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FuRIA: A Novel Feature Extraction Algorithm for Brain-Computer
Interfaces using Inverse Models and Fuzzy Regions of Interest

Fabien Lotte, Anatole Lécuyer, Bruno Arnaldi

Abstract— In this paper, we propose a new feature extraction
algorithm for Brain-Computer Interfaces (BCIs). This algo-
rithm is based on inverse models and uses the novel concept of
fuzzy Region Of Interest (ROI). It can automatically identify
the relevant ROIs and their reactive frequency bands. The
activity in these ROIs can be used as features for any classifier.
A first evaluation of the algorithm, using a Support Vector
Machine (SVM) as classifier, is reported on data set IV from
BCI competition 2003. Results are promising as we reached an
accuracy on the test set ranging from 85% to 86% whereas the
winner of the competition on this data set reached 84%.

I. INTRODUCTION

Brain-Computer Interfaces (BCIs) are communication sys-
tems that enable to send commands only by means of brain
activity [1]. ElectroEncephaloGraphy (EEG) is the most
common way of measuring this activity for a BCI system.
Consequently, identifying the brain activity through EEG has
become a major challenge in the design of efficient BCIs.
Two key points are involved in this identification, namely,
feature extraction and classification [2]. Feature extraction
aims at describing the EEG stream by a few relevant values
called features while classification aims at automatically
assigning a class to these features. In this paper we address
the problem of feature extraction for which it is admitted
that the exploration of new algorithms is necessary [3].

During the last 3 years, inverse models have shown to be
promising feature extraction algorithms [4] [5] [6] [7]. Such
models are able to compute the activity in the whole brain
volume, only using EEG and a head model that generally
represents the brain as a set of voxels (volume elements).
The activity thus calculated in some relevant brain regions
or voxels has been used as efficient features for BCI systems.

Despite recurrent good results, some limitations remain.
Actually, it appears difficult to conciliate both generecity,
i.e., the ability to deal with any kind of mental task, and
generation of few features. On one hand, automatic and
generic methods generate a very high number of features,
due to the consideration of the activity of single voxels
[5]. Actually, these voxels can be dependant and as such
should be gathered in brain regions. On the other hand,
methods generating few features were proposed but are
not generic anymore as they require a priori knowledge
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and are only suitable for motor imagery [4] [6]. Finally, a
recently proposed method was both generic and generator of
few features due to the gathering of dependant voxels into
Regions Of Interest (ROIs). However, this method suffered
from not being fully automatic and being limited to the use
of two ROIs which spatial extension was hard to define [7].

This paper aims at addressing those limitations. Indeed,
we propose a generic feature extraction algorithm that can
automatically identify any number of relevant ROIs and can
properly define their spatial extension thanks to the novel
concept of fuzzy ROI. We called this algorithm FuRIA,
which stands for Fuzzy Region of Interest Activity.

II. THE FURIA ALGORITHM

FuRIA is a trainable feature extraction algorithm. Indeed,
it can automatically identify what are the relevant ROIs for
mental task discrimination and in which frequency bands
they react. Describing the brain activity using FuRIA consists
in computing the activity in those ROIs, in their correspond-
ing frequency bands. This Section proposes an overview of
FuRIA and describes the different steps that compose it.

A. Overview of the algorithm
In order to use FuRIA, an initial training phase is required.

This phase is performed offline and is divided into five steps
which will be described more deeply in the next Sections:

1) Statistical analysis: A statistical analysis comparing
the different classes (mental tasks) is performed for
each frequency and each voxel. The goal is to identify
the voxels which activity for a given frequency can
discriminate the classes.

2) Clustering: A clustering algorithm is performed in
order to gather voxels, which activity is statistically
discriminative, into different ROIs.

3) Fusion: ROIs found at similar spatial locations, in
consecutive frequencies, are fusionned and identified
as reactive in the frequency band resulting from the
concatenation of these frequencies.

4) Adaptation: For each ROI obtained during fusion,
another statistical analysis is performed in order to
remove voxels that are not significant anymore in the
reactive frequency band identified at the fusion step.

5) Fuzzification: Each ROI is “fuzzified”, i.e., turned as a
fuzzy ROI (cf. Section II-F) in order to properly define
its spatial extension.

Once the training phase is achieved, feature extraction
consists in filtering the EEG signals in the reactive frequency
band of each fuzzy ROI found and then using a given inverse



model to compute its activity. These activity values are then
concatenated into a single feature vector that can be used
with any classifier. The following sections detail these five
training steps.

B. Statistical Analysis
This step consists in comparing, using a statistical test, the

mean value of each voxel activity, possibly averaged over
a chosen time window, between the different classes. This
statistical analysis is performed separately for each one of the
Nf considered frequencies. Once this analysis is done, we
obtain Nf statistical maps, each one revealing which voxels
have an activity that is statistically different between the
classes for the corresponding frequency. These voxels, that
we denote as significant voxels, are potential candidates as
members of the relevant ROIs which activity will eventually
be used for discrimination.

To deal with a binary BCI, the familly of t-tests can be
used as a statistical analysis whereas to deal with a multiclass
BCI, the familly of ANOVA tests can be used instead.

C. Clustering
For each statistical map computed at the previous step,

a clustering algorithm is performed in order to aggregate
significant voxels into different ROIs. In order to do this
clustering, a 4-dimensionnal vector [x, y, z, s] is associated
to each significant voxel. The coordinates x, y, z are the
3D coordinates of the voxel in the chosen head model,
and s is the voxel statistic computed at the previous step.
Thus, we work in the joint space-range domain in order to
find significant voxels that are spatially gathered, and that
share common statistic values. This last point is essentially
done to prevent the gathering of a voxel with a positive
statistic together with a voxel with a negative statistic in
the same ROI. Once the clustering performed, all the voxels
which corresponding vectors belong to the same cluster are
aggregated into the same ROI. Optionnaly, very small ROIs,
containing only one or two voxels for instance, could be
removed. This step done, a set of relevant ROIs have been
identified for each frequency.

The clustering algorithm used must be able to automati-
cally identify any number of clusters and should not have
too strong assumptions about these cluster shapes.

D. Fusion
As we have found what the relevant ROIs were for each

frequency, we need to define which ROIs are relevant in
which frequency bands. To do so, we follow this procedure:

1) Associate each ROI Ω found previously with the
frequency f at which it was found;

2) Among the whole set of couples (Ω; f), select two
couples (Ω1; f1) and (Ω2; f2), such that the overlap
between Ω1 and Ω2 is high, and the frequency bands
f1 and f2 are overlapped or are consecutive. We
consider an overlap is high if card(Ω1 ∩ Ω2) >
0.5 ∗ min(card(Ω1), card(Ω2)) with card(Ω) being
the number of voxels in Ω.

3) replace the couples (Ω1; f1) and (Ω2; f2) by the single
couple (Ω1 ∪ Ω2; f1 ∪ f2). This means we choose the
Union as the way of fusionning ROIs;

4) Return to point 2, until no more ROIs can be fusionned.

E. Adaptation
Due to the use of the Union as the fusion operator, a ROI

Ω identified as reactive in the frequency band [fa; fb] may
contain voxels that were significant in a frequency between
fa and fb but that are not significant anymore in [fa; fb].
Therefore, for each ROI found at the previous step, we
perform another statistical analysis for the ROI voxels, in
its associated reactive frequency band in order to remove
nonsignificant voxels. Moreover, the statistics found at this
adaptation step will be used for the next training step.

F. Fuzzification and the concept of fuzzy ROI
In the ROIs we have defined so far, we can notice that all

the voxels do not have the same statistical significance. How-
ever, these voxels are all significant, which means they still
carry useful information. Moreover, electrophysiologically,
the brain regions related to specific brain functions are not
well defined for a specific user: their boundaries are naturally
“fuzzy”. Consequently, identifying which voxels should be
kept in the ROI is a major problem.

We believe that any voxel carrying information should be
in the ROI, but that those with less information should be
“less” in the ROI. Therefore, we propose the concept of fuzzy
ROI which is based on the concept of fuzzy sets developed
by Zadeh [8]. A classical ROI Ωc is defined by the set of
voxels it contains. The activity γΩc

inside this ROI Ωc is
classically computed by:

γΩc
=

∑

v∈ROI

γv (1)

where γv is the activity of the voxel v.
A fuzzy ROI Ωf is not defined by a set of voxels any-

more but by a fuzzy membership function µ. This function
provides the degree of membership, in [0; 1], of any existing
voxel to the fuzzy ROI Ωf . This leads to fuzzy ROIs which
boundaries are not well defined and therefore fuzzy. The
activity of a fuzzy ROI is computed as follows:

γΩf
=

Nv
∑

v=1

µ(v)γv (2)

with Nv being the number of voxels in the whole head
model. This formalism makes it possible to weigh each voxel
according to its relative contribution in the ROI, and as such,
use efficiently the whole of the available information.

To achieve FuRIA training, we fuzzify all the ROIs Ω
by associating to each one of them a fuzzy membership
function µΩ which uses the statistics computed at the
adaptation step. The shape of this function µΩ depends on
the inverse model and the statiscal test used. In section III
we propose a suitable fuzzy membership function for the



algorithms we used.

Once the automatic training of FuRIA is achieved, a set
of fuzzy ROIs relevant for discrimination has been identified
as well as their corresponding reactive frequency bands. The
activity in these fuzzy ROIs and in these frequency bands,
possibly averaged over a time window, can then be used as
features for any classifier. This is highlighted in Section IV
which is devoted to a first evaluation of FuRIA.

III. IMPLEMENTATION OF THE ALGORITHM

Due its decomposition into different steps, FuRIA is a
generic algorithm that can be used with different implemen-
tations for each of these steps. We report here the inverse
model, the statistical test, the clustering algorithm and the
membership functions we have used to evaluate FuRIA.

We chose to use sLORETA (standardized Low Resolution
Electromagnetic TomogrAphy) as the inverse-model due to
its good localization properties [9] and the recent success we
had using this method in an inverse model based BCI [7].
Using sLORETA, computing the activity in a fuzzy ROI can
be done using a simple matrix product:

γΩf
= mT RΩf

m with RΩf
=

Nv
∑

v=1

µ(v)Rv (3)

Here, m is the vector of instantaneous measurements for
each one of the Ne electrodes used, and Rv a Ne∗Ne matrix
such that γv = mT Rvm [7]. Therefore, computing the
activity in a fuzzy ROI is very fast as RΩf

can be computed
offline. To use sLORETA we worked with a head model
containing 2394 voxels which is available in the LORETA-
Key software [10].

Concerning the statistical analysis, we used a permutation
t-test with α = 0.01 [11]. Indeed, this method is nonpara-
metric, enables the computation of the true type I error and
is initially designed to study brain voxel activation.

As a clustering algorithm, we employed the Mean Shift
algorithm proposed by Comaniciu and Meer [12]. Actually,
this nonparametric method can automatically identify any
number of arbitrarily shaped clusters. Moreover, this method
was recently successfully used for the segmentation of brain
MRI, which is a closely related problem [13]. We set the
value of the smoothing parameter H to 2.

During the fuzzification phase, we had to choose the
most suitable fuzzy membership functions. Due to the low
resolution property of sLORETA, it appears that significant
voxels with a relatively high probability of type I error are
much more numerous than significant voxels with a relatively
low probability of error. Consequently, for each ROI Ω, we
chose a function µΩ that assigns a degree of membership
that decreases exponentially with the statistic of the voxel:

µΩ(v) =

{

e−
1

2
( pmax−pv

σmax
)2 v ∈ Ω

0 v /∈ Ω

with σmax = 1/(NΩs

∑

pv>0 (pmin − pv)
2)

(4)

NΩs is the number of voxels in the ROI Ω ; pmin and
pmax are respectively the minimal and maximal probability
of correctly rejecting the null hypothesis H0, among the ROI
voxels ; and pv is the probability of correctly rejecting H0 for
voxel v. The larger the ROI, the more numerous the voxels
with a small pv, when using sLORETA. This was taken into
account by putting NΩs in the σmax denominator.

IV. EVALUATION

This Section reports a first evaluation of the FuRIA
algorithm. First, the EEG data used is presented, then the
results are reported and discussed.

A. EEG data set
To evaluate FuRIA we worked on the EEG data set IV

of the BCI competition 2003 [14], provided by the Berlin
group [15]. These data contain EEG signals recorded while
a subject was performing self-paced left and right finger
tapping tasks. EEG signals were sampled at 100 Hz, recorded
using 28 electrodes and comprised the 500 ms before the
actual movement. 314 trials were available for training and
100 for testing. The goal of the competitors was to identify,
for each trial, the hand used. This results in a binary
classification problem with “left” and “right” as classes.

B. Results of the feature extraction with FuRIA
We trained the FuRIA algorithm on the provided training

set. We considered the frequencies between 3 Hz and 45
Hz, with a 1 Hz step and focused on the time window
that comprises the last 250 ms of each trial. This means
FuRIA worked with the average activity over that time
period. FuRIA found five relevant fuzzy ROIs leading to five
dimensionnal feature vectors. These fuzzy ROIs and their
corresponding frequencies are displayed on Figure 1.

13 Hz 13 Hz 15-36 Hz

15-16 Hz 18-28 Hz

Fig. 1. The fuzzy ROI (in black) and their corresponding frequencies that
were automatically obtained by using FuRIA. The darker the voxel color,
the higher the voxel degree of membership µ(v). The brain is inflated and is
seen from the top, front up. These pictures were obtained with the LORETA-
Key software [10].

We can notice that FuRIA found two ROIs which corre-
sponding frequencies are in the α rhythm (13 Hz) and three



ROIs with frequencies in the β rhythm (15-16 Hz, 15-36 Hz,
18-28 Hz). Moreover, the ROIs found stood in the left and
right motor cortex, which is consistent with the knowledge
about movement intention [16].

C. Classification
To classify the features extracted using FuRIA, we used

a linear Support Vector Machine (SVM). Actually, this
classifier is one of the most popular and efficient classifier
in BCI research [2]. This classifier was classically trained
on the training data and then used to classify the features
of the test set. The range of accuracy obtained after 100
repetition of training/testing is displayed in Table I and
compared with two other methods: the one of the winner of
the competition as a reference and a method using inverse
models we proposed previously. The results using FuRIA
without the fuzzification step (step 5 in Section II-A) are
also displayed for comparison.

TABLE I
CLASSIFICATION ACCURACY FOR THE TEST SET (%)

Method Test Set
BCI competition 2003 Winner [14] 84

Previous work using inverse models [7] 83
FuRIA without fuzzification 80-82

FuRIA with fuzzification 85-86

We can notice that the method which uses FuRIA with
fuzzification reached the highest score with an accuracy
ranging from 85% to 86%. These results suggest that the
features extracted are very discriminative as they are very
few but still enable good classification results. We can also
notice that when using FuRIA without fuzzification, the
results are significantly lower. This highlights the interest of
using efficiently the information contained in any significant
voxel thanks to the concept of fuzzy ROI. Finally, it is worth
noting that in the methods proposed in [7] and [14], data
driven spatial filters were used to increase performances. This
suggests that combining FuRIA with efficient spatial filters
such as the ones described in [7] could lead to better results.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a trainable feature extrac-
tion algorithm for Brain-Computer Interfaces (BCIs) called
FuRIA (Fuzzy Region of Interest Activity). This algorithm is
based on inverse models and makes use of the novel concept
of fuzzy Region Of Interest (ROI). FuRIA can automatically
find relevant fuzzy ROIs for discrimination as well as the
frequency bands in which they react. The activity in these
ROIs could then be used as features for any classifier. FuRIA
has been evaluated on data set IV of the BCI competition
2003 using a Support Vector Machine as classifier. Results
are promising as this method reached a higher accuracy on
the test set than the winner of this competition.

Future work will be dedicated to the evaluation of FuRIA
on different data sets corresponding to other mental tasks.

This will include the evaluation of FuRIA for multiclass
BCIs. Indeed, adaptations seem necessary to tackle such
BCIs as t-tests would not be suitable for problems with more
than two classes. ANOVA tests could solve such an issue.
It would be also interesting to study the influence of the
frequential and spatial sampling on the performance.
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