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Abstract 

In this paper, we propose a BIST scheme for 
exhaustive testing all delay faults in the logic architecture 
of symmetrical FPGAs. This scheme is applicable in a 
Manufacturing-Oriented Test (MOT) context. Our 
technique enables the detection of delay faults in the logic 
architecture and consists in chaining the logic cells in a 
specific way. The test of all the delay faults can be done 
with a reduced test sequence and does not require 
expensive ATE. To illustrate its feasibility, this BIST 
approach has been implemented in a VIRTEX FPGA from 
XILINX Inc. 

1. Introduction 

Field Programmable Gate Arrays (FPGAs) combine 
the flexibility of mask programmable gate arrays 
(MPGAs) with the convenience of field programmability. 
This technology has drastically reduced the cost of 
hardware, making hardware implementation economically 
feasible for applications previously restricted to software. 
Moreover, the convenience of field programmability 
associated to this technology has also brought some new 
design concepts, especially in the context of System-On 
Chips (SOCs). Actually, the use of reconfigurable logic 
gives to the system designers much greater flexibility to 
develop and to implement a design. Due to its 
reconfiguration property, more functionality can be 
addressed by the same piece of hardware. Consequently, 
FPGA technology is taking more and more significance 
for system designers and for the test community recently. 

The FPGA testing can be viewed from two different 
ways: the manufacturer point of view or the user point of 
view. Techniques have been proposed to test either the 
whole FPGA structure before it is shipped to the user in a 
Manufacturing-Oriented Test (MOT) context [1, 2, 5, 10, 
12, 15, 16, 17, 18, 19, 20] or only the used parts of the 
FPGA programmed for a user application in an 
Application-Oriented Test (AOT) context [11, 13, 14, 16]. 
The first proposed techniques can be used for static 
voltage testing [1, 10, 12, 15, 16, 17, 18, 19] and consider 

faults in the logic cells [1, 12, 16, 17, 18], in the routing 
architecture [1, 10, 17, 19], or in the configuration layer 
[16, 17]. Some of these techniques use a BIST 
architecture by configuring unused parts of the FPGA [2, 
11, 18, 19]. 

As a result of the greater densities and more 
aggressive clock strategies, FPGAs have become more 
susceptible to delay faults. Unfortunately, testing delay 
faults in FPGAs is still an immature field and only few 
approaches have been proposed [2, 5, 11, 13, 14, 20]. In 
the remaining paragraph, we try to summarize the main 
points of recent published works. In [11, 13, 14], the 
objective is to detect delay faults in an AOT context. The 
approach developed in [13, 14] proposes to test each 
(critical) path of the design after customisation of the 
logic cells belonging to the tested path. For this purpose, 
the authors exploit the reconfiguration skill of the FPGA 
by replacing the user function defined in the Look-Up 
Tables (LUTs) of each logic cell of the tested path by a 
specific function. This is done to allow transition 
propagations on the tested path whatever the values on the 
side inputs and to preserve the possibilities of the input-
output transition polarity of the original function. In [11], 
this process is applied in a BIST environment where a 
simple counter is used to control the LUT inputs and to 
generate the required transitions. In [2, 5, 20], the main 
objective is to detect delay faults in a MOT context. The 
main idea in [2] is to connect paths with the same number 
of LUTs and interconnections to a same transition 
generator. Every LUT implements an AND (or OR) 
function and, for each path, all the LUT inputs are 
connected to the same previous LUT output. In this way, 
each path propagates the same transition through LUTs 
that behave like buffers or “identity functions”. The 

detection of delay faults on the tested paths is obtained by 

comparing the propagation delays of the considered path 

to the other ones.  

All these techniques use a path delay fault model in 

which a path is composed of programmed LUTs and 

interconnections. However, they only focus on faults 

located on the interconnections. Actually, the LUTs are 

handled as programmable black boxes and detecting delay 



 

faults occurring within them is not considered explicitly. 
This is motivated by the fact that the interconnection 
delays represent the most significant part of the 
propagation delay in the application. In previous papers, 
we have shown the significant impact of spot defects on 
the timing of LUT internal paths and derived the 
conditions to detect all the delay faults within a single 
LUT [7, 8, 9]. In the present paper, we introduce a new 
BIST scheme applicable in a MOT context which allows 
an effective testing of delay faults within all the logic 
elements (LUTs) of a symmetrical SRAM-based FPGA in 
a short test time. This technique targets faults within 
LUTs and not faults on interconnections. So, this 
technique complements the solutions presented above that 
mainly target faults on interconnections.  

The remainder of this paper is organized as follows. 
In section 2, some basics on the architecture of 
symmetrical FPGAs and backgrounds on delay fault 
testing in a single LUT are presented. In Section 3, we 
first present the test configuration for testing delay faults 
in the logic architecture of symmetrical FPGAs. Next, 
some delay considerations due to interconnection delays 
are discussed and the BIST architecture is described. 
Section 4 concludes the paper. 

2. Basics and Backgrounds 

2.1. Architecture of symmetrical FPGAs 

A symmetrical FPGA architecture [3, 21] is 
composed of a two dimensional regular array of identical 
tiles, as shown in Figure 1. A tile is composed of a 
cluster-based logic block and surrounding routing 
channels.  
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Figure 1. Symmetrical FPGA architecture 

A logic cell is composed of n-input LUTs able to 
realize any combinational function of n inputs and D-type 
flip-flops. For reader convenience, we assume here a logic 
cell composed of one n-input Look-Up Table (LUT) and 
one D-type Flip-Flop (D), as shown in Figure 2. The 
demonstration can be easily extended to any type of 
configurable logic cells. The output of the logic cell can 
be either the registered or unregistered version of the LUT 
output according to the value of the output multiplexer 

(MuxOut). In this paper, we assume that the n-input LUT 
is a function generator which can implement any n-input 
logic function [21]. It is clear that this study can be easily 
extended to others configuration modes of the LUT. We 
assume that the LUT is composed of 2n one-bit RAM 
cells, connected to a 2n→1 multiplexer, as shown in 
Figure 2 [3, 21]. The multiplexer can drive the value of 
any RAM cell towards the output. During the 
configuration mode, the LUT is programmed by setting 
every bit of the RAM cells at a value which is consistent 
with the truth table of the logic function. During the 
normal mode, the LUT can be viewed as an n-bit read-
only memory. A pin of logic block can connect to some of 
the wiring segments in the channel adjacent to it via local 
routing wires. At every intersection of a horizontal 
channel and a vertical channel, there is a switch block 
which allows some of wires incident to it to be connected 
to others. Both switch and local routing blocks are simply 
a set of programmable switches. 
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Figure 2. Logic cell description 

The application configuration bits are loaded in the 
SRAM cells via dedicated pads [21]. The application 
realized by the circuit can be modified at any moment by 
reloading new configuration bits. This particularity of 
such programmable circuits can be used to make the test 
process easier [1, 5, 10, 11, 12, 14, 17, 18, 19, 20]. But, 
note that the reconfiguration time is several orders of 
magnitude greater than the pattern application time and 
then, the number of reconfiguration is a dominant factor 
determining the total test time.  

2.2. Delay fault testing in an isolated logic cell 

An n-input LUT is composed of 2n internal paths 
connecting the 2n SRAM cells to the LUT output Z [3, 4, 
6]. The output Z displays the value stored in the SRAM 
cell Ri when the internal path Pi is activated i.e., when the 
input pattern Ii = (En-1…E0)i is applied on the LUT inputs 
E0…E n-1. We have demonstrated in [8] that the complete 
delay fault testing of a LUT is achieved by activating all 
its internal paths, at least once time. This is done by 
applying a test sequence composed of 2n+1 input patterns, 
n being the number of LUT inputs. Depending on the 
function programmed in the LUT, we have also 
demonstrated in [8] that the test sequence can be reduced 
such that the minimal number of input patterns is equal to 
2n + 1. 



 

As an example, consider an 3-input LUT 

programmed with the function f(E0…E2) = 0E . This 
configuration is done by programming all the even SRAM 
cells R0, R2, R4, R6 at 1 and all the odd SRAM cells R1, R3, 

R5, R7 at 0. By using the procedure 2 in [8], we can 
determine a test sequence TS formed by the following test 
patterns: {I0, I1, I2, I3, I4, I5, I6, I7 and I0}. This test 
sequence is composed of 2n 

+ 1 test patterns. Note that the 
opposite function f(E0…En-1) = E0 can lead to the same 
test sequence. 

3. BIST in a Logic Cell Array 

3.1. Test configuration scheme 

In this section, we present a test configuration 
scheme that enables the test of all delay faults in the logic 
architecture of symmetrical FPGAs. The test with this 
scheme is done by using a reduced test sequence. 

The solution we propose here consists in applying 
the same test sets to every LUT by chaining all the logic 
cells of the circuit in a special way. We use an approach 
similar to the one used to detect stuck-at faults in logic 
cells [17]. It consists in chaining alternatively a LUT and 
a D-type flip-flop available in the logic cells. Consider k 
n-input LUTs (or k logic cells) connected as follows: 
input E0 of LUT 1 is the chain input a0. The input E0 of 
the LUT i (i = 2…k) is connected to the flip-flop output of 
the logic cell i-1. The output of LUT i (i = 1…k) is 
connected to the flip-flop input of logic cell i. The n-1 
inputs E1…En-1 of all the LUTs share the n-1 chain inputs, 
denoted as a1…an-1. The output of the flip-flop k is the 
chain output, denoted as s. This configuration principle is 
illustrated in Figure 3.  
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Figure 3. Test configuration scheme 

Every LUT is programmed with the function 

f(E0…En-1) = 0E . In this way, each LUT can receive the 
same test pattern on its inputs (the test pattern is applied 
on the chain inputs ai). In fact, the response of each LUT 
is transferred to the next LUT when it is captured by the 
flip-flop, i.e. at the next clock period. If a delay fault 
within a LUT is activated by a test pattern, the signal on 
its output is delayed. Thus, the flip-flop latches an 
erroneous value, producing a logic error on its output. 
This logic error is then serially propagated at each clock 
cycle to the next flip-flops until the output s. With such a 
configuration, testing delay faults in all the LUTs can be 

done by applying on the chain inputs ai the same test 
sequence TS than the one defined in section 2.2 for a 
single LUT. At the end of the test sequence TS, note that 
k clock cycles are here required to completely unload the 
data stored in the flip-flop chain to the chain output s. The 
length of the test sequence depends only on the number of 
LUT inputs and not on the number of LUTs to be tested.  

3.2. Implementation 

Now, let us discuss the implementations in 
symmetrical FPGAs. Local and long wires can be used to 
connect a logic cell to another one and a pad to a pin of a 
logic cell in the FPGA. The synthesis tool generally 
optimises the circuit implementation by using local wires 
to connect adjacent cells. Thus, suppose that local wires 
are used to connect each flip-flop output to the input E0 of 
the next logic cell, while long wires are used for 
propagating data from the input pads a1…an-1 to the LUT 
inputs E1…En-1. The signal propagation along the long 
wires takes more time than the one along the local wires. 
So, for each test pattern, we can consider that the 
transitions reach the input E0 of each cell before the others 
inputs E1…En-1. Moreover, this difference depends on the 
position of the LUT with respect to the input pads. It 
results that some delay faults normally detected by 
transitions on inputs E1…En-1, may remain undetected if 
the delay induced by the fault is not large enough for 
producing an error in this configuration. To avoid this 
drawback, a solution is to modify the test sequence TS in 
order to avoid any timing dependency due to propagation 
delay along long wires.  

The solution is to test the entire LUT by single bit 
transitions on input E0. In the sequence TS, it exists some 
pattern pairs with a single bit transition on E0, e.g. (I0, I1), 

(I2, I3), etc. Applying this sequence on the chain inputs 
allows activating half of the 2n paths without any timing 
dependency. For testing the other half in similar 
conditions, the test sequence TS is modified as follows: 
the patterns I0, I4… I2n-4 of pattern pairs (I0, I1), (I4, I5) … 

(I2n-4, I2n-3) are inserted at the end of them while the 

patterns I2, I6… I2n-2 of pattern pairs (I2, I3), (I6, I7) … (I2n-

2, I2n-1) are inserted at the beginning of them. The new test 

sequence is now composed of pattern tierces (I0, I1, I0), 

(I3, I2, I3), (I4, I5, I4), (I7, I6, I7)… (I2n-1, I2n-2, I2n-1) and 

allows activating all the 2n
 paths within the LUTs without 

any timing dependency. As a result, we can form a new 

test sequence TS2 composed of 3.2
n-1 

test patterns as 

follows: {I0, I1, I0, I3, I2, I3, I4, I5, I4,…I2n-1, I2n-2, I2n-1 } 

To obtain an efficient test for small delay faults as 
well, the test has to be performed with a specific clock 
scheme. Actually, the pattern pairs of TS2 with a single bit 
transition, i.e. (I0, I1, I0), (I3, I2, I3)… (I2n-1, I2n-2, I2n-1) have 
to be applied at the higher frequency allowed by the local 
wires, while the others pattern pairs (pairs with multiple 



 

bit transitions) can be applied at a lower frequency. The 
high frequency is determined by the propagation delay 
between two flip-flops. The low frequency is determined 
by the longest propagation delay between a chain input 
and the furthest flip-flop input. As a result, one should use 
a special clock signal formed by alternative fast and slow 
periods, as presented in Figure 5. In this figure, we show 
the test patterns (TS2) applied on the chain inputs during 
each period. During the fast periods, the test of delay 
faults in each LUT is achieved in robust conditions i.e. the 
data on the LUT inputs E1…En-1 are in a steady state. In 
Figure 5, this is done when the following patterns of the 
test sequence TS2 are applied on the chain inputs: I1, I0, I2, 

I3, I5, I4 … I2n-2, I2n-1. During the slow periods, the 
remaining test patterns (from pattern pairs with multiple 
bit transitions) are set on the LUT inputs at a time 
depending on the mapping of each LUT. Such a pattern 
may appear as a test pattern and analyzing its response is 
not really useful to ensure the complete delay fault test of 
logic cells. 

clock

I0 I1 I3 I2 I2n-2
test 

patterns

fast period slow period

I2n-1I0 I3 I4 I2n-1

 

Figure 5. Clock signal scheme 

3.3. BIST insertion  

This section deals with the implementation of an 
accurate BIST architecture for testing delay faults in all 
the LUTs of a symmetrical FPGA. In addition of the test 
configuration scheme presented above, the objective is to 
implement a Test Pattern Generator (TPG) connected to 
the inputs ai of the chain of LUTs on one side, and an 
Output Response Analyzer (ORA) connected to the chain 
output s on the other side. The BIST architecture does not 
need any area overhead in the circuit since the 
configurable logic cells are used to build the TPG and the 
ORA structures. After the test process, the BIST 
architecture can be removed from the circuit and the 
whole circuit can be used to implement a user-application. 
In addition, the test patterns are generated inside the 
circuit, avoiding any timing dependency due to long wires 
between some I/O pads and the input E0 of the first LUT 
to be tested. Using the previous definitions, we now 
present the way the TPG is defined and the way the ORA 
is defined. 

The TPG generates the test patterns of the test 
sequence TS2 to be applied on the inputs ai. Remember 
that this test sequence is composed of single bit transition 
pattern tierces (input E0) and multiple bit transition 
pattern pairs. Its logic circuitry is shown in Figure 6. In 
this figure, we split the TPG in two finite state machines 

(FSM), as follows: FSM A generates the values to be 
applied on the input a0 (or E0 of LUT 1) while FSM B 
generates the remaining values to be applied on inputs 
a1…an-1 (or E1…En-1 of LUTs). FSM A is a simple 2-
modulo counter, using little logic. This is very important 
because it prevents the TPG determining the high 
frequency of the clock signal used to test the LUTs 
(Figure 5). FSM B is a 2n-1-modulo counter in which the 
logic circuitry has a lower impact on the test. We define 
two clock schemes based on the one presented in Section 
3.2 (Figure 5): fast test clock and slow clock. The fast test 
clock (high frequency) is applied to FSM A and to the 
chain of LUTs, while the slow clock (low frequency) 
controls FSM B. These clock signals can be separately 
generated but have to be synchronized between them, as 
shown in Figure 6. Signals fast test clock and slow clock 
are both connected to dedicated pads of the FPGA.  
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fast test clock  

Figure 6. TPG insertion scheme 

The ORA determines the correctness of the response 
provided by the output s at each clock cycle. For this 
purpose, a comparator compares each response to the 
expected one. The result is a pass or fail indication, at 
each clock cycle. To limit the amount of information, all 
the results are compressed by a compactor. This produces 
a single bit on an output, denoted as sORA, which is equal 
to 0 if no delay fault occurs in the logic cells or is equal to 
1 otherwise. The ORA structure is presented in Figure 7. 
The comparator is composed of a XOR gate and a 2-
modulo counter. It compares the output response with the 
fault-free value, produced by this counter. The result is 
latched by a flip-flop. At the next clock cycle, the value at 
the output of this flip-flop is compressed by a compactor, 
composed of a loop flip-flop with an OR gate. If a delay 
fault occurs in the logic architecture, the comparator 
provides a value 1 when the logic error arrives from the 
output s. This value is next compressed by the compactor 
that displays a steady state value 1 on the output sORA. All 
the flip-flops are initialized at 0 and are controlled by the 
fast test clock signal. Even if we have mentioned in the 
last section that the pattern pairs with multiple bit 
transitions may not be really useful for the testing, we 
assume here that the ORA verifies all the output 
responses. 

Finally, the process we propose can use two 
different test sessions. In a first session, a given number 
of LUTs are used to build the TPG and the ORA 
structures and all the remaining LUTs, i.e. those not used 



 

by the TPG and by the ORA, are tested. The LUT-under-
test are involved in the test configuration scheme 
described in Section 3.1 that consists in building a chain 
of logic cells by chaining alternatively a LUT and a flip-
flop. In contrast, it is quite obvious to imagine a split of 
this chain in several horizontal chains in order to decrease 
the time required to unload all the data in the flip-flops 
towards the ORA. This is done by building a given 
number of horizontal chains similar to the one given in 
Figure 3. The output s of every horizontal chain is 
connected to an ORA (Figure 7) on one side and its input 
a0 is connected to a LSB state machine (Figure 6) on the 
other side. All the remaining chain inputs (a1…an-1) share 
the same outputs of a single MSB state machine. An 
example of this test session is shown in a 10x4 
symmetrical FPGA, in Figure 8. The black blocks 
represent the logic cells used by the TPG while the white 
blocks represent the ones involved in the ORA. The 
shaded area shows the part of the FPGA used by the MSB 
state machine. Dotted blocks represent the switch blocks 
that route the long wires from the MSB state machine to 
each logic cell under test. The local wires connect 
adjacent logic cells through the local routing boxes, not 
represented in this figure. The second configuration is 
required for testing delay faults in the logic cells used by 
the TPG and the ORA in the first session. The logic cells 
tested in the first test session are here involved to build 
the TPG and the ORA. The logic cells to be tested are 
connected in a way similar to the one of the first test 
session. Consequently, only two configurations and  
3.2

n-1
 + k clock cycles by configuration (3.2

n-1 test 
patterns), k being the number of flip-flops used, are 
needed to test all the delay faults in the logic architecture 
of symmetrical FPGAs, whatever their size.  
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Figure 7. ORA insertion scheme 

For validation, the BIST scheme has been 
implemented in a XCV50 VIRTEX FPGA from Xilinx 
Inc by using the XILINX synthesis tool (ISE). We have 
only considered one horizontal chain of logic cells, 
composed of 8 4-input LUTs and flip-flops (k = 8 and n 

= 4). The TPG is here composed of one LSB state 
machine and its MSB state machine is composed of an 8-
modulo counter. All the LUTs are programmed with the 

function f(E0…En-1) = 0E . A timing analyzer available in 
the synthesis tool allows determining the frequency of the 
fast test clock signal and the slow clock signal. These are 
calculated after the mapping and routing of the BIST 
scheme in the FPGA. We have made timing simulations 

in two cases: fault-free case and faulty case. For this 
purpose, we have used the Mentor Graphics simulation 
tool (starter ModelSim XE II). Results from the 
simulations are shown in Figure 9.  
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Figure 8. BIST configuration example 

The figure should be interpreted as follows. We 
denote the clock signals as ‘fastclk’ and ‘slowclk’, the 
asynchronous reset signal of flip-flops as ‘raz’, the output 
signals generated by the TPG as ‘a0, a1, a2 and a3’, the 
output signal of each flip-flop as ‘q0, q1…q7 or s’ and the 
test result released by the ORA output as ‘sora’. In the 
left side, after the first initialization (raz = 1) the results 
show the fault-free mode of the BIST architecture. In this 
mode, it should be noted that the output ‘sora’ is always 
at 0 and 10 clock cycles are here required at the end of the 
test sequence for the complete testing. To simulate a 
faulty mode, we have assumed faults in LUT 2. So, we 
insert delay faults in LUT 2 by inverting the logic value 
stored in three of its SRAM cells: R12, R13 and R15. After 
the second initialization (right side), erroneous values 
appear on the output of LUT 2 when the following test 
patterns are applied on the LUT inputs: I13, I12, I13, I15, I14 

and I15. For reader convenience, we have marked the logic 
errors latched by the flip-flop ff2 with arrows. When the 
first logic error reaches the ORA input (black arrow), the 
output ‘sora’ is set at 1 two clock cycles later and remains 
in this state.  

4. Conclusion 

In this paper, we have proposed a BIST solution for 
testing delay faults in the logic architecture of 
symmetrical FPGAs, in a MOT context. The principle 
consists in chaining all the logic cells in an optimized 
way. The chain is formed by connecting each LUT output 
to the input E0 of the next LUT through a flip-flop, 
available in every logic cell. A TPG is connected to the 
chain inputs and an ORA is connected to the chain output. 
The TPG generates the test patterns of the test sequence 
TS2 and guarantees a delay fault testing in robust 
conditions. The ORA analyzes the response provided by 
the chain output and points out a pass or fail indication at 



 

the end of the test process. On the benefits side, our BIST 
provides a test with large delay fault coverage within the 
logic architecture and reduced test sequence. 
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Figure 9. BIST operations: fault-free mode (left side) and faulty mode (right side) 


