pat aaag-aaagaaaGaaagaaa-gaaagA-aagaaagaaaGaaAGaaagaaaGaaa-g-a-a
Seq 621245 aaagCaaagaaa-aaagaaaAgaaagGTaagaaagaaa-aaTCaaagaaaAaaaAgGaTa

^ ^ ^ ^^ ^ ^^ ^ ^ ^ ^
Pat agaaaGaaaga-aaGaaagA-aaGaaagaaag-aaag
Seq 621303 agaaa-aaagaTaaAaaagGTaaAaaagaaagGaaag

^ ^ ^ ^^ ^ ^

The overlapping ATR of motif aaaaag from 621220 to 621316 bp.

Pat aaagaaaaagaa-aaagaAaaaGAAaaagAAaaagaaaaaGa-aaaagAaaaAg-aa-aa
Seq 621220 aaagaaaaagaaGaaagaGaaaCCTaaag-Caaagaaaaa-aGaaaag-aaaGgTaaGaa

^ ^ ^^^ ^^ ^ ^ ^ ^ ^ ^
Pat agaaaaaG-aaa-aaGaaaaagAaAaagaaaaa-gaAaaa
Seq 621277 agaaaaaTCaaaGaaAaaaaagGaTaagaaaaaAgaTaaa

^^ ^ ^ ^ ^ ^ ^

Fig. 6. Example of a composite microsatellite from M. jannaschii.
The region is seen as two successive ATR with motif aaag and one
ATR with motif aaaaag. The latter overlaps with both ATR of aaag

but ends 22bp before them. We show the three alignments to the
corresponding Exact Tandem Repeats of motifs aaag and aaaaag.

How does STAR handle this redundancy? For each
tandem repeat of a given motif, STAR computes the
consensus motif and checks if it equals the motif given
as parameter. This information is output and the user
can discard the zones whose consensus is not the motif

given as parameter. This is not sufficient to discard all
redundancy. Some redundancy remains for instance when
the true motif is nearly periodic: an ATR of motif atatgt
is often seen as an ATR of motif at and the consensus
of the latter is then at, since approximately two-thirds
of the motifs are at. The second major case is the
one of compound or composite microsatellites where
several motifs, not necessarily of the same size, have been
duplicated and form a single ATR region. An example
is given in Figure 6. This can be detected by looking
for overlaps of ATR of different motifs. These types
of complex microsatellites correspond to both Variable
Length or Multi-Periodic Tandem Repeats as defined in
Hauth & Joseph (2002), which presents an interesting
attempt to handle redundancy. In conclusion, our solution
is to let STAR output all possible ATR, even if they are
redundant. This allows the user to tune up his procedure
for curing redundancy.

Influence on the Annotation and Studies of
Microsatellites
Among the microsatellites we detected, none are anno-
tated in the corresponding EMBL entry of the genome.
This is generally the case for archeal and bacterial
genomes, although some microsatellites are known to
be functionally active in controlling gene expression.
This is presumably due to the difficulty of defining a
standard and consistent way of annotating such repeats.
Which degree of imperfectness should be allowed in a
repeat? Should it depend on the pattern size? Our method
assesses the significance of approximate tandem repeats
using the same information criterion regardless of the
pattern length. Thus, it provides a consistent solution
for microsatellites annotation. Moreover, the analysis of
M. jannaschii summarized above shows that even long
tandem repeats occur in such a genome. Their systematic
annotation with a guaranteed software like STAR may
help investigating their roles in the genome structure.
When located inside a gene, it may help the functional
annotation, while intergenic repeats could point out
sequences involved in gene regulation.

Several biological studies of microsatellites in whole
genomes use simple protocols to search for microsatellites
(Field & Wills (1998); Cox & Mirkin (1997); Nadir
et al. (1996); Katti et al. (2001)). Some collect data
on exact tandem repeats of short motifs (Field & Wills
(1998); Cox & Mirkin (1997); Nadir et al. (1996)). Others
have designed specific ad-hoc software to detect slightly
mutated tandem repeats that satisfies some arbitrary
criterion (e.g. Katti et al. (2001) search for ATR with less
than 1 substitution in 20 base pairs). On the basis of these
results, the authors consider evolutionary issues or other
biological questions.

8

O. Delgrange and E. Rivals

For instance, the evolutionary origin of microsatellites
in eight genomes, among which M. jannaschii, is investi-
gated in Field & Wills (1998) . For all microsatellite pat-
terns (between 1 and 6bp), the authors report the numbers
of exact tandem repeats by length. For M. jannaschii, they
do not find any repeat larger than 10 bp except a stretch
of 24-G. It is clear that their unguaranteed software prob-
ably missed numerous perfect repeats segments of size
≥ 12 bp that are included in imperfect longer repeats as
shown in our results. This is also the case for A. fulgidus
(data not shown). Moreover, looking only at perfect re-
peats rises other problems. First, a long imperfect repeat
may be counted say twice if it contains two perfect seg-
ments. Second, the core data of the study is incomplete
since, even in a archea like M. jannaschii, our result show
that less than 5% of the microsatellites are perfect (2 out
of 41 for length ≥ 14bp). The use of a program allowing
point mutations in the repeats, like STAR, should improve
future investigations of microsatellites structural and evo-
lutionary characteristics.

Acknowledgments: E.R. is supported by a Bioinformatics
Inter-EPST project, Montpellier Genopole, Genoplante,
Specific Action #185 of CNRS-STIC, a regional BioSTIC
project. O.D. and E.R. thanks M. Dauchet for his helpful
suggestions, and F. Lethiec for the new web interface.

REFERENCES
Apostolico, A. & Fraenkel, A. (1987). Robust transmission of

unbounded strings using Fibonacci representations. IEEE Trans.
Inform. Theory, 33, 238–245.

Benson, G. (1999). Tandem Repeats Finder: a Program to Analyze
DNA Sequences. Nucleic Acids Res, 27, 573–80.

Buard, J. & Jeffreys, A. J. (1997). Big, bad minisatellites. Nat
Genet, 15, 327–8.

Bult, C. J., White, O., Olsen, G. J., Zhou, L., Fleischmann, R. D.,
Sutton, G. G., Blake, J. A., FitzGerald, L. M., Clayton, R. A.,
Gocayne, J. D., Kerlavage, A. R., Dougherty, B. A., Tomb,
J. F., Adams, M. D., Reich, C. I., Overbeek, R., Kirkness,
E. F., Weinstock, K. G., Merrick, J. M., Glodek, A., Scott,
J. L., Geoghagen, N. S. & Venter, J. C. (1996). Complete
genome sequence of the methanogenic archaeon, Methanococcus
jannaschii. Science, 273, 1058–73.

Claverie, J.-M. & States, D. J. (1993). Information Enhancement
Methods for Large Scale Sequence Analysis. Comp. Chem., 17,
191–201.

Coward, E. & Drabløs, F. (1998). Detecting periodic patterns in
biological sequences. Bioinformatics, 14, 498–507.

Cox, R. & Mirkin, S. M. (1997). Characteristic enrichment of DNA
repeats in different genomes. Proc Natl Acad Sci U S A, 94,
5237–42.

Field, D. & Wills, C. (1998). Abundant microsatellite polymor-
phism in saccharomyces cerevisiae, and the different distribu-
tions of microsatellites in eight prokaryotes and s. cerevisiae,
result from strong mutation pressures and a variety of selective
forces. Proc Natl Acad Sci U S A, 95, 1647–52.

Fischetti, V. A., Landau, G. M., Sellers, P. H. & Schmidt, J. P.
(1993). Identifying periodic occurrences of a template with
applications to protein structure. Inf Proc Letters, 45, 11–18.

Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B.,
Feldmann, H., Galibert, F., Hoheisel, J. D., Jacq, C., Johnston,
M., Louis, E. J., Mewes, H. W., Murakami, Y., Philippsen, P.,
Tettelin, H. & Oliver, S. G. (1996). Life with 6000 genes.
Science, 274, 546, 563–7.

Grumbach, S. & Tahi, F. (1993). Compression of DNA Sequences.
In Data Compression Conf.. IEEE Comp. Soc. Press, pp. 340–
350.

Hancock, J. M. & Armstrong, J. S. (1994). Simple34: an improved
and enhanced implementation for vax and sun computers of the
simple algorithm for analysis of clustered repetitive motifs in
nucleotide sequences. CABIOS, 10, 67–70.

Hauth, A. & Joseph, D. A. (2002). Beyond Tandem Repeats:
Complex Pattern Structures and Distant Regions of Similarity.
Bioinformatics, 18, S31–S37.

Katti, M. V., Ranjekar, P. K. & Gupta, V. S. (2001). Differential
distribution of simple sequence repeats in eukaryotic genome
sequences. Mol Biol Evol, 18, 1161–7.

Kolpakov, R. & Kucherov, G. (1999). Finding maximal repetitions
in a word in linear time. In 40th FOCS. IEEE Comp. Soc. Press,
pp. 596–604.

Kolpakov, R. & Kucherov, G. (2001). Finding approximate
repetitions under Hamming distance. In ESA: Annual European
Symposium on Algorithms, volume 2161 of Lecture Notes in
Computer Science. Springer, pp. 170–181.

Landau, G. M., Schmidt, J. P. & Sokol, D. (2001). An algorithm for
approximate tandem repeats. J Comp Biol, 8, 1–18.

Li, M. & Vitanyi, P. M. (1997). Introduction to Kolmogorov
Complexity and Its Applications. Springer-Verlag.

Main, M. & Lorentz, R. (1984). An o(n log(n)) algorithm for
finding all repetitions in a string. J of Algorithms, 5, 422–432.

Milosavljevic̀, A. & Jurka, J. (1993). Discovering Simple DNA
Sequences by the Algorithmic Significance Method. CABIOS,
9, 407–411.

Nadir, E., Margalit, H., Gallily, T. & Ben-Sasson, S. A. (1996).
Microsatellite spreading in the human genome: evolutionary
mechanisms and structural implications. Proc Natl Acad Sci U S
A, 93, 6470–5.

Rivals, E., Dauchet, M., Delahaye, J.-P. & Delgrange, O. (1996).
Compression and genetic sequences analysis. Biochimie, 78,
315–322.

Rivals, E., Delgrange, O., Dauchet, J.-P. D. M., Delorme, M.-O.,
Hénaut, A. & Ollivier, E. (1997). Detection of significant patterns
by compression algorithms: the case of Approximate Tandem
Repeats in DNA sequences. CABIOS, 13, 131–136.

Sagot, M. F. & Myers, E. W. (1998). Identifying satellites and
periodic repetitions in biological sequences. J Comp Biol, 5,
539–53.

Stoye, J. & Gusfield, D. (2002). Simple and Flexible Detection of
Contiguous Repeats Using a Suffix Tree. Theo Comp Sci, 27,
843–856.

Wootton, J. & Federhen, S. (1993). Statistics of local complexity in
amino acid sequences and sequence database. Comp. Chem., 17,
149–163.

9

