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Abstract. We couple the standardized low-resolution electromagnetic tomography (sLORETA), an 
inverse solution for electroencephalography (EEG) and the common spatial pattern, which is here 
conceived as a data-driven beamformer, to classify the benchmark BCI (Brain Computer Interface) 
competition 2003, data set IV. The data-set is from an experiment where a subject performed a self-
paced left and right finger tapping task. Available for analysis are 314 training trials whereas 100 
unlabeled test trials have to be classified. The EEG data from 28 electrodes comprise the recording 
of the 500 ms before the actual finger movements, hence represents uniquely the left and right finger 
movement intention. Despite our use of an untrained classifier, and we extract only one attribute per 
class, our method yields accuracy similar to the winners of the competition for this data-set. The 
distinct advantages of the approach presented here are the use of an untrained classifier and the 
processing speed, which make the method suitable for actual BCI applications. The proposed 
method is favourable over existing classification methods based on EEG inverse solution, which 
either rely on iterative algorithms for single-trial independent component analysis or on trained 
classifiers. 

 
Keywords. Brain Computer Interface, Movement Intention, Beamforming, Joint Diagonalization, 
EEG, Inverse Solution, sLORETA, Common Spatial Pattern, Permutation Tests. 

 
 
1. Introduction  
By means of a Brain Computer Interface (BCI) humans can send simple commands to electronic 
devices without using motor activity. A major line of research pursues this goal by the acquisition 
of volitional control over the production of specific brain activities (Kübler et al, 2001; Wolpaw et 
al, 2002). A typical example is the imagination of limb movement, which engenders negative 
potentials (Bereitschaft Potential) and desynchronization of mu and beta oscillatory activity 
(Movement Event-Related Desynchronisation) in the contralateral primary motor cortex. The 
extraction and classification of these brain activities as belonging to left or right limb movement 
intention enables the emission of a binary command (Blankertz et al, 2002; Müller et al, 2004; 
Pfurstcheller et al, 1993; Wang et al, 2004). This bit of information may be coded arbitrarily, e.g., 
for displacing a cursor on the screen, opening/closing a hand orthosis, or spelling text. BCI systems 
have been originally conceived to provide a means of communication to people affected by 
"locked-in" syndrome. As a consequence of amyotrophic lateral sclerosis, brainstem stroke, brain or 
spinal cord injury, multiple sclerosis and several other diseases, human beings may experience 
difficulties in communicating with the external world. For the most severe impairments, a BCI 
offers the only possible channel of communication, thus it represents the only way for improving 
the quality of life of the patient (Neumann et al, 2003). Currently, the potential of BCI as an 
alternative or additional interface modality has been widely recognized and research is in progress 
linking BCI to new applications in multimedia technology.  

Traditionally, a great deal of attention has been devoted to the accuracy of the classification 
algorithm. For most existing BCI systems a long learning phase based on many training trials is 
necessary. Besides the characteristics of the method itself, the accuracy of the classification 
depends on at least three factors, namely, the measurement’s signal-to-noise ratio (SNR), the degree 
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of distinction of the extracted attributes and the simplicity of the brain feature under consideration4. 
Several forms of cerebral and extra-cerebral noise mask the membership and are a major cause of 
misclassification. On the other hand, how well the extracted attributes are distinct and separable 
depends strictly on how they are defined and processed, i.e., how specifically and precisely each 
attribute independently represents the different intentions of the user. The third confounding factor 
is the fact that the brain does not seem to reproduce one-to-one relationships between mental and 
physiological states. In general, the more elementary the brain process, the lower the inter-
individual and intra-individual variability, yielding a more consistent brain feature to be extracted 
for classification purposes.  

The aim of this paper is to introduce, formalize and evaluate the conjunction of data-driven 
spatial filters and electromagnetic source localization for the extraction of separable attributes 
related to left and right finger movement intention. The method is non-invasive and has only one 
major requirement; that the observable brain activities associated with each command are generated 
by sources with different spatial location in the neocortical volume. If this is the case, as for the 
desynchronization engendered by limb movement intention, it seems a natural choice to derive the 
relevant attributes taking advantage of the spatial segregation of their sources. This may be 
accomplished by, and is the very aim of, source localization methods (for a review see Michel et al, 
2004). Little work has been done investigating this opportunity, probably because several 
limitations of the EEG (electroencephalography) inverse problem need to be appropriately 
addressed for such an approach to be effective. Qin et al (2004) successfully combined independent 
component analysis (ICA), a data-driven method to solve the blind source separation (BSS) 
problem (Cichocki and Amari, 2002, Hyvärinen, et al, 2001), and frequency-specific cortical 
current density projection to classify a motor imagery dataset without training. Jun et al (2005) 
proposed to combine ICA and a source localization method based on a multi layer neural network 
with the same goal. Grave de Peralta Menendez et al (2005) reported high classification accuracy 
using a trained classifier based on frequency-domain inverse solution.  

In this paper sLORETA, the standardized low-resolution electromagnetic tomography 
(Pascual-Marqui, 2002), is used to detect activity of the left and right motor cortex using only 28 
EEG channels and an untrained classifier. sLORETA is a data-independent minimum norm inverse 
method featuring exact localization of single sources (Greenblatt et al, 2005; Pascual-Marqui, 2002, 
Sekihara et al, 2005). It is known to suffer from poor spatial resolution and to be negatively 
affected by noise. Both limitations add on as confounding factors and in general sLORETA alone 
does not allow satisfactory classification accuracy. This is shown in the Results section. Therefore, 
a spatial filter is introduced to enhance the left/right segregation capability of the sLORETA 
reconstruction, reducing the negative effect of both noise and poor spatial resolution. As compared 
to previous works our approach is a hybrid, in the sense that the classifier is untrained but some 
learning is required to find the suitable spatial filter. Thus, while our method adapts to the 
individual characteristics, it also allows fast classification, which stems from the fact that it does not 
require the lengthy iterative computations needed for the extraction of relevant components by ICA. 
More importantly, our method does not need an algorithm for the real-time automatic selection of 
relevant independent components for each trial, a task that so far has proven elusive. 

In section 2 we present a suitable theoretical framework to obtain spatially filtered sLORETA 
estimations based on inverse quadratic form operators. In section 3 we show that the common 
spatial pattern (CSP), a spatial filter previously employed for classification purposes (Blanchard 
and Blankertz, 2004; Guger et al, 2000; Ramoser et al, 2000), is optimal for maximizing the 
separation of sLORETA source power associated with the left and right hand movement intention 
as observed in the involved sectors of the primary motor cortex. The filter is here derived within a 
functional optimization framework, following the literature on beamforming (Van Veen and 
Buckley, 1988). A connection with the BSS problem is suggested as well. The performance of the 
method is assessed on self-paced left and right finger-tapping data from the BCI competition 2003, 

                                                 
4 For the sake of terminological precision throughout this paper we will use the word feature to describe the brain activity of 
interest in general (motor cortex desynchronization), whereas by attribute we will refer to the specific extracted activity 
linked to each class (e.g., the left and right motor cortex desynchronization). Thus, for this study we consider one feature and 
we extracted two attributes. 
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data set IV (Blankertz et al, 2004). The description of the data-set, along with all details on the 
feature extraction/classification method and the results are reported in section 4. Although we 
extracted only one feature and rely on an untrained classifier, our method nearly reaches the 
accuracy of the winner of the BCI competition 2003 for this data-set, demonstrating not only the 
suitability of sLORETA for extracting brain activity related to movement intention, but also, that 
adequately defining the brain feature of interest may be as important as using multiple features and 
a trained classifier. Section 5 contains our conclusions and a discussion.  

 
2. The inverse problem by quadratic forms  
The biomagnetic inverse problem (Lopes da Silva, 2004; Sarvas, 1987) generally refers to the 
estimation of location and strength of the brain dipolar sources generating electric (or magnetic) 
activity detectable by extra-cranial sensor measurements. For any linear and discrete EEG inverse 
solution the estimation of the source power γ Ω  in a region of interest Ω  (ROI) can always be 
expressed as a quadratic form reading  

( ) ( ) ( ) ( ) 2

2

T Tt t t tγ Ω Ω Ω= =v Q v H v . (2.1) 

In the first expression v(t) is a vector holding N instantaneous measurements at time sample t, 
superscript T denotes transposition and the matrix QΩ is the quadratic inverse operator referred to as 
the quadratic form matrix for ROI Ω . In the second expression HΩ is obtained by full-rank 
factorization of QΩ, such that HΩHΩ

T=QΩ (see Appendix). ||·||2 is the L2-norm. Whenever several 
time points are available, which is usually the case of real-time applications where a sliding 
window t  of arbitrary length and ending at time instant t is recursively considered, γΩ can be 
estimated directly from the sensor average outer product matrix  

( ) ( )Tt t=V v v . (2.2) 

In (2.2) <·> indicates averaging across the chosen time window. The estimation reads in this case 
( ) ( )Tt trγ Ω Ω Ω= H VH , (2.3) 

where tr(·) indicates the trace of a matrix.  
To derive these results let us consider the forward problem, which consists in computing 

the observable surface potentials knowing location, orientation and strength of all current sources. 
After modelling of the physical characteristics of the propagation medium (head), the problem has 
an approximated analytical solution (Sarvas, 1987) given by linear equation 

( ) ( )t t=v Kc , (2.4) 
where each one of the N-dimensional 3M columns of K holds the surface field (leadfield) for unit 
dipole basis component (x, y, z). Vector c(t) is 3M-dimensional and holds the three dipolar current 
components for each one of M discrete voxels (volume element). Solving (2.4) for the current 
yields an undetermined system of equations admitting infinite solutions with form 

( ) ( )ˆ t t=c Tv , (2.5) 
where the transfer matrix T is a 3M·N (right) generalized inverse of K. The least squares (minimum 
norm) and Tikhonov regularized solution for common average referenced voltage is given in the 
EEG case by (Pascual-Marqui, 2002, Eq 11) 

( )T T α
+

= +T K KK X , (2.6) 

where α is a non-negative regularization parameter taken as zero for noise-free measurements, X 
is the centering matrix (common average reference operator) and superscript + indicates Moore-
Penrose pseudo-inverse. One detail should be noted here; (2.6) assumes that all columns of K are 
centered (common average of unit scalp fields), thus so must be the voltage measurements 
entering the inverse problem. That is to say, throughout this work we implicitly consider only 
EEG and leadfield referenced to the common average. Because of the referential nature of EEG 
the Gram matrix KKT (Gross and Ioannides, 1999) has N-1 non-null eigenvalues. Similarly, the 
signal subspace dimension of the sensor average outer product V (2.2) is at most N-1. 

The minimum norm transfer matrix for α=0 is easily shown to be the Moore-Penrose 
pseudo-inverse of K and as such is unique. More precisely, it is the unique solution yielding both 
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minimum reconstruction error and minimum overall source power in the least-squares sense 
(Cichocki and Amari, 2002, p. 58). The resolution matrix (Backus and Gilbert, 1968; Pascual-
Marqui, 1999a), sometimes called resolution kernel, S=TK, is far from the identity, from which 
the idea to obtain a standardization (sLORETA). In a Bayesian framework Pascual-Marqui (2002) 
shows that the resolution matrix is the actual source variance assuming the identity as its prior, 
KKT+αX as the sensor variance prior and αX as the noise variance prior. The standardized source 
power at voxel λ is then given by the author as  

( ) ( ) ( )1ˆ ˆTt t tλ λ λ λγ −= c S c , (2.7) 
where Sλ-1 is the inverse of the λth 3·3 diagonal block of the resolution matrix and ( )ˆ tλc is the λth 
triplet of (2.5). We see that the sLORETA source power is the square of the Mahalanobis distance 
of point ( )ˆ tλc  from the origin. As a consequence, source power estimations all across the volume 
are expressed by sLORETA on the same dimensionless metric.  

For our purpose let us express the source power estimation at voxel λ equivalently by means of 
quadratic form 

( ) ( ) ( )Tt t tλ λγ = v Q v , (2.8) 

which is obtained substituting the right-hand side of (2.5) in (2.7) and posing 
1T

λ λ λ λ
−=Q T S T . (2.9) 

It is straightforward to see that for a ROI Ω  composed of an arbitrary number of voxels λ∈Ω the 
total source power is simply obtained by setting 

λ
λ

Ω
∈Ω

= ∑Q Q , (2.10) 

yielding the expressions (2.1) for time points and (2.3) for time windows. sLORETA is our choice 
as an inverse solution for this work, however everything we say henceforth applies to any linear 
inverse solution, for which Qλ=Tλ

TTλ and Tλ is found according to another method.  
 
3. Spatial filters by joint diagonalization  
Beamforming has been widely applied to systems of sensors and sources such as radar and sonar 
and have been lately adopted for directly solving the biomagnetic inverse problem (Greenblatt et al, 
2005; Sekihara et al, 2005) or for improving the performance of other inverse solution methods 
(Bolton et al, 1999; Gross and Ionannides, 1999; Rodriguez et al, 2006). For our purposes, a spatial 
filter is sought to maximize the separation of source power estimation in two ROIs, while 
suppressing noise and interference of energy originating elsewhere in the brain. A spatial filter is 
here conceived as an N·D matrix F reducing the sensor space into the beamspace FTv(t). The 
beamspace has dimension D<(N-1). The filtered source power estimation, after projection  

( ) ( )ˆ Tt t=v FF v , (3.1) 
yields expression formally identical to (2.1) and (2.3). That is to say, for a time point the filtered 
source power estimation reads  

( ) ( ) ( ) 2

2
ˆ ˆ ˆ ˆT Tt t tγ Ω Ω Ω= =v Q v H v , (3.2) 

while for a time window reads  

( ) ( )
1

ˆ ˆˆ
H

T T
h h

h
t trγ Ω Ω Ω Ω Ω

=

= = ∑H VH h Vh , (3.3) 

where ˆ T T=V FF VFF , H is the number of columns of full-column rank matrix HΩ (2.1) and hΩh is 
its hth column. The expressions for the filtered estimation as in (3.2) and (3.3) holds for both point 
regions (i.e., a single voxels) and extended regions (covering an arbitrary large volume), the only 
difference possibly being H. In the case of EEG, for point regions we have H=3, whereas for 
extended regions we have H≥3.  

The method we follow to derive the data-driven beamformers is the optimization of 
functional using extreme properties of eigenvalues (Bolton et al, 1999; Gross and Ioannides, 1999; 
Schott, 1997), which yields analytical solutions. Throughout this paper we will refer to L and R as 
to the ROI chosen to represent the sector of the left and right primary motor cortex implicated in the 
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desynchronization. Let VL and VR (2.2) be the grand average outer product of sensor measurements 
for available training trials corresponding to left and right limb movement intention, respectively. 
These two matrices, taken here as prototypes, carry a common covariance structure reflecting 
background noise plus interference (brain activity not related to the movement intention) and a 
peculiar covariance structure reflecting the source activity in L and R. The problem of extracting 
and maximizing the latter in L as compared to R and vice versa may be posed for each pair of 
vectors fd and fe of F such as 

( ) ( )
max , max

d e

T T
d L d e R e

T T
d L R d e L R e

      
   

+ +      f f

f V f f V f
f V V f f V V f

,(3.4) 

with constraint of unit norm for each vector of F. Only N-1 vectors of F are considered because one 
degree of freedom is lost in the reference, as seen in section 2. A set of vector pairs maximally 
divergent in the sense of (3.4) is obtained by finding the N·N-1 matrix F as the joint diagonalizer of 
VL and VΣ=VL+VR  (Fukunaga, 1990, p 33-34), i.e., in such a way to verify 

 
T

T
L

T
R

Σ =


=
 = −

F V F I

F V F W

F V F I W

 (3.5) 

where W=diag(W1≥W2≥…≥WN-1), I-W=diag(1-W1≤1-W2≤…≤1-WN-1). The vectors in F are sorted so 
to “absorb” progressively less and less energy from VL and more and more energy from VR and, by 
construction, the vectors f1 and fN-1 are those best differentiating the structural information 
embedded in those two matrices. Indeed the eigenvalues associated with those two vectors are the 
extrema attaining the maxima of the functionals in (3.4). 

The matrix F actually holds all solutions to the first maximization problem in (3.4) and the 
same matrix, but with vectors in reverse order, holds the solutions to the second maximization 
problem. In other words, the two solutions are reflections to each other along the main diagonal. 
The pairs of corresponding vectors are f1 and fN-1, f2 and fN-2 etc.. For BCI purposes we will consider 
two filters FL and FR, both of dimension N·D, each one targeting the respective ROI and defined 
such that FL holds the first D<(N-1)/2 vectors of F while FR holds the last D<(N-1)/2 vectors of F 
in reverse order. To see how the filter acts let [ ]L R=F F NF  be an arbitrary partition of the joint 
diagonalizer, which number of vectors in each partition depends on the choice of D. Given the outer 
product matrix Vtest of an unlabeled trial and since FFT= FLFL

T + NNT + FRFR
T, we can expand the 

filtered source power estimation for ROI L in (3.3), such as 
( )

( ) ( ) ( )
( ) ( ) ( )

ˆ

2 2 2 .

T T T
L L test L

T T T T T T T T T
L L L test L L L L test L L R R test R R L

T T T T T T T T T
L L L test L L L L test R R L L R R test L

tr

tr tr tr

tr tr tr

γ = =

+ + +

+ +

H FF V FF H

H F F V F F H H NN V NN H H F F V F F H

H F F V NN H H F F V F F H H F F V NN H

(3.6) 

By construction, the last three terms of the sum (cross-terms) vanishes as Vtest approaches LV  or 

RV , that is, they are small for trials close to the prototypes. The first term, the projection on the 
beamspace, is maximized, while the third, which here we call the projection on the antibeamspace, 
is minimized. The second term describes an indecision region, the space spanned by the vectors of 
F which eigenvalues are similar, that is, the vectors creating a beamforming projection with 
minimal separation capability. The equivalent expression for ˆRγ , the filtered source power 
estimation for ROI R, is obtained using HR instead of HL in (3.6); in this case the first term is 
minimized, while the third is maximized. Thus, the beamspace for one ROI is the antibeamspace 
for the other. Equation (3.6) shows the actual stop-band regions for filter FL and FR. In conclusion, 
the two filtered source power estimations provide an ideal coupling of attributes for detecting 
separation of energy originating in two ROIs.  

The derivation of a beamspace given by such filters associated to ROI L and R has been 
previously called Common Spatial Pattern (CSP). Several authors applied the CSP to EEG data for 
the purpose of extraction of abnormal EEG components (Koles, 1991), EEG source localization 
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(Koles and Soong, 1998) and for classification of trials for BCI feature extraction (Blanchard and 
Blankertz, 2004; Guger et al, 2000; Ramoser et al, 2000). However, none of the authors also 
applied the CSP to an inverse solution to target the sources of the scalp spatial patterns. We found 
this further step very effective for our purpose.  

Another link to the literature is established considering that, under certain circumstances, the 
joint diagonalization of two covariance matrices has been shown to solve the blind source 
separation (BSS) problem (Parra and Seida, 2003). The problem, which is also the aim of 
independent component analysis (ICA), consists of estimating the time courses of the actual sources 
observing only a linear mixture of them. The problem is said to be blind because no knowledge of 
the mixing process, hence on the propagating medium, is assumed. In our case the observed 
mixtures are the sensor measurements (2.4) and the sources are the activities of neuronal clusters 
associated with each of two commands plus interference and noise. An advantage of considering 
the grand average outer product matrix is that inter-trial uncorrelated noise will asymptotically 
vanish in the averaging processing. However, noise correlated across trials, such as eye movements, 
which tend to have a similar temporal course, will not. It is well known that sources can be 
estimated by BSS methods only up to a trivial permutation (order) indeterminacy. We have already 
stated that the relevant sources are always found by the CSP to be associated with the first and last 
D vectors of the filter. The reason why this is the case here is evident from the construction of the 
filter (3.5). 
 
4. Evaluation and method  
In this section we report relevant information about the data set IV of the BCI competition 2003. 
This data set is used to evaluate the combination of inverse solution and data-driven spatial filters 
for extracting relevant brain features. We then detail the method of training data analysis, which 
consist in defining a suitable frequency band-pass region, an optimal spatial filter, and the two 
ROIs. Finally we set our classification criterion and report the results of the classification of the 
benchmark data.  
 
4.1. The Data Set 
The data set was recorded from a non-clinical subject during a self-paced key pressing task. The 
subject sat in a normal chair, with the arms relaxed on a table and fingers in the standard typing 
position at the computer keyboard. The task was to press with the index and little fingers keys using 
either the left or right hand, in a self-paced timing and self-chosen order. The experiment consisted 
of three sessions of six minutes each, with a few minutes of break between sessions. The average 
key pressing speed was one second. EEG was acquired at 28 leads (F3, F1, Fz, F2, F4, FC5, FC3, 
FC1, FCz, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6, O1, 
O2) with a 1000 Hz sampling rate. The position of electrodes in realistic Talairach space (Talairach 
and Tournoux, 1988) according to the 3-shell spherical head model implemented in the freeware 
LORETA-Key (available for download at http: //www.unizh.ch/ keyinst/ NewLORETA/ 
LORETA01.htm) is shown in figure 1.  
 

 
Figure 1. Electrode montage used to collect EEG in the BCI competition 2003, data set IV. The brain is seen 
from the left. All electrodes are depicted according to their actual position in the head model implemented in 
the LORETA-Key software as co-registered to the Talairach space.  
 

Epochs of 500 ms were extracted ending 130 ms before the key press. The epochs were divided 
in a training set and a test set. There were 159 epochs for left movements and 157 epochs for right 
movements in the training set. The test set consisted of 49 epochs for left movements and 51 epochs 
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for right movement. Other details on the data-set can be found in Blankertz et al (2004). The task of 
the BCI competition 2003 for this data set was to classify the test trials using only the information 
contained in the training set.  
 
4.2. Definition of Frequency Band-Pass Region  
Our strategy for classifying these data is the spatial segregation of the contralateral 
desynchronization engendered in the motor cortex by the intention of movement of the left and 
right fingers. This activity is known to involve the frequency components mu and beta. The first 
step is then the definition of the frequency band-pass region better differentiating between the two 
alternative tasks. Before processing, we resampled the data to 128 samples per second by means of 
a natural cubic spline interpolation routine (Congedo et al, 2002). This sped up further 
computations and allowed the use of the fast Fourier transform algorithm, which requires power of 
two samples, without padding the data. The LORETA-Key software was used to compute the 
leadfield for a 3-shell spherical head model and for estimating the optimal amount of regularization 
for computing the sLORETA transfer matrix, that is, the α parameter in (2.6). For this purpose, all 
available training data entered a leave-one-out cross-validation procedure (Pascual-Marqui, 1999b). 
The regularization needed was estimated to be 104. The volume considered in LORETA-Key 
comprises 2394 voxels of dimension 7mm3 covering the gray matter according to the probability 
atlas of the Montreal Neurological Institute (Pascual-Marqui, 1999a). Next, we ran a sLORETA 
multiple comparison randomization-permutation t-max test (Holmes et al, 1996) in the frequency 
domain. The aim of the test is to compare voxel-by-voxel the mean source power in the left and 
right trials of the training set for sixteen 2-Hz frequency band-pass regions spanning the 2-32 Hz 
range. The test procedure repeatedly shuffles at random the labels "left" and "right" for training 
trials. At each shuffling (permutation), t-tests ("left" minus "right") are computed for all voxels to 
approximate the exact distribution of maximal t-statistics under the global null hypothesis (Holmes 
et al, 1996; Westfall and Young, 1993). Before entering the test procedure all source power values 
were natural log transformed and normalized to within-volume unit norm. The first transformation 
aims at approximating symmetry of spectral data, a weak assumption of the test, whereas the 
second minimizes the influence of artifacts and other abnormal activity with stronger energy than 
normal EEG. Notably, neither transformation alters the overall results of the test, but may help in 
preserving its power. What has been listed so far is standard statistical procedure for analyzing 
electromagnetic data in cognitive or clinical studies (for more details see Lubar et al, 2003. A 
freeware for multiple permutation tests is included in the NTE Pack 2005, available for download at 
www.NovaTechEEG.com). There are 2394 voxels for 32 frequency bins, for a total of 76608 
simultaneous tests. The control of the family-wise error rate is guaranteed by the test procedure 
(Westfall and Young, 1993), i.e., the probability to erroneously reject even only one null hypothesis 
(declaring a voxel as significant whether it is not) is kept below 0.05. The test was run using 5000 
random data permutations. 

 



Classification of Movement Intention by EEG Inverse Solution, Congedo, Lotte and Lécuyer 

 8

 
Figure 2: Significant results of the multiple-hypothesis permutation t-test comparing the mean source power 
of left and right training trials at each voxel. The cortical representation is the one implemented in the 
LORETA-Key software, which is based on the Atlas of Talairach and Tournoux (1988). All images are top 
views, with front of the brain up. Each image refers to the test for a frequency bin starting at 12 Hz and 
ending at 30 Hz, in 2-Hz increments. The voxel-by-voxel contrasts entered the test as left minus right, thus 
positive t-values (red-coded) indicate stochastic dominance of the source power produced by left movements 
trials while negative t-values (blue-coded) indicate stochastic dominance of the source power produced by 
right movements trials. Each image is scaled to its own absolute maximum. Only significant t-values (with 
family-wise error controlled at the 0.05 level) are colored. 
 

The spatial distributions of the t-statistics for all frequency bins for which significant results 
were found are shown in the form of cortical images in figure 2. The threshold for rejecting the null 
hypothesis was found to be t*(312)=±4.33, to which the corrected p-value upper bound of 
significance can be found by normal approximation to equal 0.00000745. Therefore these results 
depict robust shifts in the central tendency of the two distributions. Significant results were only 
found between 12 and 30 Hz. Evidently, as compared to right movement trials, left movement trials 
engender a desynchronization in the contralateral motor cortex and/or a synchronization of the 
ipsilateral motor cortex, and vice versa for right movement trials. Since data about a baseline 
(control) condition for each task is not available, that is all we can conclude with this test as far as 
hypothesis testing is concerned. However, from the literature, we know that intention of movement 
is associated with contralateral desynchronization rather than with ipsilateral synchronization. In 
any case, we are not concerned with the two marginal effects, but only with their interaction, as 
suggested in (3.5). Thus, for any practical purpose we can associate movement intentions with an 
increase in source power in the ipsilateral motor cortex. Qin et al (2004) arrived at this same 
conclusion.  

Figure 3 shows the maximal and minimal t-statistic across the volume for each frequency bin 
and their relation with the threshold of significance. Refer to the caption for details. Following the 
graph, a sharp frequency window for which the central locations of the source power distribution in 
the two hemispheres maximally diverge is 14-26 Hz. All data (training and test) was therefore 
band-pass filtered using this range by means of inverse fast Fourier transform with a do-nothing 
(rectangular) time-domain tapering window. 
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Figure 3. Frequency distribution of t-statistics maxima and minima in the volume. The lower dotted line plot 
indicates the (negative) t-minima, which are consistently found in the proximity of the right motor cortex. The 
upper dotted line plot indicates the (positive) t-maxima, which are consistently found in the proximity of the 
left motor cortex (see figure 2). The thick grey line plot in the upper portion of the graph is the average of the 
two extrema taken as absolute values. The semi-transparent panel in the foreground indicates the region of 
acceptance of null hypotheses as found by the permutation test. The vertical box includes the chosen 
frequency band-pass region. 
 
 
4.3. Filter Definition 
In this paper we use a single feature, the sLORETA filtered source power in two spatially 
segregated ROIs, L and R. The filter and the resulting projection of the data have been defined in 
(3.5) and (3.1), respectively. The projection aims at the maximal difference of the source power 
associated to each ROI. Using the 159 left fingers movement intention training trials and the 157 
right fingers movement intention training trials we computed the grand average outer product 
sensor measurement matrices VL (left) and VR (right), already introduced in section 3. A method to 
find the joint diagonalizer F of matrices VR and VΣ=VR+VR is to find in succession two matrices A 
and B such that  

 

( )
1.

2.

T

T T
R

identity

diagonal
Σ =

=

A V A

B A V A B
 (4.1) 

 
from which we obtain a matrix satisfying (3.5) as 

 
=F AB . (4.2) 

 
Matrices A and B are easily found by means of eigenvalue-eigenvector decomposition (EVD) with 
a two-step procedure. Let EVD(VΣ)=ΓΣΨΣΓΣ

T, where ΓΣ holds in columns the eigenvectors and ΨΣ 
holds in diagonal the eigenvalues. We set ΨΣ

-1/2ΓΣ
T =AT and the first relation of (4.1) is verified. 

Then, let EVD(ATVLA)=ΓLΨLΓL
T. Setting ΓL

T=BT, (4.1) is verified altogether (Fukunaga, 1990; 
Schott, 1997).  

In section 3 we advanced an analogy between the beamspace and the source space within a BSS 
framework. Here we make use of this analogy. Particularly, the matrix FT (see section 3) is the 
equivalent of the unmixing matrix. The mixing matrix is therefore its pseudo-inverse  

 

( ) ( ) 1
2T T T

L

+ +

Σ Σ= = =G F B A Γ Ψ Γ , (4.3) 

 
where we have been using the orthogonality of eigenvector matrices. Note that G≠F as a 
consequence of the fact that the joint diagonalizer is not orthogonal unless VΣ and VL commutes in 
multiplication (Schoot, 1997, p 155-157), which in general is not the case. Nonetheless, there is a 
one-to-one relation between the columns of G and the columns of F. Figure 4 shows the sLORETA 
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images corresponding to the first five and last five among the 27 (N-1) non-null columns of G, 
which represent scalp spatial patterns of left and right finger movement intention. This is a well-
known result routinely employed in the BSS literature. Letting gd be a column of G, with d=1…27, 
the corresponding sLORETA source power estimation all over the volume is obtained computing 
gd

TQλgd at each voxel λ, following (2.8). Since the spatial patterns reflect source activity, which we 
assume to be noiseless, these sLORETA source power estimations have been here obtained without 
regularization. Note that obtaining F and G from the joint diagonalization of VΣ and VR (instead that 
of VΣ and VL) is equivalent, in that the resulting columns of both matrices (hence the spatial 
patterns) are the same in reverse order, which results from the construction of the filter (3.5). That 
is why this joint diagonalization method has been called “common spatial pattern”, although this 
terminology may seem contradictory, in that those patterns seek indeed the spatial 
“uncommonality” between the “left” and “right” covariance structure.  

Figure 4 illustrates appropriately the formation of a beamspace, an indecision space and the 
antibeamspace, according to terminology introduced in section 3. Spatial patterns are arranged in 
pairs and so are the columns of the filter. The source activity of interest is the desynchronization of 
the sectors of the primary motor cortex corresponding to the left and right finger movement 
intention, which in figure 4 is seen as increased source power in the ipsilateral side (see subsection 
4.2.). Notice the contralateral correspondence of the first two (left beamspace, or right 
antibeamspace) and last two (right beamspace, or left antibeamspace) spatial patterns. Spatial 
patterns from 3 to 25, included, describe the indecision region (among those, only patterns 3-5 and 
23-25 are shown). They correspond to vectors with little separation capability since their sources do 
not belong to regions where a consistent difference in source power for left and right movements is 
observed. More importantly, the differences observed for those vectors are not localized in the 
primary motor cortex. Based on this analysis we set D=2 (the beamspace dimension defined in 
section 3). Therefore the actual filters employed are  

 

1 2 27 26,L R   = =   F f f F f f , (4.4) 

 
where df  is the unit norm dth column of F in (4.2). The normalization fulfils the constraint of the 
maximization problems stated in (3.4) and assign equal weight to each projection vector.  
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05  
… 

 

23   

24  

25  

26  

27  
Figure 4. sLORETA cortical images of the spatial patterns associated with vector 1-5 and 23-27 of the 

spatial filter. The spatial patterns are the vectors of the mixing matrix G as defined in (4.3). For each image, 
from left to right, are shown the left lateral and medial view, the right lateral and medial view and the bottom 
view. Each image is scaled to its own maximum. The activity is color-coded with black representing the 
maximum and white representing zero. Legend: A=Anterior; P=Posterior; S=Superior; I=Inferior; L=Left; 
R=Right; 
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4.4. Definition of the Regions of Interest 
The next step is the definition of the location and extent of the two ROIs L and R best 
differentiating left and right fingers movement intention respectively. For this purpose we use the 
regularized filtered source power estimation of the grand average sensor measurements outer 
product matrix for training data corresponding to left and right fingers movement intention. Using 
(3.3) for each voxel λ, we obtain such a grand average estimation as ( )ˆT

Ltr λ λH V H  for left fingers 

movement intention and ( )ˆT
Rtr λ λH V H  for right fingers movement intention. In the above 

expressions Hλ is the N·3 full-rank factorizations of the inverse quadratic form operator for voxel λ, 
while ˆ T T

L L L L L L=V F F V F F  and ˆ T T
R R R R R R=V F F V F F  are the projected grand average outer product 

matrices for left and right finger movement intention. Deriving the images from actual EEG data, 
the regularization helps in suppressing the noise. The resulting sLORETA images are shown in 
figure 5. 

 

 
Figure 5. Regularized sLORETA cortical images showing the filtered source power of left (top row) and 
right (bottom row) finger movement intention grand average training trials. For the meaning of the graphical 
representation and legend see the caption of figure 4. 
 
 

Figure 5 shows that the filtered average source power has high spatial specificity for the two 
involved sectors of the primary motor cortex. The two activation regions are nearly symmetric 
along the midline. The region on the left hemisphere has maximum (2.91e-7) at Talairach 
coordinates x=-59, y=-39, z=50, while the region on the right hemisphere has maximum (1.47e-7) 
at x=53, y=-18, z=57. As compared to the right region, the maximum of the left region is located 6 
mm more lateral (x-axis), 21 mm more posterior (y-axis) and 7 mm more inferior (z-axis). The only 
relevant asymmetry seems to be along the y-axis. There are many reasons that could account for 
this, including 1) asymmetry of the motor cortex in this individual, 2) the use of a spherical head 
model, 3) asymmetry of electrode placements, 4) noise, and 5) the non homogeneous scalp 
sampling due to the electrode placement for this experiment (Michael et al, 2004; Van Veen et al, 
1997), which is shown in figure 1. It is noteworthy that the first of the above causes of concern is 
not critical for our purpose, because the head anatomy is constant. On the other hand the last four 
may have affected the accuracy of the source localization and may limit the classification accuracy 
based on source localization. In any case, the agreement of these images with the results of the 
permutation test (figure 2) is substantial. 

The motor cortex has a topographic organization and body parts follow closely in their cortical 
representation. Therefore we assume that the sources implicated with finger movement have small 
coverage. Our current space sampling allows a resolution of 7mm3. We estimated the voxel 
carrying maximal divergence (as seen on data by the spatial filter) to be a good representation of the 
neuronal activity of interest. Thus we define the left ROI L and right ROI R as the voxels 
displaying the maxima in figure 5. This choice was also suggested by the performance of a simple 
linear classifier (on the training set) obtained using ROIs centered at the maxima and varying their 
dimension.  
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4.5. Classification of the Test Set 
Classifying trials in which membership is unknown requires a classification criterion. Traditionally 
BCI relies on trained classifiers; a learning algorithm is employed and its job is to learn how to 
assign membership based on training data. In the introduction we stated that our approach is hybrid. 
We do not rely on iterative ICA algorithms to extract the activity of interest from each trial. Rather, 
we use training data to design a filter able to accomplish the same task, but much faster. The other 
advantage of our approach is that the classification algorithm itself is untrained. Given a test trial 
with average sensor measurements outer product Vtest we obtain directly the filtered source power 
estimation in L as (see equation (3.6)) 

( )ˆ T T T
L L L L test L L Ltrγ = H F F V F F H  (4.5) 

and in R as  
( )ˆ T T T

R R R R test R R Rtrγ = H F F V F F H . (4.6) 

The classification criterion is then simply set such as 
ˆ ˆclassify trial as finger movement intention if

ˆ ˆclassify trial as finger movement intention if
L R

L R

left

right

γ γ

γ γ

 >


<
,(4.7) 

that is, after plotting in a Cartesian space the point with coordinates ( )ˆ ˆ,L Rγ γ , the classifier is the 
line with equation y=x.  

It has been found that movement-related potentials associated to different body parts do not 
differ on the scalp as soon as the movement is planned. Rather, in a first phase, starting several 
seconds before electromyographic (EMG) activity, the potentials are indistinguishable. In a second 
phase, starting approximately 500 ms before EMG onset, the potential associated to different body 
parts begin to diverge. This divergence is more pronounced on the vertex (Cz electrode) and 
increase as the EMG onset approaches, being maximal just before EMG onset (Jankelowitz and 
Colebatch, 2002). Thus, it appears that the preparatory phase engender common spatial activation, 
whereas body part-specific activity takes place shortly before the actual movement. Our 
classification method relies on the spatial segregation of brain activity related to the intention of 
movement of different body parts. Based on these evidences, the test trial average outer product 
matrix as computed only the last portion of the trial may carry more spatial specific information 
that the average outer product matrix computed on the whole available trial. For each test trial we 
repeated the classification task using Vtest computed on the whole available data (500 ms for this 
benchmark) and using Vtest computed on the last 250 ms only. 

The pre-processing steps to which the test data was submitted were exactly the same to which 
the training data were submitted. Namely, the trials were down-sampled to 128 samples per second 
and band-pass filtered in the region 14-26 Hz. The classification processing consisted uniquely in 
source power magnitude comparison as per (4.7). 
 
4.6. Results 
The accuracy rate in this study is defined as the proportion of correctly classified test trials. This 
was the accuracy criterion used in the BCI competition 2003. The data set contains a total of 100 
test trials, of which 49 pertain to left finger movement intention and 51 to right finger movement 
intention. Plots of filtered source power estimation in L and R for both left and right fingers 
movement intention, for the training and test set and estimating the average outer product matrix 
from all available 500 ms or only the last 250 ms, are shown in figure 6 (A, B, C, D). As a 
comparison, plots of unfiltered source power in the same ROIs (raw sLORETA) obtained 
considering the last 250 ms for each trial are shown in Fig 6 (E, F). Those may be directly 
compared to figure 6 (C, D). For graphical accommodation, we plot the natural logarithm of the 
source power estimation previously multiplied by a large constant (105). Using only the last 250 ms 
the classification accuracy for the training set (figure 6D) equals 83% using the filter, which is very 
close to the score reached by the winners of the competition for this data set (84%: Wang et al, 
2004), despite our use of an untrained classifier and only one attribute for each class was extracted. 
On the other hand the classification accuracy employing sLORETA without spatial filtering on the 
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same data is significantly lower (78%: figure 6F). It should be noted that when using no spatial 
filter the points are more scattered, indicating lower classification power. 

 

 

 

 
Figure 6. Scatter plots depicting the results of the classification. In each plot on the x-axis and y-axis is the 
source power in the left and right region of interest (ROI), respectively. Left column (A, C, E): results on the 
training set (159 Left + 157 Right trials). Right column (B, D, F): results on the test set (49 Left + 51 Right 
trials) . Top row (A, B): results obtained using the filter on the whole available 500 ms for each trial. Middle 
row (C, D): results obtained using the filter on the last 250 ms for each trial. Bottom row (E, F): results 
obtained with no filter (raw sLORETA) on the last 250 ms for each trial. The untrained classifier is 
represented by the thick grey line, which has equation y=x. According to (4.7), right fingers movement 
intention trials (black squares) are correctly classified if they fall above the line, while left fingers movement 
intention trials (white squares) are correctly classified if they fall below the line. The classification accuracy 
is printed as percentage of correctly classified trials near the bottom-right corner of each plot. 
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5. Conclusions and Discussion  
 
The aim of this paper was to investigate the coupling of sLORETA and a data-driven filter 

for the purpose of classifying movement-related desynchronization engendered by finger movement 
intention. The filter here adopted may be conceived as a beamformer particularly designed for 
classification purposes and its application to an EEG inverse solution has been proposed here for 
the first time. As shown, a source localization method alone does not allow sufficient classification 
power for the purpose of classifying motor cortex desynchronization. For this reason previous 
works relied on either independent component analysis or on a trained classifier. In actual BCI 
implementations the first approach (Jun et al, 2005; Qin et al, 2004) would require dedicated 
parallel processing units in order to extract the independent component in real-time. Furthermore, 
the automatic selection of relevant independent components is cumbersome. The second (Grave de 
Peralta Menendez et al, 2005) would require a long training phase for the classifier, still, it is our 
impression that any attempt to use raw inverse solutions to localize movement-related 
desynchronizations from the noisy single-trial EEG is vain. Our approach has been presented as 
hybrid, in that on one hand a learning phase is required to estimate the spatial filter and on the other 
the classifier is untrained. The advantage of such an approach is the speed of computations required 
(matrices FLFL

THL in (4.5) and FRFR
THR in (4.6) are computed off-line) preserving the ability to 

adapt to the individual brain characteristics. No automatic selection of independent component is 
required. Therefore our approach is suitable for actual BCI applications as it stands.  

Since the spatial filter is data-driven, new available trials can be used to refine the projection 
filters FLFL

T and FRFR
T

 on the background while the BCI system is at work. Given that only 
prototypical trials are used to update the filter, we may expect the spatial filter so constructed to be 
asymptotically optimal. The method presented hereby reached 83% classification accuracy on the 
test set using the last 250 ms of data for each trial. The result is obtained using a single feature. An 
inspection of the scatter plots in the right column of figure 6 reveals that some of the misclassified 
test trials are far away from the separating line. This is especially true for right finger movement 
intention trials (black squares in the figure). These data suggest that the obtained classification 
accuracy could not be dramatically improved over the current result using only the event-related 
desynchronization feature. Many research teams analyzed this data set for the BCI competition 
2003 using a great variety of features and classification algorithms, yet only Wang et al (2004) 
outperformed the present result. Hence, we may actually hypothesize that the obtained 
classification accuracy could not be dramatically improved upon, even using additional features and 
trained classifiers. Rather, for some trials the membership may be confounded. This is a natural 
occurrence in an experiment involving self-paced repetitive tasks in which the subject may not be 
able to keep a constant level of concentration and performance throughout the duration of the 
experiment.  

It may be surprising that using an untrained classifier and a single feature, we obtain nearly the 
same classification accuracy obtained by Wang et al (2004), who used a trained classifier and three 
features, two related to the Bereitschaft potentials and one related to the event-related 
desynchronizations. Two common mistakes in classification tasks amount to improper definition of 
attributes and to the assumption that the best classifier is the one best fitting the training set. 
Multiple attributes are useful as long as their joint probability vanishes. It is well-known that if this 
is not the case, multiple attributes are redundant and the SNR drops down. On the other hand, one 
should not seek necessarily the best fit of the training data, since such a classifier guarantees fitting 
of the available sample, but not of the population of interest. This phenomenon is knows as 
overlearning.  Actually, the smaller the number of observations (training trials) and the lower their 
SNR, the lower the ability to estimate the best classifier from that sample. Rather, one should seek, 
as much as possible, parameters independent from the training data to tune the classifier. This is the 
strategy we followed. Wang et al (2004) reported 92.98% classification accuracy on the training set 
and 84% on the test set. Such a difference is a typical outcome of overlearning. Our classifier 
features similar classification accuracy for the training and test set, both using 500 ms of data or 
only the last 250 ms (figure 6). This shows that our classifier did not overlearn (actually it did not 
learn at all). Sure enough we could have marginally increased the classification accuracy of this 
data set adding a feature related to the Bereitschaft potentials. However, our aim was restricted at 
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showing the feasibility of classifying movement-related desynchronizations by coupling an accurate 
inverse solution with a suitable data-driven spatial filter. 

In EEG, the SNR of single-trials is very low and the noise affects the localization accuracy of 
linear inverse solutions. The data-driven filter we designed aims at separating the interesting 
components associated to the movement intention. In doing so it clearly has a noise-suppression 
capability. However, we cannot ascertain at the present stage if the previous use of blind source 
separation would provide additional advantages for noise removal.  

The method currently presented is subject to major improvements, especially related to the 
definition of the location and extent of the brain regions of interest involved in motor planning. It 
should be stressed here that spatial segregation of sources belonging to different classes does not 
assume that the sources are point-like or that they are confined to small neuronal populations. As 
long as the sources are spatially segregated, the linear superposition principle holds and sources 
may as well be composed of clusters of neuronal populations, physiologically connected, but 
possibly far away from each other in space (Van Veen et al, 1997). The accurate definition of such 
neuronal grouping is therefore a major task for the success of the method and a challenging line of 
research for future investigations. In addition, multiple regions may be employed, associated to 
multiple frequency and temporal windows. Of course, the use of a more realistic head model based 
on the magnetic resonance images of the subject and the use of more electrodes would increase the 
accuracy of the source localization method itself, hence of the method described in this paper 
altogether. Further margin for improvement concerns the definition of the prototypical covariance 
structures VL and VR used to define the filter (Section 3). In this respect ICA may be very useful. 

There are several indicators that suggest movement-related brain activity has a distinct spatio-
temporal course. Early motor planning seems to be generated in the supplementary motor area 
(SMA), whereas other pre-motor areas seem to be involved before the primary motor cortex itself 
(Jankelowitz and Colebatch, 2002). Implication of the SMA in this study is noticeable in the pair of 
spatial patterns 3 and 25 (figure 4). Detection of SMA activation may prove useful for early 
detection of movement intention, a fundamental task necessary for actual BCI applications. The 
time course of brain activations, specific in space and frequency, may constitute a powerful way to 
exploit the advantage of EEG inverse solution over raw scalp potentials. For this reason we believe 
that source localization methods are going to draw more and more attention in the BCI community.  
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Appendix 
We here remind a classic result of linear algebra proving the last equality in equation (2.1). We 
are concerned with quadratic forms of the kind vT(t)Qv(t), with v(t) non-null and Q positive-
definite, symmetric and non defective. In the following we omit the time index. Let P=rank(Q). 
Then, the eigenvalue-eigenvector decomposition 

TT µ
µ η µ η

η

 
   = =       

W 0
Q UwU U U U U

0 0
       

is such that Uµ contains, in columns, the P dominant eigenvectors and Uη contains the remaining 
N-P eigenvectors; similarly, Wµ holds, in diagonal, the P positive eigenvalues, with W1≥…≥ 
WP>(WP+1…WN = 0). If we pose P·N matrix 1

2T T
µ µ=H W U  such that HHT=Q and project the sensor 

measurements space into z=HTv, it follows 2
1

PT
pp

z
=

= ∑v Q v . The equality is seen as 

( )1 1
2 22

1

P T T T T
pp

z
µ=

= = =∑ z z v UW W U v v Q v .  
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