
HAL Id: lirmm-00109207
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00109207

Submitted on 24 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Refining Classes in Statically Typed Object-Oriented
Languages

Jean Privat, Roland Ducournau

To cite this version:
Jean Privat, Roland Ducournau. Refining Classes in Statically Typed Object-Oriented Languages.
04052, 2004, pp.20. �lirmm-00109207�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00109207
https://hal.archives-ouvertes.fr


Class Refinement in Statically Typed Object
Oriented Languages

Jean Privat and Roland Ducournau

LIRMM – Université Montpellier II
161 rue Ada

F-34392 Montpellier cedex 5

Abstract. Classes and specialisation bring simultaneously structura-
tion and flexibility to object oriented programs. However, numerous
model extension propositions (aspects, modules, etc.) prove these qual-
ities are often considered insufficient. This article proposes two binded
notions of class refinement and modules, the first one brings flexibility
and the second one, the structuration. Modules contain a coherent set of
class definitions and can modify classes defined in modules they depend.
This proposition focuses on statically typed languages where modules
can be separately compiled. It is based on a module metamodel similar
to the class one and problems with multiple specialisation and refinement
are managed like those in multiple inheritance.

1 Introduction

Object oriented programming languages offer to programmers a powerful de-
velopment framework allowing at the same time to build stable and coherent
entities (classes) while allowing a flexibility and evolutionarity thanks to special-
isation and inheritance mechanism [1]. Nonetheless, this flexibility is not always
enough and many approaches were developed, from reflection allowing program
behaviour modification at compile-time, link-time or runtime, to aspects allowing
weaving new behaviours to existing classes.

The class refinement model we propose belongs to these approaches but fo-
cuses on statically typed languages with multiple inheritance. It is characterised
by a modular decomposition in which each module is autonomous, i.e. ”sepa-
rately compilable”, but may refine – extend – one or more classes which ex-
ist in parent modules by adding new properties, modifying existing properties,
adding new specialisation relation, unifying classes or generalising properties.
Our proposition is based on a structural analogy between modules and classes
where the module metamodel is isomorph to that of the class: mechanisms and
difficulties that occur with multiple dependencies are analogous those that occur
with multiple inheritance.

Section 2 exposes the refinement problematics and motivations. Section 3
revises the object metamodel we consider (without refinement), then focuses
on multiple inheritance. Section 4 introduces the class refinement in the model
and section 6 is about multiple inheritance and refinement. Section 5 depicts



implementation and compilation techniques. Section 7 gathers related works.
Finally, section 8 presents conclusion and perspectives.

2 Problematic of refinement

2.1 Needs of flexibility and structure

Many works propose schemas and implementations of class refinement techniques
that allow a class definition somewhere in a program and amendments of this
class definition somewhere else. Flexibility brought by theses techniques in gen-
eral goes hand in hand with program structuring, not only in the form of classes
but also in the form of functionalities: functionalities strongly binded together
may be gathered instead of dispersed through all the classes of a program. [2]
evokes this need for orthogonality between objects and functionalities which is
missing in the models with classes. [3] shows the need for modules.

Another interest is to be able a posteriori to make a whole set of classes
(program or library) evolve without having to modify the existing classes (either
the classes may be shared and must continue to exist in their original form, or
the source code may be unavailable). Reflexive languages (Clos [4], Smalltalk
[5]) or aspect oriented ones (AspectJ [6]) already allow this via a meta-object
protocol (MOP) or a weaver. This paper considers a novel approach: the proposal
of a technique applicable to statically typed languages separately compiled and
not requiring the use of an external mechanism like a MOP or a weaver.

We focus on five class amendments: the method and attribute addition and
redefinition (the attribute redefinition only makes sense with covariant typing
context), superclass addition, classes unification (the expression that two classes
defined in different places are the same, namely instances and properties of
one class are those of the other one) and property generalisation (bring up the
introduction of a property in a superclass).

We place ourselves within a multiple framework of heritage.

2.2 Intuitive idea of class refinement

Intuitively, one can present the refinement of a class c1 by a class c2 as an
incremental definition of the classes in which the properties defined in c2 are
added or replace those of c1. Such a process more or less frequently meets in
the languages with dynamic typing. It is the case, for the methods at least, in
the object oriented extensions of Lisp where the methods are defined outside
the classes. In a general way, it should be possible in all the languages equipped
with a meta-object protocol [7] like Clos, even if experiments show that these
protocols are not always very adapted to the modification of the classes [8].

The intuitive character of refinement is lost a little with multiple refinement
of the same class: the order of refinements and specialisation has consequences.
If dynamic languages can base themselves on the chronological order, that is not
possible for statically typed languages.



Thus, to give a more structured framework to our proposal, we add a concept
of module to it, in its simpler form, rather traditional. A module is a set of classes,
that dependent on a set of other modules. The order of refinements results then
from the order on the modules. There is no concept of visibility (or export), nor
namespace associated with the modules: it is not necessary for the moment.

3 Object metamodel

Propriété
Locale

*

Propriété
Globale

1

Classe

*

1
*

*

*

*

*

*

1
*

*

* nomnom

définit

redéfinit

appartient

introduit

spécialise

héritehérite

Fig. 1. Property metamodel

The starting metamodel is composed of three main kinds of entities: classes,
local properties and global properties (Fig. 1). Although it is not explicit in any
language, nor even in Uml, we think that it has vocation with the universality:
it is the implicit metamodel of Java and Eiffel (in condition to make a limited
use of renaming). This section is a resume of [9]

3.1 Entities and relations

When we wants to metamodel properties, late biding (message sending) forces
to define two categories of entities. Local properties correspond to the attributes
and the methods such as they are defined in one class, independently of possible
redefinition. Global properties1 correspond to the messages which the instances
of a class can answer to: this answer corresponds to a local property of the class.
Each local property belongs to a single global property and in each class there
is a one-to-one mapping between its local properties (defined or inherited) and
its global properties. The correspondence between these two entities is done by
their names.

Inheritance mechanism through the relation of specialisation makes possible
the subclasses to inherit the properties of their super-classes. This inheritance
takes place on two levels. On the level of the global properties, called name
inheritance, any class has the properties owned by its super-classes. On the level
of the local properties, called value inheritance, if a class brings its own local

1 Similar to generic functions of Clos.



property for a given global property, it is a (re)definition; if not, the class inherits
the most specific local property defined in its super-classes, i.e. the local property
defined in the most specific super-class by the relation of specialisation. When a
class defines a local property whose name does not correspond to any inherited
global property, a new global property is implicitly introduced into the class and
is associated to the local property.

Lastly, for a message send x.foo(args), foo indicates the global property
named foo of the static type of the receiver x. Let us note that dynamic typing
makes this metamodel inoperative.

3.2 Multiple inheritance

With multiple inheritance, conflicts are the main difficulty. Obviously, the meta-
model yields two kinds or conflicts.

Chercheur

Enseignant − Chercheur

Enseignant

département
laboratoire
département

UFR

Quadrilatère

Rectangle Losange
diagonale1
diagonale2
aire =

* diagonale2)/2

longeur
largeur
aire =

aire

Carré

(diagonale1longueur
* largeur

2.1 Property name conflict 2.2 Property value conflict

Fig. 2. Multiple inheritance conflicts

Name conflict. A property name conflict occurs when a class specialises two
classes having distinct but homonym global properties. Fig. 2.1 shows two classes
(Researcher and Teacher) having both a global property named department. One
indicates a department in a research laboratory, the other a teaching department
in an university. It is then awaited that the common subclass inherits the global
properties of its superclasses, but the name department is ambiguous in the
context of the subclass.

Anyway, a name conflict is only a naming problem and a systematic renaming
would guarantee the absence of name conflicts. This renaming may be automatic
or specified, local or global.

Forbidden The specification of the language proscribes the conflicts of names.
This situation forces the programmer to rename at least one of the two global
properties in all programs that use it. This may imply the modification of



many classes (with the inherent potential errors) but it can be impossible if
these classes are not modifiable (unavailable source code for example).

Explicit designation The litigious property name must be prefixed by a class
where the name is not ambiguous, for example the class that introduces
the global property. In the specification of the class Teacher-Researcher of
the example, Teacher:department would design the global property known as
department in the class Teacher. This solution is used in C++ [10] for the
attributes2. It has two drawbacks: heaviness of writing and it does not respect
the principle of anonymity which wants that the explicit references to the
super-classes appear the least possible in order to improve the modularity.

Local renaming Local renaming makes it possible to change the designation
of a global property in a class and its future subclasses. In the problem-
atic class of the example, we can rename department inherited from Teacher

into dept-teach and department inherited from Researcher in dept-res. Thus
department in Researcher and dept-res in Teacher-Researcher indicate the
same global property and as expected, in the class Teacher-Researcher,
dept-res and dept-teach indicate two distinct global properties. This so-
lution is used in Eiffel [11] but has the major drawback to modify the
vocabulary according to the classes.

Unification Dynamic languages as Clos, Java via its interfaces and C++ for
the functions consider that if two global properties are homonym3 then they
are not distinct. There is thus no possible conflict of name and ambiguities of
multiple inheritance are deferred on value inheritance. The major drawback
of this solution is that it expresses a bad class model : if two class introduce
and share a common generic property, it means there is the lack of a common
super-class that has to introduce this property.

Value conflicts. A property value conflict occurs when a class inherits two local
properties from the same global property, none more specific than the other one.
Fig. 2.2 shows two classes (Rectangle and Rhombus), both redefining the method
surface whose global property was introduced into the class Quadrilateral. In
the common subclass Square, which one is most specific? Contrary to the name
conflict, there is no intrinsic solution with this problem (like a massive renaming
in the name inheritance) and the programmer or the language must bring an
additional semantics to resolve this problem.

Forbidden The specification of the language proscribes value conflicts. The
programmer must redefine the global property by a new local property in the
class where the conflict appears. In the redefinition, an explicit designation,
as in C++, may be used to choose among the local properties in conflict.

2 For methods, the operator :: corresponds to a static call: it is a local property which
is denoted, not the global one.

3 For C++ and Java, it is necessary to integrate into the name the number and the
type of the parameters.



Combining For certain values or particular properties, the conflict resolution
must be done by combination of the values: it is the case, for example, for the
type in the event of covariant redefinition (the lower limit of types in conflict,
if it exists) or for properties whose values cumulate. Combining is also found
for Eiffel contracts with disjunction of pre-conditions and conjunction of
post-conditions.

Choice The programmer or the language arbitrarily choose the local property
to inherit. In many dynamic languages like Clos or Dylan, the choice may
be done by a linearisation [12]; in Eiffel, the programmer can select the
desired property using the inheritance clause undefine.

4 Classes and modules

Classe
Locale

*

Classe
Globale

*

Module

*

1
*

*

*

*

*

*

*

* nom nom

1

*

raffine

appartient

importe importe

introduitdéfinit

dépend

Fig. 3. Class and module metamodel

We now more formally present modules and refinement, by a strong analogy
with the object metamodel presented above. Problems involved in inheritance
conflicts multiple refinement will be dealt with in the following section.

4.1 Modules metamodel

A more rigorous approach is based on the fact that classes are with modules what
properties are with classes, the relation of dependence between modules being
similar to specialisation, and importation to inheritance. It is thus necessary to
define two entities associated with the concept of class (figure ??).

Local classes (similar to the local properties) are defined in modules. A local
class is described by a name, names of super-classes and definitions of local
properties. The global classes (similar to global properties) are orthogonal with
the modules. Each module has global classes which correspond to the classes
that it is statically able to handle. The global classes gather local classes. The
correspondence between these two entities is done by their name. On the whole,
the local classes are defined in a module exactly as in an ordinary object-oriented
language, class names indicating as well local class as global classes.



4.2 Definitions and notations

A module is a set of local definitions of classes, which import (i.e. depend of )
zero, one or more modules. We note m a module and < the module dependence
relation: m < n means that m depends on n (m is a submodule of n, which is
a supermodule of m). The dependence relation is a strict partial order. A global
class is a set of local classes of the same name defined in different modules. In a
way similar to the property name inheritance, a module imports all the global
classes of its supermodules. When a local class is defined in a module m, two
cases arise: If a global class of the same name is imported from supermodules, it
is then a refinement. If not, a new global class of this name is introduced in the
module m. In both cases, the new local class is added to the global class. We note
Am the local class of m owned by the global class A and we abusively use the
membership ensemblist notation between all these entities: Am ∈ m, Am ∈ A,
as well as A ∈ m if A is imported or introduced into m. For any global class A
of a module m, the existence of the corresponding local class Am is supposed: it
is either an explicit definition, or an implicit refinement, Am being then called
implicit class since its description is empty. In corollary, to explicitly refine a
class by a empty local class is equivalent to not to refine it explicitly. When two
modules are in relation of dependence, local classes from their common global
classes are in relation of refinement, also noted <:

Am < An ⇔def m < N and A ∈ N (1)

In a module m, the definition of a local class Cm can explicitly make it a
subclass of a class D: we note this relation of explicit specialisation Cm ≺m Dm.
It is licit if the module m introduce or import the global class D. The relation of
specialisation between local classes is a strict partial order noted ≺ and is built
by the importation of explicit specialisations of super-modules. It is defined by
the transitive closure of the following relation ≺′:

Cm ≺′ Dm ⇔def ∃N such as m ≤ n and Cn ≺n Dn (2)

Remarks that a explicit relation of specialisation between local classes in relation
of specialisation by importation or by transitivity is without effect.

Lastly, a programme is set of modules, closed by the relation of importation:
it corresponds to a module (possibly virtual) that import every module of the
program. We will call local classes of a program the union of the local classes
of all its modules and quasi-specialisation the transitive closure of the union
of the relation of refinement < and relation of specialisation ≺ on the local
classes of the program. In the figures, we adopt the following convention: the
local classes appear as of small named box, inside large box possibly numbered,
the modules. Only specialisation relations in a module (≺) and of importation
between modules (<) are drawn. Local classes of the same globlal class bear the
same name: the relation of refinement between classes (<) thus remains implicit.
Moreover, classes and specialisations that are implicit are illustrated in dotted
lines.



Intuitively, the program corresponding to the module m behaves like the
hierarchy of its local classes, provided with quasi-specialization as relation of
specialisation, and in the code of which any name of class A, used as type or
for instantiation, would be interpreted as the local class Am. All the other local
classes of the imported modules behave like abstract classes. In an alternative
way, the program can be seen like the hierarchy of the local classes of the mod-
ule m, ordered by the relation ≺, the contents of each class resulting from its
successive refinements from the imported modules.

4.3 Class unification

In a local class definition, the programmer may choose to explicitly unify this
class with other classes. For example via a syntactic writing similar to the dec-
laration of specialisation.

Class unification consists in binding the global classes: in the module and all
the submodules, the two global classes will share a single local class. We note
âbm = Am = Bm the local class associated the union in the module m of the
global classes A and B. As the local class âbm belongs at the same time to A
and to B, it refines classes An and Bn for any super-module n. Moreover as the
relation of specialisation is antisymmetric, the equation (2), becomes:

Cm ≺′ Dm ⇔def Cm 6= Dm and ∃N such as m ≤ N and Cn ≺n Dn (3)

The naming question of such local classes can be solved in two manners:
either by considering that the names of the global classes are alias and can
independently be used to indicate the local class, or by choosing a single name
to identify it.

4.4 Constructors

In statically typed languages without refinement, instance constructors are not
subjected to polymorphism: the dynamic type of instances that will be created
is already determined by the static type used. Thus on the level of the languages,
the particular methods which have a role of instance constructor are not inherited
(Java or C++). In Eiffel, they are inherited but their instance constructor
role is not.

With refinement, the things are a little different. Admittedly, the dynamic
type of instances that will be created is statically foreseeable but it remains
overall unknown, the local classes that the module statically handles being able
to be refined in possible submodules. Thus, on a class refinement, on the one
hand constructors must be fully inheritable and on the other hand, the refining
classes must make sure that the constructors introduced into the refined classes
remain coherent (by redefining them if necessary).



Accumulateur

Batterie

Instrument
de musique

Batterie

Batterie ? A 4

A2 A
r

3

p
A 1

q

A

B A

B

A B

?

4.1 Conflit de nom de classe 4.2 Importation de valeur 4.3 Conflit de spcialisation

Fig. 4. Importation multiple et conflits.

5 Multiple importation and inheritance

It results from the definitions of the previous section that the refinement of a
subclass (within the meaning of specialisation) automatically induce multiple
inheritance (within the meaning of quasi-specialisation). It is thus impossible to
make the economy of the problems arising from multiple inheritance. Moreover,
the relation of dependence between modules can itself be multiple. The treatment
of the conflicts will be more unusual, while remaining essentially in the way of
section 3.

5.1 Multiple importation

A class name conflict occurs when a module imports two global classes of the
same name from two different super-modules (Fig. 4.1). It is analogue with
the property name conflict and can be solved by the same manner: the modules
being generally spaces of names, explicit designation is the most natural solution
here. However, a class renaming mechanism, as is Eiffel and its configuration
language Lace, could also solve the problem.

Fig. 4.2 illustrates the configuration similar to the conflict of value: module
4 imports A introduced by module 1 and refines implicitly A2 and A3 by a
local class A4. In this case, the conflict of value will be solved by combination
of the local classes in conflict, by inheritance of their properties through the
specialisation and the refinement relations.

A new configuration conflict, the conflict of specialisation, appears when, in
a module, two local classes are mutually a specialisation of the other (Fig. 4.3).
It causes a circuit in the relation of specialisation which is not any more one
partial order. This conflict may be solved by unifying the classes of the circuit.

5.2 Name property inheritance

Name property differs only a little with the introduction of refinement: Local
classes have global properties of their super-classes within the meaning of quasi-
specialisation. In Fig. 4.2, A2 inherits the global property p introduced into A1



and A4 inherits the global properties p, q and r introduced into the classes which
it refines.

A

B
p

A
p

B

1

2

A

A

A
p

A
p

B

A

B
p

A
p

A

A
p

B C

B
p

C
p

1A
p

B
p

A
p

B

2

5.1 5.2 5.3 5.4 5.5

Fig. 5. Property and inheritance.

However, as the programmer knows the imported modules, some apparent
name conflicts can be solved by the identity of the global properties. Addition
of local properties to global properties does not have then any more reason to
be limited to the redefinition in subclasses. The generalisation of global property
makes it possible to extend the possession of global properties of the classes
to the super-classes within the meaning of specialisation. The generalisation of
a global property owned by a local class Cm in a module n, submodule of m
consists in defining in n a homonym local property of the global property in a
class Dn such as Cn ≺ Dn. The example of the figure 5.1 shows the definition
of a property p in a local class B1 and its generalisation in the class A2 (since
B2 ≺ A2).

Property name conflicts related on specialisation or refinement are still pos-
sible but must be individually solved by the techniques of the section 3.2.1. In
addition to the name conflict related to multiple specialisation (Fig. 2.1), Fig. 5.2
shows a conflict related to multiple refinement and Fig. 5.3 and 5.4 show conflicts
implying refinement and specialisation.

5.3 Value property inheritance

Either the global property of a local class is redefined, or the local property
defined in the most specific super-class is inherited. However, it is necessary
to combine the two local class orders which are specialisation and refinement
to produce a single strict partial order of specificity used for determining the
inherited local properties. This relation of specificity slightly differs from that of
quasi-specialisation.

The relation of specificity for the module s between the local classes Cm and
Dn (with s < m and s < n) is noted Cm �s Dn and is defined by:

Cm �s Dn ⇔def Cs ≺ Ds or (Cs = Ds and m < N) (4)



the first part expresses that, in the module, the relation of specialisation between
two local classes is reflected on any couple of classes of the same global classes.
The second part of the definition expresses that a refined class is less specific
than its refinement.

The example of Fig. 5.5, where the relation of specificity is represented by
hatched arrows with white head, asks the question of the value inheritance of
the global property p in the local class B2. The equation (??) application says
that B2 �2 B1 �2 A2 �2 A1, so the local property p inherited has to be that
one defined in B1.

The relation of specificity contains the relation of quasi-specialisation. Indeed,
the latter is insufficient : by considering the case of Fig. 5.5, the classes B1

and A2 would be incomparable. However the intuitive vision which considers
refinement as an incremental modification of classes would give to B2 the method
p defined in B1 as it is the case with the relation of specificity �. Informally,
that means that the relation of refinement is stronger that that of specialisation.
However, during class unification, the relations of specialisation which could exist
in possible super-modules do not affect the relation of specificity, only the relation
of refinement keeps a utility in specificity.

With the redefinition or the inheritance of a local property l in a class Cm,
it is necessary to check that this one not only conforms to the local properties
defined in the super-classes of Cm (within the meaning of quasi-specialisation)
but also that the local properties defined or inherited in the subclasses Cm

(within the meaning of specialisation) conforms to l. In the example of Fig. 5.1,
it should be checked that the local property p inherited in B2 (i.e. that defined
in B1) conforms with that defined in A2. Conformity between local properties
can take several forms according to the languages (arity, type of result, types
of the parameters, declared exceptions, contracts, etc.) Let us note that, within
a framework of sure typing, the rule of contravariance applies to refinement.
Moreover, like the semantics of refinement is not a semantics of specialisation, a
policy of refinement covariant [13] does not apply: on the contrary, contravariance
could find its utility here.

6 Implementation

Implementing programs that use refinement is almost similar to the implemen-
tation of any object oriented program.

6.1 Overcost

On the first hand, global techniques la SmartEiffel [14] may be used. On
the other hand, modules are good candidates for compilation units in a sepa-
rate compilation scheme. However, refinement is not easily compatible with the
dynamic loading, i.e. the refinement of classes during the execution of a pro-
gram. Indeed, the difficulty of the implementation of the multiple inheritance in
dynamic loading is exacerbated here: although it is possible to modify during



the execution the values of the pointers in the tables of methods (redefinition of
methods), it is much more expensive to radically change these tables to reflect
the addition of methods or specialisation relations. The extreme case can be
the need for modifying the instances to reflect the addition of attributes, which
imposes implementation techniques comparable with instance migration.

Because we do not have dynamic loading, the program (machine code and
metamodel) is entirely known (at compile-time for global compilation and at
link-time for separate compilation) so module importation and class refinement
can be statically computed before execution. At run-time, various local classes
of a global class have disappeared: only remain the local classes of the virtual
module that is the program. The fact of having classes without modules and
refinement makes it possible to assume that the implementation can be carried
out without space or temporal overcost with the execution compared to the same
language without refinement.

During the construction of a program, conflicts related to multiple impor-
tation of modules can appear. If necessary, those can be avoided by building a
submodule dedicated to the resolution of conflicts. However, compiler has a total
knowledge of the program. Therefore, only conflicts that having a real impact
on the program, have to be signalled. For example, name conflicts (of classes or
properties) which can appear in the virtual module do not have an influence on
the behaviour of the program, unless the language allows introspection.

6.2 Separate compilation

The separately compiled schema we developed in [15] is used for our prototype.
Here is a resume of its characteristics.

It benefits of two well known global techniques:

coloration [16–19] focuses specific data structure needed by object oriented
specific behaviour (message sending, casting, attribute access). It is a global
technique that allow implementation of object oriented languages to go be-
yond multiple inheritance and to bring back to single inheritance implemen-
tation.

type analysis allows to determine dead code that can be safely removed and
optimises polymorphism related behaviours. It computes three sets : instan-
tiated classes, dynamic types of expressions and local properties that may be
executed. Theses sets are mutually dependant (executed properties depend
on dynamic types of receivers, dynamic types depend on instantiated classes
and instantiated classes depend on executed properties). This circularity ex-
plain the problem difficulty ([20]) and the diversity of solutions (many of
them are described in [21]).

In first phase, modules has to be compiled to produce executable code and
meta-data. As with usual separate compilation scheme [22], executable code is
incomplete and some symbols are used instead of missing information. Some
missing information are related to object oriented mechanism : there are sym-
bols for method and attribute indexes. Meta-data contains the meta-model of the



module and some internal information as internal behaviour of each local prop-
erty: instantiations, called methods, attribute access, etc. A module compilation
does not depend on other modules except that the meta-model of super-modules
is needed, so this phase may be recursively done.

In the second phase, compiled modules that compose the program are gath-
ered, the global metamodel is built, type analysis is performed using internal
metadata and dead part of the metamodel is forgotten, coloration is performed
on the living part of the metamodel and incomplete information of the executable
code is filled with the coloration results then linked to produce a complete exe-
cutable.

7 Related works

MultiJava [23] proposes units of compilation, similar to the modules presented
here, which are provided with a relation of dependence via the keyword import.
It makes it possible to extend existing classes by adding functions by an ad hoc
syntax. On the other hand the redefinition of methods, the addition of attributes
or the declaration of implementation of interfaces Java are not allowed. Never-
theless, MultiJava is compatible with separate compilation and the dynamic
loading. It also proposes an implementation of the multi-methods.

MixJuice [24], based on language Java, proposes modules in relation of
dependence and amendments of classes authorising to it (re)definition of method,
the addition of attributes and the additional declaration of implementation of
interfaces Java. In the event of multiple dependencies between modules, the
property name conflicts are solved by explicit designation; the value conflicts are
solved by a linearization la Clos. The approach is compatible with separate
compilation but does not allow the dynamic loading.

Classboxes [25] make it possible to extend the classes in Smalltalk by ad-
ditions or redefinitions of methods and attributes while controlling the visibility
of the additions since these amendments have only local impacts, the answers
to message sending are determined both by the receiver and the classbox. Thus,
contrary to the contribution of this article, amendments of classes brought by
a classbox are applied only to this classbox and to classboxes which import it,
the message sending of messages coming from others classboxes will thus not
be affected by the modification. MixJuice does not reveal the analogy between
classes and modules nor does analyse the various conflict configurations and
their resolutions. It focus to be a functional implementation of the refinement
mechanism (within the limits imposed by Java of invariance of the types and
simple inheritance), which shows the feasibility of such approach.

Hight order hierarchies of [26] are quire similar with our modules. The mo-
tivations are identical and the isomorphism of the metamodels of classes (order
1) and modules (order 2) would allow an immediate any order generalisation.
It is however not our objective and we do not push the class metaphor so far:
finally, like says it [3], our modules are not classes, at least in the sense that they
do not have instance. Module dimension is the program: it can have a single in-



stance, corresponding to the static data of an execution. But if the metaphor is
continued, a order 3 class would be an operating system, and the proposal of the
hierarchies of a higher nature becomes a little mysterious. Lastly, technically, the
two approaches differ appreciably on the multiple heritage management, that is
inevitable as we saw. [?] proposes a combination of completely ordered mixins
whereas our proposal rests on the interpretation of the multiple heritage in the
meta-model, which seems to us, since [?], the only good way of approaching the
multiple inheritance.

8 Conclusion and perspectives

We proposed in this article an extension of the class model of statically typed
languages in multiple inheritance which adds a concept of module and a mecha-
nism of refinement between classes which makes it possible in a module to amend
the imported classes of the modules on which it depends. The syntactic overload
is weak since it requires only a rudimentary module language (to express that a
module depends on another module and that a class (re)definition belongs to a
module).

It allows a better structuring of the programs (functional or temporal) thanks
to the modules and authorises more flexibility (facilitating amongst other things
the evolution of the software) thanks to refinement, a very particular point being
put on a coherent management of the conflicts aiming at respecting the principle
of specialisation between classes. Moreover, it is fully compatible with separate
compilation and without temporal or space overload for programs without dy-
namic loading of classes or modules.

Although the modules and the classes are of basically different utility [3],
our proposal is based on an strict structure analogy between these two concepts
since they are described by similar meta-models4.

In order to try out the use of refinement on the development of software, a
prototype of programming language and its compiler are being developed [15].
The objective is to test the refinement implementation in separate compilation.

However, the principal limitation comes from what it is not possible a posteri-
ori to reconsider choices already carried out such as for example the suppression
of properties and relation of specialisation or the unification of global properties.
If the suppression is not clearly useful, the unification of properties would be a
response to certain conflicts, with the proviso of managing to specify it properly.

References

1. Meyer, B.: Object-Oriented Software Construction. Prentice Hall International Se-
ries in Computer Science, C.A.R. Hoare Series Editor. Prentice Hall International,
Hemel Hempstead, UK (1988)

4 ”Importation is inheritance, why we need both.” to paraphrase [3].



2. Andersen, E.P., Reenskaug, T.: System design by composing structures of interact-
ing objects. In Madsen, O.L., ed.: Proc. ECOOP’92. LNCS 615, Springer-Verlag
(1992) 133–152

3. Szyperski, C.A.: Import is not inheritance — why we need both: Modules and
classes. In Madsen, O.L., ed.: Proc. ECOOP’92. LNCS 615, Springer-Verlag (1992)
19–32

4. Steele, G.: Common Lisp: The Language, Second Edition. Digital Press, Bedford
(MA), USA (1990)

5. Goldberg, A., Robson, D.: Smalltalk-80, the Language and its Implementation.
Addison-Wesley, Reading (MA), USA (1983)

6. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An overview of AspectJ. In Knudsen, J.L., ed.: Proc. ECOOP’2001. LNCS 2072,
Springer-Verlag (2001) 327–355

7. Kiczales, G., des Rivieres, J., Bobrow, D.: The Art of the Meta-Object Protocol.
MIT Press, Cambridge (MA), USA (1991)

8. Pavillet, G., Ducournau, R.: Implmentation des attributs boolens par un Meta
Object Protocol. In Malenfant, J., Rousseau, R., eds.: Actes LMO’99, Herms
(1999) 55–68

9. Ducournau, R., Habib, M., Huchard, M., Mugnier, M.L., Napoli, A.: Le point sur
l’héritage multiple. Technique et Science Informatiques 14 (1995) 309–345

10. Stroustrup, B.: The C++ Programming Language. Addison-Wesley, Reading
(MA), USA (1986)

11. Meyer, B.: Eiffel: The Language. Prentice Hall Object-Oriented Series. Prentice
Hall International, Hemel Hempstead, UK (1992)

12. Inconnu: Trouver des rfrences (0)
13. Ducournau, R.: Spcialisation et sous-typage : thme et variations. Revue des Sci-

ences et Technologies de l’Information, TSI 21 (2002) 1305–1342
14. Colnet, D., Zendra, O.: Optimizations of eiffel programs: Smalleiffel, the gnu eiffel

compiler. In: 29th conference on Technology of Object-Oriented Languages and
Systems (TOOLS Europe’99). Volume 10., IEEE Computer Society (1999) 341–350

15. Privat, J., Ducournau, R.: Intgration d’optimisations globales en compilation spare
des langages objets. In Carré, B., Euzenat, J., eds.: Actes LMO’04 in L’Objet
vol. 10, Herms (2004) 61–74

16. Dixon, R., McKee, T., Schweitzer, P., Vaughan, M.: A fast method dispatcher for
compiled languages with multiple inheritance. In: Proc. OOPSLA’89, ACM Press
(1989)

17. Pugh, W., Weddell, G.: Two-directional record layout for multiple inheritance.
In: Proc. ACM Conf. on Programming Language Design and Implementation
(PLDI’90). ACM SIGPLAN Notices, 25(6) (1990) 85–91

18. Cohen, N.: Type-extension type tests can be performed in constant time. Pro-
gramming languages and systems 13 (1991) 626–629

19. Vitek, J., Horspool, R., Krall, A.: Efficient type inclusion tests. In: Proc. OOP-
SLA’97. SIGPLAN Notices, 32(10), ACM Press (1997) 142–157

20. Gil, J., Itai, A.: The complexity of type analysis of object oriented programs. In:
Proc. ECOOP’98. LNCS 1445, Springer-Verlag (1998) 601–634

21. Grove, D., Chambers, C.: A framework for call graph construction algorithms.
ACM Trans. Program. Lang. Syst. 23 (2001) 685–746

22. Levine, J.R.: Linkers and Loaders. Morgan-Kauffman (1999)
23. Clifton, C., Leavens, G.T., Chambers, C., Millstein, T.: MultiJava: Modular open

classes and symetric multiple dispatch for Java. In: Proc. OOPSLA’00. SIGPLAN
Notices, 35(10), ACM Press (2000) 130–145



24. Ichisugi, Y., Tanaka, A.: Difference-based modules: A class-independant module
mechanism. In: Proc. ECOOP’2002. LNCS 2374, Springer-Verlag (2002) 62–88

25. Bergel, A., Ducasse, S., Wuyts, R.: Classboxes: A minimal module model sup-
porting local rebinding. In: JMLC 2003 (Joint Modular Languages Conference).
Volume 2789. (2003) 122–131

26. Ernst, E.: Higher-order hierarchies. In Cardelli, L., ed.: Proc. ECOOP’2003. LNCS
2743, Springer-Verlag (2003) 303–329


