
HAL Id: lirmm-00108824
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108824

Submitted on 23 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BIST of Delay Faults in the Logic Architecture of
Symmetrical FPGAs

Patrick Girard, Olivier Héron, Serge Pravossoudovitch, Michel Renovell

To cite this version:
Patrick Girard, Olivier Héron, Serge Pravossoudovitch, Michel Renovell. BIST of Delay Faults in the
Logic Architecture of Symmetrical FPGAs. IOLTS: International On-Line Testing Symposium, Jul
2004, Madeira Island, Portugal. pp.187-192, �10.1109/OLT.2004.1319686�. �lirmm-00108824�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108824
https://hal.archives-ouvertes.fr

BIST of Delay Faults in the Logic Architecture of Symmetrical FPGAs

Patrick Girard Olivier Héron Serge Pravossoudovitch Michel Renovell

Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier

Université Montpellier II / CNRS (UMR 5506)

161, rue Ada - 34392 Montpellier Cedex 05, France

Email: <name>@lirmm.fr URL: www.lirmm.fr/~w3mic/

Abstract

In this paper, we propose a BIST scheme for
exhaustive testing all delay faults in the logic architecture
of symmetrical FPGAs. This scheme is applicable in a
Manufacturing-Oriented Test (MOT) context. Our
technique enables the detection of delay faults in the logic
architecture and consists in chaining the logic cells in a
specific way. The test of all the delay faults can be done
with a reduced test sequence and does not require
expensive ATE. To illustrate its feasibility, this BIST
approach has been implemented in a VIRTEX FPGA from
XILINX Inc.

1. Introduction

Field Programmable Gate Arrays (FPGAs) combine
the flexibility of mask programmable gate arrays
(MPGAs) with the convenience of field programmability.
This technology has drastically reduced the cost of
hardware, making hardware implementation economically
feasible for applications previously restricted to software.
Moreover, the convenience of field programmability
associated to this technology has also brought some new
design concepts, especially in the context of System-On
Chips (SOCs). Actually, the use of reconfigurable logic
gives to the system designers much greater flexibility to
develop and to implement a design. Due to its
reconfiguration property, more functionality can be
addressed by the same piece of hardware. Consequently,
FPGA technology is taking more and more significance
for system designers and for the test community recently.

The FPGA testing can be viewed from two different
ways: the manufacturer point of view or the user point of
view. Techniques have been proposed to test either the
whole FPGA structure before it is shipped to the user in a
Manufacturing-Oriented Test (MOT) context [1, 2, 5, 10,
12, 15, 16, 17, 18, 19, 20] or only the used parts of the
FPGA programmed for a user application in an
Application-Oriented Test (AOT) context [11, 13, 14, 16].
The first proposed techniques can be used for static
voltage testing [1, 10, 12, 15, 16, 17, 18, 19] and consider

faults in the logic cells [1, 12, 16, 17, 18], in the routing
architecture [1, 10, 17, 19], or in the configuration layer
[16, 17]. Some of these techniques use a BIST
architecture by configuring unused parts of the FPGA [2,
11, 18, 19].

As a result of the greater densities and more
aggressive clock strategies, FPGAs have become more
susceptible to delay faults. Unfortunately, testing delay
faults in FPGAs is still an immature field and only few
approaches have been proposed [2, 5, 11, 13, 14, 20]. In
the remaining paragraph, we try to summarize the main
points of recent published works. In [11, 13, 14], the
objective is to detect delay faults in an AOT context. The
approach developed in [13, 14] proposes to test each
(critical) path of the design after customisation of the
logic cells belonging to the tested path. For this purpose,
the authors exploit the reconfiguration skill of the FPGA
by replacing the user function defined in the Look-Up
Tables (LUTs) of each logic cell of the tested path by a
specific function. This is done to allow transition
propagations on the tested path whatever the values on the
side inputs and to preserve the possibilities of the input-
output transition polarity of the original function. In [11],
this process is applied in a BIST environment where a
simple counter is used to control the LUT inputs and to
generate the required transitions. In [2, 5, 20], the main
objective is to detect delay faults in a MOT context. The
main idea in [2] is to connect paths with the same number
of LUTs and interconnections to a same transition
generator. Every LUT implements an AND (or OR)
function and, for each path, all the LUT inputs are
connected to the same previous LUT output. In this way,
each path propagates the same transition through LUTs
that behave like buffers or “identity functions”. The

detection of delay faults on the tested paths is obtained by

comparing the propagation delays of the considered path

to the other ones.

All these techniques use a path delay fault model in

which a path is composed of programmed LUTs and

interconnections. However, they only focus on faults

located on the interconnections. Actually, the LUTs are

handled as programmable black boxes and detecting delay

faults occurring within them is not considered explicitly.
This is motivated by the fact that the interconnection
delays represent the most significant part of the
propagation delay in the application. In previous papers,
we have shown the significant impact of spot defects on
the timing of LUT internal paths and derived the
conditions to detect all the delay faults within a single
LUT [7, 8, 9]. In the present paper, we introduce a new
BIST scheme applicable in a MOT context which allows
an effective testing of delay faults within all the logic
elements (LUTs) of a symmetrical SRAM-based FPGA in
a short test time. This technique targets faults within
LUTs and not faults on interconnections. So, this
technique complements the solutions presented above that
mainly target faults on interconnections.

The remainder of this paper is organized as follows.
In section 2, some basics on the architecture of
symmetrical FPGAs and backgrounds on delay fault
testing in a single LUT are presented. In Section 3, we
first present the test configuration for testing delay faults
in the logic architecture of symmetrical FPGAs. Next,
some delay considerations due to interconnection delays
are discussed and the BIST architecture is described.
Section 4 concludes the paper.

2. Basics and Backgrounds

2.1. Architecture of symmetrical FPGAs

A symmetrical FPGA architecture [3, 21] is
composed of a two dimensional regular array of identical
tiles, as shown in Figure 1. A tile is composed of a
cluster-based logic block and surrounding routing
channels.

Logic
Cell

Logic
Cell

Logic
Cell

Logic
Cell

Switch

Switch

Switch

Switch

Switch

Switch

Switch

Switch

Switch

Local
routing

TILE

wires

Local
routing

Local
routing

Local
routing

Local
routing

Local
routing

Lo
ca

l
ro

ut
in

g
Lo

ca
l

ro
ut

in
g

Lo
ca

l
ro

ut
in

g

Lo
ca

l
ro

ut
in

g
Lo

ca
l

ro
ut

in
g

Lo
ca

l
ro

ut
in

g

wires

wires

I/O

I/O

I/O

I/O I/O I/O

I/O

I/O

I/O

I/O I/O I/O

Figure 1. Symmetrical FPGA architecture

A logic cell is composed of n-input LUTs able to
realize any combinational function of n inputs and D-type
flip-flops. For reader convenience, we assume here a logic
cell composed of one n-input Look-Up Table (LUT) and
one D-type Flip-Flop (D), as shown in Figure 2. The
demonstration can be easily extended to any type of
configurable logic cells. The output of the logic cell can
be either the registered or unregistered version of the LUT
output according to the value of the output multiplexer

(MuxOut). In this paper, we assume that the n-input LUT
is a function generator which can implement any n-input
logic function [21]. It is clear that this study can be easily
extended to others configuration modes of the LUT. We
assume that the LUT is composed of 2n one-bit RAM
cells, connected to a 2n→1 multiplexer, as shown in
Figure 2 [3, 21]. The multiplexer can drive the value of
any RAM cell towards the output. During the
configuration mode, the LUT is programmed by setting
every bit of the RAM cells at a value which is consistent
with the truth table of the logic function. During the
normal mode, the LUT can be viewed as an n-bit read-
only memory. A pin of logic block can connect to some of
the wiring segments in the channel adjacent to it via local
routing wires. At every intersection of a horizontal
channel and a vertical channel, there is a switch block
which allows some of wires incident to it to be connected
to others. Both switch and local routing blocks are simply
a set of programmable switches.

DD

clock

Z� �
→�� �
→�

LUT

Inputs
(n)

SRAM
(1-bit)

�

�
Output

(1)

MuxOut

Figure 2. Logic cell description

The application configuration bits are loaded in the
SRAM cells via dedicated pads [21]. The application
realized by the circuit can be modified at any moment by
reloading new configuration bits. This particularity of
such programmable circuits can be used to make the test
process easier [1, 5, 10, 11, 12, 14, 17, 18, 19, 20]. But,
note that the reconfiguration time is several orders of
magnitude greater than the pattern application time and
then, the number of reconfiguration is a dominant factor
determining the total test time.

2.2. Delay fault testing in an isolated logic cell

An n-input LUT is composed of 2n internal paths
connecting the 2n SRAM cells to the LUT output Z [3, 4,
6]. The output Z displays the value stored in the SRAM
cell Ri when the internal path Pi is activated i.e., when the
input pattern Ii = (En-1…E0)i is applied on the LUT inputs
E0…E n-1. We have demonstrated in [8] that the complete
delay fault testing of a LUT is achieved by activating all
its internal paths, at least once time. This is done by
applying a test sequence composed of 2n+1 input patterns,
n being the number of LUT inputs. Depending on the
function programmed in the LUT, we have also
demonstrated in [8] that the test sequence can be reduced
such that the minimal number of input patterns is equal to
2n + 1.

As an example, consider an 3-input LUT

programmed with the function f(E0…E2) = 0E . This
configuration is done by programming all the even SRAM
cells R0, R2, R4, R6 at 1 and all the odd SRAM cells R1, R3,

R5, R7 at 0. By using the procedure 2 in [8], we can
determine a test sequence TS formed by the following test
patterns: {I0, I1, I2, I3, I4, I5, I6, I7 and I0}. This test
sequence is composed of 2n

+ 1 test patterns. Note that the
opposite function f(E0…En-1) = E0 can lead to the same
test sequence.

3. BIST in a Logic Cell Array

3.1. Test configuration scheme

In this section, we present a test configuration
scheme that enables the test of all delay faults in the logic
architecture of symmetrical FPGAs. The test with this
scheme is done by using a reduced test sequence.

The solution we propose here consists in applying
the same test sets to every LUT by chaining all the logic
cells of the circuit in a special way. We use an approach
similar to the one used to detect stuck-at faults in logic
cells [17]. It consists in chaining alternatively a LUT and
a D-type flip-flop available in the logic cells. Consider k
n-input LUTs (or k logic cells) connected as follows:
input E0 of LUT 1 is the chain input a0. The input E0 of
the LUT i (i = 2…k) is connected to the flip-flop output of
the logic cell i-1. The output of LUT i (i = 1…k) is
connected to the flip-flop input of logic cell i. The n-1
inputs E1…En-1 of all the LUTs share the n-1 chain inputs,
denoted as a1…an-1. The output of the flip-flop k is the
chain output, denoted as s. This configuration principle is
illustrated in Figure 3.

E0

E1 Z

LUT 1

(f = E0)

En-1

E0

E1 Z

LUT 2

En-1

a0

a1

an-1

D Q

clock

ff 1

E0

E1 Z

LUT k-1

En-1

E0

E1 Z

LUT k

En-1

sD QD Q

ff 2 ff k-1

D Q

ff k

(f = E0) (f = E0) (f = E0)

Figure 3. Test configuration scheme

Every LUT is programmed with the function

f(E0…En-1) = 0E . In this way, each LUT can receive the
same test pattern on its inputs (the test pattern is applied
on the chain inputs ai). In fact, the response of each LUT
is transferred to the next LUT when it is captured by the
flip-flop, i.e. at the next clock period. If a delay fault
within a LUT is activated by a test pattern, the signal on
its output is delayed. Thus, the flip-flop latches an
erroneous value, producing a logic error on its output.
This logic error is then serially propagated at each clock
cycle to the next flip-flops until the output s. With such a
configuration, testing delay faults in all the LUTs can be

done by applying on the chain inputs ai the same test
sequence TS than the one defined in section 2.2 for a
single LUT. At the end of the test sequence TS, note that
k clock cycles are here required to completely unload the
data stored in the flip-flop chain to the chain output s. The
length of the test sequence depends only on the number of
LUT inputs and not on the number of LUTs to be tested.

3.2. Implementation

Now, let us discuss the implementations in
symmetrical FPGAs. Local and long wires can be used to
connect a logic cell to another one and a pad to a pin of a
logic cell in the FPGA. The synthesis tool generally
optimises the circuit implementation by using local wires
to connect adjacent cells. Thus, suppose that local wires
are used to connect each flip-flop output to the input E0 of
the next logic cell, while long wires are used for
propagating data from the input pads a1…an-1 to the LUT
inputs E1…En-1. The signal propagation along the long
wires takes more time than the one along the local wires.
So, for each test pattern, we can consider that the
transitions reach the input E0 of each cell before the others
inputs E1…En-1. Moreover, this difference depends on the
position of the LUT with respect to the input pads. It
results that some delay faults normally detected by
transitions on inputs E1…En-1, may remain undetected if
the delay induced by the fault is not large enough for
producing an error in this configuration. To avoid this
drawback, a solution is to modify the test sequence TS in
order to avoid any timing dependency due to propagation
delay along long wires.

The solution is to test the entire LUT by single bit
transitions on input E0. In the sequence TS, it exists some
pattern pairs with a single bit transition on E0, e.g. (I0, I1),

(I2, I3), etc. Applying this sequence on the chain inputs
allows activating half of the 2n paths without any timing
dependency. For testing the other half in similar
conditions, the test sequence TS is modified as follows:
the patterns I0, I4… I2n-4 of pattern pairs (I0, I1), (I4, I5) …

(I2n-4, I2n-3) are inserted at the end of them while the

patterns I2, I6… I2n-2 of pattern pairs (I2, I3), (I6, I7) … (I2n-

2, I2n-1) are inserted at the beginning of them. The new test

sequence is now composed of pattern tierces (I0, I1, I0),

(I3, I2, I3), (I4, I5, I4), (I7, I6, I7)… (I2n-1, I2n-2, I2n-1) and

allows activating all the 2n
 paths within the LUTs without

any timing dependency. As a result, we can form a new

test sequence TS2 composed of 3.2
n-1

test patterns as

follows: {I0, I1, I0, I3, I2, I3, I4, I5, I4,…I2n-1, I2n-2, I2n-1 }

To obtain an efficient test for small delay faults as
well, the test has to be performed with a specific clock
scheme. Actually, the pattern pairs of TS2 with a single bit
transition, i.e. (I0, I1, I0), (I3, I2, I3)… (I2n-1, I2n-2, I2n-1) have
to be applied at the higher frequency allowed by the local
wires, while the others pattern pairs (pairs with multiple

bit transitions) can be applied at a lower frequency. The
high frequency is determined by the propagation delay
between two flip-flops. The low frequency is determined
by the longest propagation delay between a chain input
and the furthest flip-flop input. As a result, one should use
a special clock signal formed by alternative fast and slow
periods, as presented in Figure 5. In this figure, we show
the test patterns (TS2) applied on the chain inputs during
each period. During the fast periods, the test of delay
faults in each LUT is achieved in robust conditions i.e. the
data on the LUT inputs E1…En-1 are in a steady state. In
Figure 5, this is done when the following patterns of the
test sequence TS2 are applied on the chain inputs: I1, I0, I2,

I3, I5, I4 … I2n-2, I2n-1. During the slow periods, the
remaining test patterns (from pattern pairs with multiple
bit transitions) are set on the LUT inputs at a time
depending on the mapping of each LUT. Such a pattern
may appear as a test pattern and analyzing its response is
not really useful to ensure the complete delay fault test of
logic cells.

clock

I0 I1 I3 I2 I2n-2
test

patterns

fast period slow period

I2n-1I0 I3 I4 I2n-1

Figure 5. Clock signal scheme

3.3. BIST insertion

This section deals with the implementation of an
accurate BIST architecture for testing delay faults in all
the LUTs of a symmetrical FPGA. In addition of the test
configuration scheme presented above, the objective is to
implement a Test Pattern Generator (TPG) connected to
the inputs ai of the chain of LUTs on one side, and an
Output Response Analyzer (ORA) connected to the chain
output s on the other side. The BIST architecture does not
need any area overhead in the circuit since the
configurable logic cells are used to build the TPG and the
ORA structures. After the test process, the BIST
architecture can be removed from the circuit and the
whole circuit can be used to implement a user-application.
In addition, the test patterns are generated inside the
circuit, avoiding any timing dependency due to long wires
between some I/O pads and the input E0 of the first LUT
to be tested. Using the previous definitions, we now
present the way the TPG is defined and the way the ORA
is defined.

The TPG generates the test patterns of the test
sequence TS2 to be applied on the inputs ai. Remember
that this test sequence is composed of single bit transition
pattern tierces (input E0) and multiple bit transition
pattern pairs. Its logic circuitry is shown in Figure 6. In
this figure, we split the TPG in two finite state machines

(FSM), as follows: FSM A generates the values to be
applied on the input a0 (or E0 of LUT 1) while FSM B
generates the remaining values to be applied on inputs
a1…an-1 (or E1…En-1 of LUTs). FSM A is a simple 2-
modulo counter, using little logic. This is very important
because it prevents the TPG determining the high
frequency of the clock signal used to test the LUTs
(Figure 5). FSM B is a 2n-1-modulo counter in which the
logic circuitry has a lower impact on the test. We define
two clock schemes based on the one presented in Section
3.2 (Figure 5): fast test clock and slow clock. The fast test
clock (high frequency) is applied to FSM A and to the
chain of LUTs, while the slow clock (low frequency)
controls FSM B. These clock signals can be separately
generated but have to be synchronized between them, as
shown in Figure 6. Signals fast test clock and slow clock
are both connected to dedicated pads of the FPGA.

FSM A D Q

E0

E1 Z

LUT 1

(f = E0)

En-1

a0

a1

an-1

D Q

slow clock

ff 1

FSM B
(2n-1-modulo counter)

fast test clock

Figure 6. TPG insertion scheme

The ORA determines the correctness of the response
provided by the output s at each clock cycle. For this
purpose, a comparator compares each response to the
expected one. The result is a pass or fail indication, at
each clock cycle. To limit the amount of information, all
the results are compressed by a compactor. This produces
a single bit on an output, denoted as sORA, which is equal
to 0 if no delay fault occurs in the logic cells or is equal to
1 otherwise. The ORA structure is presented in Figure 7.
The comparator is composed of a XOR gate and a 2-
modulo counter. It compares the output response with the
fault-free value, produced by this counter. The result is
latched by a flip-flop. At the next clock cycle, the value at
the output of this flip-flop is compressed by a compactor,
composed of a loop flip-flop with an OR gate. If a delay
fault occurs in the logic architecture, the comparator
provides a value 1 when the logic error arrives from the
output s. This value is next compressed by the compactor
that displays a steady state value 1 on the output sORA. All
the flip-flops are initialized at 0 and are controlled by the
fast test clock signal. Even if we have mentioned in the
last section that the pattern pairs with multiple bit
transitions may not be really useful for the testing, we
assume here that the ORA verifies all the output
responses.

Finally, the process we propose can use two
different test sessions. In a first session, a given number
of LUTs are used to build the TPG and the ORA
structures and all the remaining LUTs, i.e. those not used

by the TPG and by the ORA, are tested. The LUT-under-
test are involved in the test configuration scheme
described in Section 3.1 that consists in building a chain
of logic cells by chaining alternatively a LUT and a flip-
flop. In contrast, it is quite obvious to imagine a split of
this chain in several horizontal chains in order to decrease
the time required to unload all the data in the flip-flops
towards the ORA. This is done by building a given
number of horizontal chains similar to the one given in
Figure 3. The output s of every horizontal chain is
connected to an ORA (Figure 7) on one side and its input
a0 is connected to a LSB state machine (Figure 6) on the
other side. All the remaining chain inputs (a1…an-1) share
the same outputs of a single MSB state machine. An
example of this test session is shown in a 10x4
symmetrical FPGA, in Figure 8. The black blocks
represent the logic cells used by the TPG while the white
blocks represent the ones involved in the ORA. The
shaded area shows the part of the FPGA used by the MSB
state machine. Dotted blocks represent the switch blocks
that route the long wires from the MSB state machine to
each logic cell under test. The local wires connect
adjacent logic cells through the local routing boxes, not
represented in this figure. The second configuration is
required for testing delay faults in the logic cells used by
the TPG and the ORA in the first session. The logic cells
tested in the first test session are here involved to build
the TPG and the ORA. The logic cells to be tested are
connected in a way similar to the one of the first test
session. Consequently, only two configurations and
3.2

n-1
 + k clock cycles by configuration (3.2

n-1 test
patterns), k being the number of flip-flops used, are
needed to test all the delay faults in the logic architecture
of symmetrical FPGAs, whatever their size.

E0

E1
Z

LUT k

(f = E0)

En-1

D Q

ff k

D Q

D Q
s

D Q

fast test clock

sORA

Figure 7. ORA insertion scheme

For validation, the BIST scheme has been
implemented in a XCV50 VIRTEX FPGA from Xilinx
Inc by using the XILINX synthesis tool (ISE). We have
only considered one horizontal chain of logic cells,
composed of 8 4-input LUTs and flip-flops (k = 8 and n

= 4). The TPG is here composed of one LSB state
machine and its MSB state machine is composed of an 8-
modulo counter. All the LUTs are programmed with the

function f(E0…En-1) = 0E . A timing analyzer available in
the synthesis tool allows determining the frequency of the
fast test clock signal and the slow clock signal. These are
calculated after the mapping and routing of the BIST
scheme in the FPGA. We have made timing simulations

in two cases: fault-free case and faulty case. For this
purpose, we have used the Mentor Graphics simulation
tool (starter ModelSim XE II). Results from the
simulations are shown in Figure 9.

��� �

����

����

����

��	�

��	�

�
 ��� �� � ���

�����

�����

�����

�����

��	�

��	�

��� � � �� !��" � ���
E0

Ei
Z

D

(f = E0)

��� �

����

����

����

#�	 �����
$���!�

��	 �����
$���!�

%�$��"���"
�����

%�$����"
�����

n-1

Figure 8. BIST configuration example

The figure should be interpreted as follows. We
denote the clock signals as ‘fastclk’ and ‘slowclk’, the
asynchronous reset signal of flip-flops as ‘raz’, the output
signals generated by the TPG as ‘a0, a1, a2 and a3’, the
output signal of each flip-flop as ‘q0, q1…q7 or s’ and the
test result released by the ORA output as ‘sora’. In the
left side, after the first initialization (raz = 1) the results
show the fault-free mode of the BIST architecture. In this
mode, it should be noted that the output ‘sora’ is always
at 0 and 10 clock cycles are here required at the end of the
test sequence for the complete testing. To simulate a
faulty mode, we have assumed faults in LUT 2. So, we
insert delay faults in LUT 2 by inverting the logic value
stored in three of its SRAM cells: R12, R13 and R15. After
the second initialization (right side), erroneous values
appear on the output of LUT 2 when the following test
patterns are applied on the LUT inputs: I13, I12, I13, I15, I14

and I15. For reader convenience, we have marked the logic
errors latched by the flip-flop ff2 with arrows. When the
first logic error reaches the ORA input (black arrow), the
output ‘sora’ is set at 1 two clock cycles later and remains
in this state.

4. Conclusion

In this paper, we have proposed a BIST solution for
testing delay faults in the logic architecture of
symmetrical FPGAs, in a MOT context. The principle
consists in chaining all the logic cells in an optimized
way. The chain is formed by connecting each LUT output
to the input E0 of the next LUT through a flip-flop,
available in every logic cell. A TPG is connected to the
chain inputs and an ORA is connected to the chain output.
The TPG generates the test patterns of the test sequence
TS2 and guarantees a delay fault testing in robust
conditions. The ORA analyzes the response provided by
the chain output and points out a pass or fail indication at

the end of the test process. On the benefits side, our BIST
provides a test with large delay fault coverage within the
logic architecture and reduced test sequence.

References

[1] M. Abramovici, C. Stroud, C. Hamilton, S. Wijesuriya and
V. Verma, "Using Roving STARs for On-Line Testing and
Diagnosis of FPGAs in Fault Tolerant Applications",
IEEE Proc. of Int. Test Conf., pp 973-982, 1999.

[2] M. Abramovici and C. Stroud, "BIST-Based Delay-Fault
Testing in FPGAs", IEEE Proc. of Int. On-Line Testing
Work., pp 131-134, 2002.

[3] V. Betz, J. Rose and A. Marquardt, "Architecture Deep-
Submicron FPGAs", Kluwer Academic Publishers, 1999.

[4] R.A. Carberry, S.P. Young and T.J. Bauer, “FPGA

LookUp Table with High Speed Read Decoder”, Xilinx
Inc, San Jose, United States Patent N° 6621296 B2, 2003.

[5] E. Chmelar, "FPGA Interconnect Delay Fault Testing",

IEEE Proc. of Int. Test Conf., pp 1239-1247, 2003.

[6] P. Chow, S.O. Seo, J. Rose, K. Chung, G. Páez-Monzón

and I. Rahardja, "The Design of an SRAM-Based Field-

Programmable Gate Array, Part II: Circuit Design and

Layout", IEEE Trans. on VLSI Systems, Vol. 7 No. 3, pp

321-330, 1999.

[7] P. Girard, O. Héron, S. Pravossoudovitch and M.

Renovell, "Defect Analysis for Delay-Fault BIST in

FPGAs", IEEE Proc. of Int. On-Line Testing Symp., pp

124-128, 2003.

[8] P. Girard, O. Héron, S. Pravossoudovitch and M.

Renovell, "Requirements for Delay Testing of Look-Up

Tables of SRAM-Based FPGAs", IEEE Proc of European
Test Work., pp 147-152, 2003.

[9] P. Girard, O. Héron, S. Pravossoudovitch and M.

Renovell, "High-Quality TPG for Delay Faults in Look-

Up Tables of FPGAs", IEEE Work. on Electronic Design,
Test and Application (DELTA’04), pp 83-88, 2004.

[10] I.G. Harris and R. Tessier, “Interconnect Testing in

Cluster-Based FPGA Architectures”, Design Automation
Conference, pp. 49-54, 2000.

[11] I.G. Harris, P.R. Menon and R. Tessier, "BIST-Based
Delay Path Testing in FPGA Architectures", Int. Test
Conf., pp 364-369, 2001.

[12] W.K. Huang, F.J. Meyer, X.T. Chen and F. Lombardi,

"Testing Configurable LUT-Based FPGAs", IEEE Trans.
on VLSI. Systems, Vol 6, pp 276-283, 1998.

[13] A. Krasniewski, "Application-Dependent Testing of

FPGA Delay Faults", Proc. of EUROMICRO’99, pp. 260-

267, 1999.

[14] A. Krasniewski, "Exploiting Reconfigurability of

Effective Detection of Delay Faults in LUT-Based

FPGAs", IEEE Proc. of Int. Conf. on Field Programmable
Logic & Applications, pp. 675-684, 2000.

[15] M. Renovell, J.M. Portal, J. Figueras and Y. Zorian,

“SRAM-Based FPGAs: Testing the Embedded RAM

Modules”, JETTA, pp. 159-167, Vol 14, 1999.

[16] M. Renovell, J.M. Portal, P. Faure, J. Figueras and Y.

Zorian, “Analyzing the Test Generation Problem for an

Application-Oriented Test of FPGAs”, IEEE Proc. of
European Test Work., pp. 157-162, 2000.

[17] M. Renovell and Y. Zorian, “Different Experiments in

Test Generation for XILINX FPGAs”, IEEE Proc. of Int.

Test Conf., pp. 854-861, 2000.

[18] C. Stroud, S. Konola, P. Chen and M. Abramovici, “Built-

In Self Test of Logic Blocks in FPGAs”, IEEE Proc. of
VLSI Test Symp., pp. 387-392, 1996.

[19] C. Stroud, E. Lee and M. Abramovici, “Built-In Self Test

of FPGA Interconnect”, IEEE Proc. of Int. Test Conf., pp.

404-411, 1998.

[20] M. B. Tahoori, "Testing for Resistive Open Defects in

FPGAs", IEEE Proc. of Int. Conf. on Field Programmable
Technology, pp 332-335, 2002.

[21] Xilinx Inc, Virtex Series Product Specification (FPGAs),
San Jose, USA, v2.6, 2002.

��� ���� ����� �	�
�� �	
� �� ��� 	 �� 	� 	�	 ��� �

� ���� ��
����� ��

���

�
� !
� "
� #

$
$!
$"
$#
$%
$&
$'

$(� � �

����

)*
+,
-./
-.0

123
/452
,/
0,
-./
-.0

�67 ���� ������	�
�� �	
� � � ��� 	 ��	� 	� 	 ��� �8 ��98 �� � 	 :
 � �� ��
; �<
�= 	 ��	� 	�	 ��� � >?@@ A? BC

Figure 9. BIST operations: fault-free mode (left side) and faulty mode (right side)

