
HAL Id: inria-00134550
https://inria.hal.science/inria-00134550v2

Submitted on 6 Mar 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal discrete controller synthesis for the modeling of
fault-tolerant distributed systems

Emil Dumitrescu, Alain Girault, Hervé Marchand, Eric Rutten

To cite this version:
Emil Dumitrescu, Alain Girault, Hervé Marchand, Eric Rutten. Optimal discrete controller synthesis
for the modeling of fault-tolerant distributed systems. [Research Report] RR-6137, INRIA. 2007,
pp.35. �inria-00134550v2�

https://inria.hal.science/inria-00134550v2
https://hal.archives-ouvertes.fr

appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
61

37
--

F
R

+
E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Optimal discrete controller synthesis for the
modeling of fault-tolerant distributed systems

Emil Dumitrescu — Alain Girault — Hervé Marchand — Éric Rutten

N° 6137

March 2, 2007

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier (France)

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Optimal discrete controller synthesis for the modeling

of fault-tolerant distributed systems

Emil Dumitrescu∗, Alain Girault †, Hervé Marchand ‡, Éric Rutten§

Thème COM — Systèmes communicants
Projets POP ART, VerTeCs

Rapport de recherche n
�

6137 — March 2, 2007 — 35 pages

Abstract: Embedded systems require safe design methods based on formal methods, as
well as safe execution based on fault-tolerance techniques. We propose a safe design method
for safe execution systems: it uses optimal discrete controller synthesis (DCS) to generate
a correct reconfiguring fault-tolerant system. The properties enforced concern consistent
execution, functionality fulfillment (whatever the faults, under some failure hypothesis), and
several optimizations, particularly on the execution time when going through checkpoints.
We propose an algorithm for optimal DCS on bounded paths. We propose model patterns
for a set of periodic tasks with checkpoints, a set of distributed, heterogeneous and fail-silent
processors, and an environment model that expresses the potential fault patterns. We use
synchronous models, the Sigali symbolic DCS tool and Mode Automata.

Key-words: Real-time systems, safe design, fault tolerance, optimal discrete control
synthesis, synchronous systems.

∗ INSA Lyon, http://www.insa-lyon.fr , emil.dumitrescu@insa-lyon.fr
† INRIA Rhône-Alpes, POP ART, http://pop-art.inrialpes.fr/people/girault ,

Alain.Girault@inrialpes.fr
‡ IRISA/INRIA-Rennes, Vertecs, http://www.irisa.fr/prive/hmarchan , Herve.Marchand@irisa.fr
§ INRIA Rhône-Alpes, POP ART, http://pop-art.inrialpes.fr/people/rutten ,

Eric.Rutten@inria.fr

http://www.insa-lyon.fr
emil.dumitrescu@insa-lyon.fr
http://pop-art.inrialpes.fr/people/girault
Alain.Girault@inrialpes.fr
http://www.irisa.fr/prive/hmarchan
Herve.Marchand@irisa.fr
http://pop-art.inrialpes.fr/people/rutten
Eric.Rutten@inria.fr

Synthèse de contrôleurs discrets optimale pour la

modélisation de systèmes distribués tolérants aux fautes

Résumé : Les systèmes embarqués requièrent des méthodes de conception sûres fondées sur
des méthodes formelles, ainsi qu’une exécution sûre fondée sur des techniques de tolérance
aux fautes. Nous proposons une méthode de conception sûre pour des sysèmes à l’exécution
sûre : elle utilise la synthèse de contrôleurs discrets pour générer un système tolérant aux
fautes reconfigurable correct. Les propriétés assurées concernent l’exécution consistente, le
remplissage de la fonctionnalité (quelles que soient les fautes, sous une certaine hypothèse
de fautes), et plusieurs optimisations, notamment sur le temps des exÃ

�
cutions passant

par des points de reprise. Nous proposons un algorithme de synthèse de contrôleurs dis-
crets optimale sur des chemins bornés. Nous proposons des patrons de modèles pour un
ensemble de tÃ � ches périodiques avec points de reprise, un ensemble de processeurs dis-
tribués, hétérogènes et silencieux sur défaillance, ainsi qu’un modèle de l’environnement qui
exprime les patrons de fautes potentiels. Nous utilisons des modÃ¨les synchrones, l’outil de
SCD symbolique Sigali et les Automates de Modes.

Mots-clés : Systèmes temps-réel, conception sûre, tolérance aux fautes, synthèse de
contrôleurs discrets, programmation synchrone.

Optimal discrete controller synthesis for fault-tolerant distributed systems 3

1 Motivation

The motivation of this work is to propose a methodology based on discrete controller syn-
thesis, with optimal synthesis on bounded paths, in order to model, design, and optimize
fault-tolerant distributed systems.

1.1 Safety critical embedded systems

Embedded systems account for a major part of critical applications (space, aeronautics,
nuclear. . .) as well as public domain applications (automotive, consumer electronics. . .).
Their main features are:

� duality automatic-control/discrete-event : they include control laws modeled as differ-
ential equations in sampled time, computed iteratively, and discrete event systems to
sequence the control laws according to mode switches;

� critical real-time: unmet timing constraints may involve a system failure leading to a
disaster;

� limited resources : they rely on limited computing power and memory because of weight
and encumbrance, power consumption (autonomous vehicles or portable devices), ra-
diation resistance (nuclear or space), or price constraints (consumer electronics);

� distributed and heterogeneous architecture: they are often distributed to provide enough
computing power to keep computing sites close to the sensors and actuators, and to
allow fault-tolerance.

1.2 Problem statement

An embedded system being intrinsically critical, it is essential to insure that it is tolerant to
processor failures. This can even motivate its distribution itself. In such a case, at the very
least, the loss of one computing site must not lead to the loss of the whole application.

We are interested in formal methods to model systems with guarantees on their fault-
tolerance capabilities. Among the various existing formal methods, we investigate the use of
discrete controller synthesis (DCS). The advantages of using DCS are the correctness of the
resulting system and the easy modifiability of the controller (thanks to automatic tools), i.e.,
the possibility to study and test several fault-tolerance objectives or failure hypotheses on
the same system model, without the need to re-design the system. Specifically, our objective
is:

To produce automatically a controller enforcing fault-tolerance for a given dis-
tributed system.

Fault-tolerance is the faculty to maintain functionality of a system, whatever the faults under
some failure hypothesis. To achieve this, we will need first to model our distributed systems,

RR n
�

6137

4 E. Dumitrescu, A. Girault, H. Marchand & É. Rutten

and second to express formally some fault-tolerance objective, in terms of events and states
of the system.

We propose to designers a methodology for modeling a system and studying the existence
of fault-tolerant solutions according to several failure hypotheses and system’s configura-
tions. When a solution is found, it can be used either as a guideline for implementation (if
the model was an abstract one [12]) or for deployment with a dynamic failure reconfiguring
feature (this paper).

In our approach, a system consists of a set of real-time periodic tasks placed in a con-
figuration onto a set of processors. Each task has a known execution cost and quality on
each processor. Upon the occurrence of a fault, one or several processors become unusable,
and tasks must be placed anew in another configuration, by migrating them onto another
processor, so that execution can proceed. These reconfigurations of the system have to be
controlled according to a fault-tolerance policy, enforced by a task manager. The latter is
specified in terms of properties concerning placement constraints, reachability of termina-
tion, and optimization of costs and qualities.

1.3 Contributions

We propose to automatically produce the task manager with DCS techniques, applied to
a model of the system in all its possible configurations. This model will consist of several
components, each modeled as a labeled transition system (LTS), and composed in parallel;
DCS will produce a property-enforcing layer on top of the components [1]. We extend
previous results [13] by considering tasks with checkpoints, and using optimal DCS along
paths.

We design and implement an algorithm for optimal DCS on bounded paths reaching a
target configuration, where we introduce the possibility of optimizing systems containing
0-cost wait states. To the best of our knowledge, this feature is not available in classical
optimal synthesis approaches. Yet, it is very useful in reactive systems where some states
correspond to waiting for input events.

The technical context of our work is the synchronous approach1 for the design of reac-
tive systems [5]. This choice is motivated by the existence of a corpus of available results
(programming languages, compilers, formal tools) and technologies, which already have an
industrial impact. Our method is based on synchronous models, and this influences some of
our choices in the design of the LTSs and on the parallel composition, as well as in already
existing DCS models and tools [22] which we extended with the optimal DCS algorithm for
bounded paths.

1.4 An introductory example

In order to motivate concretely the contributions in the following, we will use the example
of a task on an architecture with two processors. It is initially idle, and upon a request r

1http://www.synalp.org

INRIA

http://www.synalp.org

Optimal discrete controller synthesis for fault-tolerant distributed systems 5

goes into a ready state. From there, it can be started on either processor; the choice is given
through two exclusive events: a1 for processor 1, and a2 for processor 2. The architecture
can be heterogeneous, and the performance of the task can be variable on the different
processors, in terms of computations time, energy consumption, quality of service, ... The
task has two phases: A, followed by B; between the two phases, there is a checkpoint event
c. Upon reception of a second event c in phase B, the task terminates. We will be modeling
and controlling the configurations of this task, executing on this architecture, in reaction to
faults consisting of processor failures. In this case, the task will be migrated and executed
on the remaining safe processor. This can happen along the duration of the task, in phase
A or in phase B. When the migration occurs after the checkpoint, the task is started in the
second phase, and not from the beginning.

We want to model all these possible evolutions of a system in order to compute a con-
troller (typically: deciding upon events a1 and a2) that, for all possible evolutions of the
architecture, will keep the task running (i.e., not being assigned to a faulty processor) up to
completion (i.e., reaching termination). For this, we build a model of all the configurations
of the task, and the transitions it can make between them. We do this in terms of labeled
transition systems (LTS) as shown in Figure 1.

3 1

2 4

R

r

I

a1 a2

A2

a1c

c a2

a2c

T

A1

c a1B1 B2

c c

ca2 ca1

a1c

a2c

c a1

ca2 ca1

c a2

r

Figure 1: An introductory example.

On this very simple example, one can see that the behaviors mentioned above have been
modelled. The performance aspects can be modelled as weights associated to each state.
The control can then be done taking into account the cost of the paths from the ready state

RR n
�

6137

6 E. Dumitrescu, A. Girault, H. Marchand & É. Rutten

to the termination state. On systems more elaborate than this one, with more complex
tasks, and with a number of different tasks and a scheduler, the model obtained will feature
many possible execution paths.

This paper shows our approach in:

� modelling this class of systems, by composing models of the configurations of each of
the tasks, of the architecture, and the environment;

� specifying the properties they must statisfy in order to be fault-tolerant, and to opti-
mize cost criteria;

� using optimal DCS techniques to generate automatically a controller to enforce fault
tolerance.

1.5 Related work

Formal approaches to the design of fault-tolerant systems have mostly consid-
ered the problem of verification, in the context of process algebra [27, 7, 6]. They verify
a posteriori that an existing, hand-made design (replicas interaction control, voters, etc)
satisfies a certain equivalence with the nominal functionality specification, even in case of
faults. In contrast, DCS approaches synthesise a priori automatically a controller that will
insure this by construction. The principle is to consider faults as uncontrollable events, and
fault-tolerance as the existence of behaviors able to achieve the functionality whatever the
occuring faults. Planning under uncertainty is another existing approach [17], so far only
demonstrated with 1-fault tolerant paths, while our DCS based approach can tolerate an
arbitrary number of failures. The reachability of marked final states defines the ability to
achieve functionality, and can be used as a criteria on the existence of a solution [9]; we take
it as a synthesis objective.

Applications of DCS to real-time systems have been explored in various works. In
the synchronous approach, with a logical, event-based time, DCS has been used to produce
property enforcing layers [1] on top of a set of tasks [24]. An application of this approach
to fault-tolerance [13] is preliminary to this paper.

Others are taking into account timed aspects [18], for the generation of correct applica-
tion-specific schedulers, but they do not consider fault-tolerance specifically. Also, we con-
centrate on Boolean models; synthesis in timed or hybrid systems [2] would be more powerful,
while remaining in the decidable problems, but at a very high algorithmic cost. There exist
results in process algebra comparable with a form of synthesis, but that comparison is out
of our scope.

Finally, in another previous work, we have used DCS for distributed controller synthesis,
a more difficult objective that was achieved manually [12], whereas here we synthesise a
centralised controller, but automatically.

INRIA

Optimal discrete controller synthesis for fault-tolerant distributed systems 7

Optimal discrete controller synthesis for discrete-event systems has been first pro-
posed by Bellman [4] as a particular domain of dynamic programming. Marchand [15] has
extended Bellman’s optimality principle to tri-valued discrete systems, and has proposed and
implemented several algorithms achieving optimal control synthesis according to various op-
timality criteria. Static criteria express simple quantitative invariants, such as bounds, over
the state space of the system. They have been used to express a bound on the global usage
of some ressource (memory, power-consumption, etc.).

More sophisticated dynamic techniques have also been used to find optimal strategies
depending on the current state of the system and the environment reactions at a given
moment.

1.6 Outline

Section 2 introduces the background of our research: fault-tolerance, DCS, optimal DCS and
the generation of property-enforcing layers; it describes our technique for handling 0-cost
wait states. Then, Section 3 introduces the models we propose for specifying the various
parts of our systems: hardware, software, and control. In Section 4, we present in details
the properties and synthesis objectives for fault-tolerance. In Section 5, we illustrate our
method on an example. In Section 6, we sketch our implementation in Mode Automata and
with the Sigali tool. Finally, Section 7 concludes, discusses, and gives directions for future
research.

2 Background

2.1 Discrete controller synthesis

This section gives a very brief description of DCS. As we essentially adopt an existing frame-
work [22, 1], and propose a modeling methodology, we only introduce the useful definitions
or technical aspects of the tools, and summarize the functionality.

2.1.1 Preliminaries

Labeled transition systems. Formally, an LTS is a tuple 〈Q, q0, I,O, δ〉, where Q is a
finite set of states, q0 is the initial state, I is a finite set of input signals (produced by the
environment), O is a finite set of output signals (issued to the environment), and δ is the
transition function, i.e., a mapping from Q × Bool(I) × O∗ → ×Q. Each transition has a
label of the form g/a, where g ∈ Bool(I) must be true for the transition to be taken (g is
the guard of the transition), while a ∈ O∗ is a conjunction of outputs that are issued when
the transition is taken (a is the action of the transition). A transition (s, g, a, s′) will be

graphically noted s
g/a
→ s′. We use this level of definition for our modelling work, in a

graphical form in the Figures of this paper.
A path is a sequence (possibly infinite) of transitions starting from the initial state q0.

RR n
�

6137

8 E. Dumitrescu, A. Girault, H. Marchand & É. Rutten

A trace is a sequence (possibly infinite) of labels associated to a path. The language of
a LTS is the set of traces it can generate.

We only focus on LTSs which are deterministic and reactive :
� determinism guarantees that the system always reacts in the same manner to the same

sequence of input events;

� reactivity guarantees sensitivity to any event feed from its environment.

Two LTSs 〈Q1, q01, I1,O1, δ1〉 and 〈Q2, q02, I2,O2, δ2〉 are said to be compatible only if
their output sets are disjoint O1 ∩O2 = ∅. The synchronous product beteen two compatible
LTSs 〈Q1, q01, I1,O1, δ1〉 and 〈Q2, q02, I2,O2, δ2〉 is the LTS 〈Q1×Q2, (q01, q02), I1∪I2,O1∪
O2, δ1 × δ2〉.

2.1.2 Discrete controller synthesis on transition systems

DCS emerged in the 80’s [25], with foundations in language theory. Its purpose is, given
two languages P and D, to obtain a third language C such that P ∩ C ⊆ D. This is a kind
of inversion problem, since one wants to find C from D and P . Here, P is called the plant,
D the desired system or objective, and C the controller. Several teams proposed extensions
and applications of this language theory technique to LTS.

In our approach, P is specified as a LTS, and D is an objective to be satisfied by the
controlled system, typically making a subset of states invariant in the controlled system, or
keeping it always reachable. The controller C obtained with DCS is a constraint restricting
the transitions of P , i.e., inhibiting those that would jeopardize the objective. The key point
is that the set of inputs I is partitioned into two subsets, Ic and Iu, respectively the set
of controllable and uncontrollable inputs. The principle of DCS is that the controller C can
only inhibit those transitions of P for which the guard contains at least one controllable
signal, i.e., in Ic.

As illustrated in Figure 2, the objective is expressed in terms of the system’s outputs.
The controller is obtained automatically from a LTS and an objective both specified by the
user, as computed by appropriate algorithms [22] which we will use without describing them
in detail here. Its purpose is precisely to act on the controllable inputs in order to achieve
the objective.

system

controller

system

objective

Ic

Iu

Ic

Iu
O O

Figure 2: From uncontrolled system (left) to closed-loop control (right).

INRIA

Optimal discrete controller synthesis for fault-tolerant distributed systems 9

It must be noted that the order in which synthesis operations are applied does matter:
indeed, their composition is not commutative. Reachability can not be considered before an
invariance constraint, because the latter might compromise the former by removing paths
and breaking reachability. On the contrary, considering reachability after invariance does
not jeopardize the invariance, as it will not result in paths going out of the invariant set.
Optimization should be considered last, as a means of choosing one optimal solution among
the correct ones; used after reachability, it only keeps a subset of paths, which still satisfy
reachability.

The result of the synthesis is a constraint, which is not readable by itself or usable
“brainually”2 by the designer, but is meant to be coupled with the system as in Figure 2,
or more precisely composed as shown in Figure 12. An implementation of this coupling is
proposed in Section 6.

2.1.3 One-step optimal discrete controller synthesis

It is also possible to consider weights assigned to the states and/or inputs/outputs of P ,
and to specify that some upper or lower bound must never be reached. Optimal controller
synthesis [21] can then be used to control transitions so as to minimize/maximize, in one
step, some function w.r.t. these weights; i.e., go only to next states with optimal weight.
There can be several equally weighted solutions, so optimization does not necessarily lead to
determinism. It can be noted that this gives us only a one step choice i.e., a local optimal,
not a global optimal on all the behaviors. With respect to our problem, such weights can
model the worst-case execution time (WCET) of a given task onto a given processor, its
power consumption, the amount of processor load it requires, or the quality of its results
when executed on this particular processor.

In terms of the concrete transition systems seen previously, we define C(q) be a cost
function mapping each potential state of an LTS to a strictly positive integer cost value:
C : Q → N . We can have several different cost functions over the state space. When
composing LTSs, the value of a function is defined on the resulting global state as the sum
of the local costs.

For paths across states, we can also define a path cost. The execution cost of a path of
length k starting at state q1, E(q1) = (q1, . . . , qk) is obtained by adding the static execution
costs of the states in E.

2.1.4 Optimal discrete controller synthesis on paths

Cost of the optimal strategy. Bellman’s algorithm for dynamic programming computes
an optimal strategy for reaching a target state of an LTS in presence of uncontrollable
events, belonging to an adversary environment [4, 15]. By driving the uncontrollable inputs
adequately, the adversary tries to prevent the LTS from reaching the target. The optimal

2We gratefully thank Albert Benveniste for this neologism, formed from the two words “brain” and
“manually”. It intends to capture the fact that such work generally involves more the “brain” than the
“hands”.

RR n
�

6137

10 E. Dumitrescu, A. Girault, H. Marchand & É. Rutten

strategy, if it exists, is the control solution that drives the LTS towards the target state at
a best cost despite the worst moves of the adversary. This computation takes two steps:

1. Computation of the best cost to reach a target state in F . This step maps each state
σ of the transition system to the best execution cost achievable to reach F , by taking
into account the worst-case moves of the adversary. This cost value is not necessarily
the minimal execution cost achieable. If such an execution path does not exist, then
the best cost achievable is equal to +∞. Let W : Q → N be the mapping function.
W is defined as the greatest fixed point of the following recurrent equations:

W 0(q) =

{

0 iff q ∈ F
+∞ otherwise

W i(q) = min

{

W i−1(q)
∀i > 0, maxIu minIc C(q) + W i−1(f(q, iu, ic))

2. Use of W to generate the best trajectory reaching F . For any state q, compute the
best immediate sucessor q′ such that

W (q′) = min{W (f(q, iu, ic)} and ∀iu, ∃ic : q′ = f(q, x, c)

in a way similar to what was said in section 2.1.3.

According to Bellman, this algorithm is guaranteed to find a greatest fixed point corre-
sponding to the optimal solution of the synthesis problem. The actual implementation of
this algorithm is presented in [23].

Dealing with self-loops in the transition system. Our work considers reactive sys-
tems, especially synchronous ones, and their models in terms of LTS. A particular aspect
of such models is that they explicitely represent the waiting for an event by a self-looping
transition on the current state, labelled by the absence of that event, as shown in Figure 1.
In this way of modelling reactive systems, the corresponding LTSs always feature cycles in
the graph. Hence, Bellman’s algorithm, if applied as such, will give infinite cost to most
paths.

However, we know that these cycles have a particular meaning, which is the absence of
action or change, and that this infinite cost does not correspond to our reactive interpreta-
tion. Our definition of reactive systems is related to the synchronous approach [5], and it
states that transitions are defined for all possible valuations of the inputs [1], this including
the aforementioned waiting transition. This corresponds to a time-triggered interpretation,
which also accounts for the possible simultaneity of inputs. It is different from an event-
triggered interpretation, where transitions are taken upon occurrence of an event: these do
not feature an explicit representation of the waiting. In case of a single LTS, such an infinite
cost could be avoided by having self-loops only on null-cost states. However, when having

INRIA

Optimal discrete controller synthesis for fault-tolerant distributed systems 11

several transition systems put in parallel, using the synchronous composition, and additive
costs on resulting global states, there can be self-loops on non-null cost states. But these
self-loops all result from the original trivial loops, and they all correspond to the state of
the global system not changing in any of its parallel components, not making any action,
and hence not involving any cost.

Therefore, we want to have a special treatment for them, and to define the cost on
paths differently. We propose a modification of Bellman’s algorithm in order to suit our
interpretation. A distinction will be made, excluding transitions from q to q′ where q 6= q′.

In the following sections, we will comment along the description of our models in which
cases this optimization technique is applicable, and what kinds of cycles can prevent from
using it.

A modified optimal path algorithm. As mentioned, Bellman’s algorithm marks all
uncontrollable loops with an infinite best execution cost. We argue that the particular
case of 0-length loops (self-loops) deserves special processing. Uncontrollable self-loops are
a common artifact for modeling the waiting for an event occurrence, which is one of the
basic mechanisms in reactive systems. Indefinite waiting for an event occurrence should not
penalize the best execution cost of an execution trace.

To overcome this problem, we restrict Bellman’s algorithm so that self-loops only count
once in the computation of the execution cost of El. This is done by considering in the
fix-point computation that the target and source states have to be different (i.e., q 6= q ′ in
the above equation).

W 0(q) =

{

0 iff q ∈ Qf

+∞ otherwise

W i(q) = min

W i−1(q)
maxIu minIc C(q) + W i−1(δ(q, iu, ic))

∀q′ = δ(q, iu, ic) s. t .q 6= q′

Examples of how this algorithm is actually working and the differences between the
classical and adapted Bellman’s algorithm will be presented further in the paper, particularly
in Section 5.4.2.

2.2 Property-enforcing layers

Our modeling approach, and the way we will apply DCS, follows a framework for the auto-
matic generation of property-enforcing layers, in a mixed imperative/declarative style [1].

A system is designed as a set of local components, each modeled by a LTS describing
its relevant control states and transitions, and local constraints w.r.t. the environment or
other components. Particularly, they feature inputs enabling the control of choices between
configurations. The synchronous product of these LTSs gives a global model of the system
which is a first approximation of the set of constraints that should be respected. Global
constraints involving several components are expressed as logic properties of this product.

RR n
�

6137

12 E. Dumitrescu, A. Girault, H. Marchand & É. Rutten

In the absence of a management of these global constraints, they are not satisfied; in other
words, the product models the behaviors of the uncontrolled global system. We use gen-
eral DCS techniques and tools, as presented above, in order to automatically compute and
generate a property-enforcing layer, which, when combined with the set of communicating
parallel automata, will guarantee the satisfaction of the global constraint. This controller
will give values to the controllable inputs of components so that remaining behaviors are
correct, whatever the values of the other inputs.

Advantages of this method are twofold: on the one hand, the property-enforcing layer is
correct, because of the fact that it is the result of an exact computation. On the other hand,
the automated nature of the process makes for an easy modifiability of designs, be it in the
components behaviors or in the declarative properties; hence, a variety of global constraints
can be experimented for a given system under study, providing for effective support in the
design space exploration.

2.3 Fault-tolerance

Fault-tolerance has been extensively studied in the literature: [19] gives an exhaustive list
of the basic concepts and terminology, [26] gives a short survey and taxonomy for fault-
tolerance and real-time systems, and [16] treat in details the special case of fault-tolerance
in distributed systems.

The three basic notions are fault, failure, and error : a fault is a defect or flaw that occurs
in some hardware or software component; an error is a manifestation of a fault; a failure is
a departure of a system from the service required. A failure in a sub-system may be seen as
a fault in the global system. Hence the following causal relationship:

· · · −→ fault
activation
−−−−−−→ error

propagation
−−−−−−−→ failure

causality
−−−−−→ fault −→ · · ·

We assume the following failure hypothesis : only the processors can fail, with a fail-
silent model. That is, a processor is either active and works fine, or faulty and does not
produce any output. To tolerate such faults, we are going to make use of the intrinsic
hardware redundancy offered by the distributed architecture: i.e., we do not wish to add
extra processors but to use only the existing ones. Our goal is to apply error treatment
techniques, such that whenever a processor will fail, the tasks that were active on it will
be dynamically restarted on some other non faulty processor. The new configuration of the
system reached after such an error treatment is degraded in the sense that less processors are
now available, but the functionality is maintained since all the tasks are still being executed.

2.4 DCS for fault-tolerance properties enforcing

In this paper, the general framework of property-enforcing layer generation is applied specif-
ically to fault-tolerance.

The components are tasks and processors, for which local models represent the control
between configurations and the failures. In terms of Section 2.1.2, the state space of the

INRIA

Optimal discrete controller synthesis for fault-tolerant distributed systems 13

transition system describes configurations and error states, transitions represent startings,
checkpoints, and switches between configurations.

Global constraints specify the fault-tolerance as execution coherence and the maintaining
of functionality, in terms of invariance and reachability. The synthesized controller manages
tasks reconfigurations in order to enforce the required fault-tolerance policy. Optimal con-
troller synthesis refines choices between admissible control paths.

3 Abstract model of a distributed system

In this section, we specify our abstract model, and failure hypothesis. All the while, we
keep in mind our objective, so as to make these abstract models suitable for DCS. So, we
consider real-time systems composed of:

� a distributed heterogeneous architecture, consisting of a set of fail-silent processors,
fully connected by point-to-point communication links,

� a set of periodic tasks, with the possibility to run them on the different processors,
with varying characteristics (quality, power, or execution time cost),

� an application, invoking the tasks, which can be considered simply as a task manage-
ment layer or as a scheduler, enforcing precedence constraints between the tasks.

The real-time aspect of such systems comes from the execution time costs of the periodic
tasks. The time cost of each task is measured thanks to a WCET analysis. Then, each task
being periodic, we consider that, when executing on a processor, it uses some CPU load,
computed by dividing its WCET by its period. Enforcing real-time constraints amounts
thus to assigning to each processor i a CPU load maximal bound bi, which should never be
overtaken.

3.1 Architecture model

3.1.1 Local processor model

Each processor is modeled by the LTS of Figure 3(a), where OKi means that the processor i
is running fine, while ERRi means that it has crashed. We assume that only the processors
can fail, with a fail-silent model. Recent studies on modern processors have shown that a
fail-silent behavior can be achieved at a reasonable cost [3]. Failures are also permanent,
hence a processor cannot go back from the ERR to the OK state.

To model intermittent failures, we would just need to add such a “repair” transition, as
in Figure 3(b). For a processor with degraded modes (e.g. at a slower speed, overloaded),
we can have a model as in Figure 3(c), where upon di the degraded mode is entered, and
upon ri the OKi mode is resumed. The models with intermittent failures introduce cycles in
the processor model. However, it must be kept in mind that these models will be composed

RR n
�

6137

14 E. Dumitrescu, A. Girault, H. Marchand & É. Rutten

fi

OKi

ERRi

(a) Permanent failure

fi

OKi

ERRi

ri

(b) Intermittent failure

fi

OKi

ERRi

fi

DEGi

ri

di

(c) Degraded mode

Figure 3: Processor models.

with a fault model, describing whether failures are considered only in a bounded number.
In such a case, the resulting global LTS will not feature a cycle.

Processors can be used by tasks in a time-sharing manner, so that several tasks can be
active on the same processor at the same time. Related to this, one might consider exclusions
between tasks, forbidden to share the same processor because of the use of some exclusive
resource. This corresponds to mechanisms of critical sections, with semaphor operations P
and V enforced by the controllables. Also, related to the weights and particularly costs in
power and load, individual tasks weights are to be additive: on a given processor, the global
load is the sum of that of all the active tasks.

3.1.2 Heterogeneous architecture model

The processors are embedded inside a fully connected network of point-to-point communica-
tion links, like the one presented in Figure 4. We note S the set of all these processors. We
assume that the communication links cannot fail. One processor is dedicated to executing
the controller, P0, and only the other processors are available for executing the system’s
tasks. Each processor must detect in real-time the other processors’ failures. This can be
easily implemented by making all the processors in S send an “I am alive” message to each
other at periodic interval, like in group membership protocols [14].

The model consists of the composition of all LTSs as above. In the example, we have
three of them, one for each of the processors P1, P2, and P3, for which capacity bounds bi

w.r.t. power consumption are, respectively, 5, 3, and 6.
This distributed architecture is heterogeneous, meaning that the WCET and power con-

sumption of each task is not the same on each processor. There may be tasks that cannot
run on some processor, for instance because they require a specific hardware device (input
sensor, dedicated co-processor...).

INRIA

Optimal discrete controller synthesis for fault-tolerant distributed systems 15

S = {P1, P2, P3}

P1 P2

P3

L1.2

L1.3 L2.3

Figure 4: Distributed architecture.

3.1.3 Environment or fault model

We now need to model what failures can occur in the system. For instance, how many
failures can occur? Or more precisely how many failures do we want the system to tolerate?
Can failures occur in any order or are there known sequences or patterns? Can they occur
simultaneously? In terms of our processor model of Figure 3, the question is how can the
fi events occur? It seems natural that all the fi events be uncontrollable (i.e., ∈ Iu), since
a failure is a event intrinsically uncontrollable. But this would mean that there would be
no constraints whatsoever on them. In particular, all events fi could occur, meaning that
all processors could fail at the same time. Of course, this would result in a total failure of
the system, with no possibility at all to ensure the fault-tolerance of the system. No one
expects a system to tolerate a failure of all the processors it is made of. Therefore, we need
to specify the way the failures do occur in the patterns that we consider.

To model this, we choose to have a LTS modeling the environment. Its purpose is to
issue the signals fi from signals ei produced by the environment. These signals ei will be
uncontrollable (i.e., ∈ Iu), reflecting the fact that a failure can occur at any time, while the
signals fi will be local, i.e., neither in Iu nor in Ic, and will be used only for computing the
synchronous product of all the LTSs.

The environment model of Figure 5(a) allows only one failure to occur in the system, while
the one of Figure 5(b) allows two failures to occur, possibly simultaneously (if simultaneous
occurrences of failures are forbidden, it suffices to remove the three transitions from B to
F1,2, F1,3, and F2,3). In both cases, B is the initial state while the state Fi,j,k... records the
occurrences, not necessarily simultaneous, of the failures of processors Pi, Pj , Pk . . .

As a variant, according to the available knowledge about the system, one can directly
specify the failure patterns by giving directly the LTS producing the local signals fi from the
input signals ei. This is more expressive than specifying the number of processors that can
fail. For example, Figure 5(c) corresponds to the failure pattern where up to two processors
can fail, except that processors P1 and P3 cannot fail together, and that P2 can fail after P3

but P3 can not fail after P2.

RR n
�

6137

16 E. Dumitrescu, A. Girault, H. Marchand & É. Rutten

F1

F2 F3

B

e1 e2 e3/f1

e3/f2

e1 e2

e1 e2 e3/f3
e1e3/f1

e1e3/f3

e2e3/f2

e2e3

e1e2

(b)

F1

F2 F3

F1,2 F1,3

F2,3

B

e1
e2e3
/f2f3

e2e1/f2

e2e3/f3

e1

e1

/f1
f3

e3/f3

e3/f1

e1e2

e2e3
/f1, f2

e2e3

e1

/f2

e1e2/f1

(a)

e2e3/f2

e1e3/f1

F1

F2 F3

F1,2

F2,3

B

e1
e2e3
/f2f3

e1
e2e3

/f1, f2

e2e3

e1

/f2

(c)

e1e3/f3

e1e3/f1

e2e1/f2

Figure 5: Fault model: (a) only one failure; (b) one or two; (c) failure pattern.

Providing such an environement model is part of the design work. The choice will depend
on the knowledge of the system and the related failure assumptions. For instance, if it is
unlikely for two failures to occur simultaneously, the three transitions from B to Fi,j will be
removed from the LTS of Figure 5(a).

For convenience, we introduce a failure event that signals the occurrence of at least one

failure: f
def
=

∨

i fi.
As we noted earlier when presenting the processor models, and as will be seen further,

when the LTS of the fault model is acyclic, then by composition with the other parts of the
model it will result in an acyclic global LTS. This corresponds to the intuitively satisfying
fact that we want to design systems tolerating bounded failure patterns. The technique of
optimal discrete controller synthesis on paths is then applicable, and can enforce guarantees
on the performance of the fault-tolerant system.

It can be noted however that we do not exclude considering applications where un-
bounded failure patterns have to be taken into account. In such cases, the failure model
can describe what kinds of infinite sequences have to be tolerated. No fault tolerance insur-
ing optimality or boundedness of costs on such paths can then be obtained of course, but
still, objectives such as invariance, bounding of state cost, or one-step optimization remain
available to the designer.

3.2 Task model

3.2.1 Simple tasks

Basic control structure pattern Each task j is formally modeled by a LTS, which
describes how the control of the activity of the task is done in reaction to events.

Figure 6 shows a task model, drawn assuming that the task can be executed on the three
processors of the architecture of Figure 4. It features an initial idle state I j , a ready state

INRIA

Optimal discrete controller synthesis for fault-tolerant distributed systems 17

Ij

A
j
2 A

j
3

T j

Rj

a
j
2a

j
1 a

j
3

A
j
1

rj

rj

cj/endj cj/endj

cj/endj

a
j
2f a

j
3f

a
j
2fa

j
1f

a
j
1f

a
j
3f

Figure 6: Task control model.

Rj after reception of the request signal rj , a terminal state T j , and several active states Aj
i ,

representing task configurations, one for each processor in the system. Here, i indicates which
processor the task j is active on; since our architecture has three processors, each task LTS
has three active states. By convention, subscripts/superscripts refer to processors/tasks.
In the state Aj

i , task j is periodically executed on processor i, until the occurrence of the
control event cj : this is what we mean by periodic tasks. Such periodic tasks can be directly
and easily modeled by Mode Automata [20].

Implicitly, each state has an additional self-loop labeled with the complement guard
w.r.t. all its other outgoing transitions. For instance, state I j has a self-loop labeled with
rj , which enables the LTS to remain inside Ij until the occurrence of the signal rj .

A transition from state Aj
i to state Aj

k represents the re-configuration of the system, by
stopping task j on processor i and restarting it onto processor k. We call this operation a
migration. They will be decided in order to maintain the system in a global configuration
such that it keeps offering its nominal service. In particular, a migration can be decided
as a reaction to a processor failure (in which case the task does not need to be stopped
of course). It could also serve to balance the load between several active processors, or to
comply to the energy consumption bound of a processor.

Cycles of such re-configurations could make sense, especially w.r.t. load balancing issues,
but as such they would introduce cycles in the global LTS modelling the system, and this
might prevent from using the application of optimal DCS on paths. In the framework of this
paper, we consider reconfigurations only upon failure; this can be obtained by conditioning
all reconfiguration transitions with the f event introduced earlier in the fault model: aj

i ∧ f .
Hence, if the fault model is acyclic, then the optimization on paths is applicable.

Another potential source of cycles is in the transition from T j to Rj . We will see next
that tasks can be called by an applications controller or scheduler: if the latter is acyclic,
then so will the global LTS be.

To summarize, the basic control structure of tasks consists of a repetition of the basic
pattern illustrated in Figure 7. When in a state Aj

2, where it arrived upon activation event

RR n
�

6137

18 E. Dumitrescu, A. Girault, H. Marchand & É. Rutten

T j

cj/endj

...

a
j
2

A
j
2A

j
1 A

j
3

a
j
1cjf

a
j
3cjf

Figure 7: Task control model: basic pattern.

aj
2 (possibly conditioned by f), it is performing its associated computation on processor 2.

From there, it can either:

� be migrated to another processor k upon event aj
k (possibly conditioned by f),

� receive a control event cj causing it to proceed in sequence, here towards terminal
state T j , with emission of an event endj .

We will see next how this simple pattern can be extended.
In terms of controller synthesis, the signals rj , cj and f will be uncontrollable (i.e., ∈ Iu),

while the signals aj
i will be controllable (i.e., ∈ Ic).

Quantitative characteristics Some interesting characteristics can be modeled as weights
associated with states [24]; we consider just simple mappings from states to integers.

Execution time is the CPU load required by each task, as measured by a WCET
analysis. When a task migrates, it rolls-back to its latest checkpoint. Hence its new processor
must fully accept the CPU load of the restarted task’s phase.

Power consumption Cj
i of a task j is given relatively to each processor i. It is related

to the WCET, but not in a linear way [8]. For our example, the values of Cj
i are given in

Table 1, along with each bound bi, which is the maximum consumption admissible by the
processor i.

Quality Qj
i of a task j is given relatively to each processor i. It can account, e.g., for

the accuracy of the results produced either by a numerical computation according to the
presence of special co-processors, or by different versions of an algorithm of varying depth
in a heuristic search, or by an image processing operation. For our example, the values of
Qj

i are given in Table 1.

3.2.2 Tasks with checkpoints

Control structure pattern with checkpoints. Compared with tasks modeled previ-
ously, we introduce a notion of phases and checkpoint. Going from one phase Aj

2 to the

INRIA

Optimal discrete controller synthesis for fault-tolerant distributed systems 19

power consumption C quality Q
processor processor

P1 P2 P3 P1 P2 P3

T 1 4 4 2 3 5 3

ta
sk

T 2 2 2 3 2 2 5
T 3 2 3 4 2 2 5

bound b 5 3 6

Table 1: Consumption Cj
i , quality Qj

i of tasks T j on processors Pi, with bound bi.

...

a
j
2

B
j
2

...

cja
j
1a

j
3

cja
j
1a

j
3

a
j
1cj a

j
3cj

A
j
2A

j
1 A

j
3

B
j
1 B

j
3

a
j
3cjf

a
j
1cjf

Figure 8: Task control model, with check points: simplified basic pattern.

next in sequence Bj
2 is acknowledged with an uncontrollable checkpoint event cj . The last

checkpoint is actually the termination. When a task is migrated, it is restarted from the
beginning of the current phase and not from the very start of the task. In that sense, each
phase transition is a control checkpoint, and when a task is migrated it rolls back to the
latest checkpoint. Hence, the task model is modified accordingly, as in Figure 8, showing a
simplified extract for readability purposes, where we consider that the controllable events aj

i

are exclusive. From an active state, one can make a transition towards activation on another
processor in case of migration with aj

k, or towards the next phase in sequence upon cj in
the absence of migration, or when migration and checkpoint occur simultaneously, towards
the next phase on another processor.

As before, controlled re-configurations introduce cycles in the task model, but if they
are conditioned by fault occurrences f and the fault model is acyclic, then there will be no
cycle in the global LTS, and optimal discrete controller synthesis on paths is then applica-
ble. Reconfigurations can be performed freely at the same time as a checkpoint, without
jeopardizing this.

RR n
�

6137

20 E. Dumitrescu, A. Girault, H. Marchand & É. Rutten

Ij

A
j
2 A

j
3

T j

Rj

a
j
2a

j
1 a

j
3

rj

a
j
2 a

j
3

a
j
1 a

j
2

a
j
2 a

j
3

a
j
1 a

j
2

A
j
1

B
j
1 B

j
2 B

j
3

tj

tjtj

rj

a
j
1

......

a
j
3

cj cj cj

a
j
3

...

a
j
1

...

Figure 9: Task control model, with check points: example.

Complete task example with checkpoints. We assume as before that the task can
be executed on the three processors of the considered architecture. The difference is that
configurations are represented by different states Aj

i and Bj
i for each phase (in our example

there are two phases) of task j on processor i. Figure 9 shows, as before, an initial idle
state Ij , in which a request rj causes a transition to the ready state Rj . There the choice
is given to the controller to go to either of the three processors and start the computation
accordingly, which is represented by state Aj

i . The cost is considered to be “consumed”
right away: it is the worst case execution time, and the worst case here is that a migration
occurs just before the end of the computation. Figure 9 is built by repetition of the pattern
of Figure 8, and addition of the idle, ready and terminated states; some transitions have
been omitted or dotted for readability. For claritiy, transitions going to “...” are meant to
go to the mentioned state at the other side of the Figure.

Thick arrows in Figure 9 show two possible scenarios of the execution, with transitions
corresponding to migrations and to phase transition and checkpointing.

One of them (the darker one, of magenta color) start on processor 1, in state Aj
1. Then

processor 1 fails immediately, and the computation is migrated to processor 2 : the cost
C(Aj

1) will be augmented by C(Aj
2). Computation proceeds to A′j

2, and on the occurrence

of chkj to the next phase, on the same processor, in state Bj
2, where the cost will be

augmented by C(Bj
2), and then B′j

2. Later, before the end of the phase, processor 2 fails,
and a migration occurs to processor 3, with a restarting at the last checkpoint, i.e. in state
Bj

3, with cost C(Bj
3). From there computation proceeds to B′j

3, and finally terminates with tj

INRIA

Optimal discrete controller synthesis for fault-tolerant distributed systems 21

to T j . Another example of scenario (in lighter, cyan color) is that computation is started on
processor 2: Aj

2, which fails after a while, before chkj , leading to processor 1: Aj
1, which also

fails, immediately, leading to processor 3: Aj
3, from where it proceeds to the termination.

Along those paths, the time spent in computation is the cumulation (additive) of times in
each state, given that the worst case is that the migration occured just before terminating
the phase. On these bases, controlling the migrations in order to bound or optimize a
traversal time can be posed as an optimal synthesis problem on these paths. A quantitative
example is detailed in Section 5.4.2.

3.3 Application model

An application is made of the invocation of a set of tasks, considering the latter either as a
task server receiving requests, or including a scheduler or program.

3.3.1 Tasks server

If the system consists of n tasks, there will be n corresponding LTSs in parallel. Their
synchronous composition as in Mode Automata [1, 20] represents all behaviors, i.e., all
possible configurations, in response to all possible sequences of requests and termination
events.

The composition of quantitative characteristics is considered, in this paper, to be addi-
tive. It is clear for CPU loads or power consumption on each processor Pi, where we have
for tasks j: Ci =

∑

j Cj
i .

Regarding quality, we consider overall quality to be the means of that of active tasks,
which can be understood in the same way as papers submitted for a conference receive a
global mark that is the means of the various markings. We will use quality just to choose
the transitions towards the next states with the highest quality; hence, we do not need to
divide and can just use the sum of qualities, for processors i and tasks j: Q =

∑

i

∑

j Qj
i .

As we noted earlier, in such a system, there is a cycle on the starting of tasks, hence
paths are infinte, and optimal DCS on paths makes no sense and is not applicable; however
the other proposed synthesis objectives are meaningful.

3.3.2 Scheduler or program

A scheduler or program can be in charge of emitting the task requests in a given sequence.
Its purpose is to schedule the tasks according to the precedence graph specified by the user:
it must issue the signals rj in the correct order, so that the tasks become ready (in the Rj

state) in such a way that the precedence constraints are satisfied.
If we consider the example of Figure 10, the scheduler first issues r1, then after receiving

end1, it issues r2 and r3, therefore executing T 2 and T 3 in parallel, and finally, once it has
received end2 and end3, it issues r1. The transition system is shown in Figure 11: it features
a terminal state T . This model shows where it is possible to have a set of finite paths from

RR n
�

6137

22 E. Dumitrescu, A. Girault, H. Marchand & É. Rutten

the inititial state to the terminal state, and this is where optimal DCS on paths can be
applied.

T
1

T
3

T
2

T
1

Figure 10: Precedence constraints.

end1/r2r3 end2end3/r1

end3/r1

end2/r1

end2

end3

T

end1/end
r/r1

Figure 11: Precedence constraints: transition system.

Note that such schedulers or programs can be obtained from higher-level, domain-specific
languages [11, 10].

3.4 System model

Finally, the model of the multi-processor, multi-task system is built by composing the dif-
ferent local models introduced previously: one for the environment model, one for each
processor, one for each task, one for the scheduler, and one for the controller. This is illus-
trated in Figure 12 for a complete system made of 3 processors, 2 simple tasks and 1 task
with 2 phases.

Scheduling (deciding in which order tasks are executed) and distribution (deciding where
they are executed) are decoupled here: the scheduler schedules the tasks according to the
precedence constraints, while the controller dynamically distributes the tasks according to
the fault-tolerance policy.

INRIA

Optimal discrete controller synthesis for fault-tolerant distributed systems 23

f1

OK1

ERR1

f2

OK2

ERR2

f3

OK3

ERR3

F1

F2 F3

B

e1 e2 e3/f1

e3/f2
e1 e2

e1 e2 e3/f3

A3
2

R3

a3
2

T3

A3
3A3

1

t3 t3
t3

a3
3

a3
2a3

2

a3
1

a3
3

r3

a3
1 a3

3

r3

I3

a3
1

A1
2

R1

a1
2

T1

A1
3A1

1

t1 t1
t1

a1
3

a1
2a1

2

a1
1

a1
3

r1

a1
1 a1

3

r1

I1

a1
1

end1/r2r3 end2end3/r1

end3/r1

end2/r1

end2

end3

T

end1/end
r/r1

Ij

A
j
2 A

j
3

T j

Rj

a
j
2a

j
1 a

j
3

rj

a
j
2 a

j
3

a
j
1

a
j
2

a
j
2 a

j
3

a
j
1 a

j
2

A
j
1

B
j
1

B
j
2 B

j
3

tj

tjtj

rj

a
j
1

......

a
j
3

cj cj cj

a
j
3

...

a
j
1

...

SCHEDULER/

PROGRAM

C
O
N
T
R
O
L
L
E
R

Figure 12: A complete system with 3 processors and 3 tasks, and a controller.

RR n
�

6137

24 E. Dumitrescu, A. Girault, H. Marchand & É. Rutten

4 Properties, objectives and fault-tolerance

The fault-tolerance policy is specified declaratively by a set of properties and objectives.
The fault-tolerance specificity of these properties is twofold. On the one hand, they are
meant to be considered upon models as described above, where all faults, recoveries or
failures behaviors are represented. On the other hand, they characterize failed states (e.g.,
consistent placement constraints characterize states where the system is not viable), as well
as the tolerance, meaning the notion of fulfilling functionality whatever the faults.

4.1 Properties

4.1.1 Insuring consistent execution

Property 1 (No task is active on a failed processor)

¬
∨

j

∨

i

(Aj
i ∧ Erri).

Property 1 is contradicted whenever a task T j is active on processor Pi (i.e., in state Aj
i)

while Pi is in Erri. The synthesis objective is to make it invariantly true. If the system, as
modeled by the designer, is such that in each state there exists a transition to a safe state
(i.e., one where Property 1 holds), then the synthesis will succeed and the controlled system
will always be able to react to a processor failure by moving to a safe state. Otherwise
the synthesis will fail, indicating to the designer that her/his system cannot be made fault-
tolerant.

Property 2 (Tasks active are within processor capacity)
∀i, Ci ≤ bi.

Property 2 is contradicted whenever the cumulated cost of all tasks active on a given
processor exceeds its capacity bound. Again, the synthesis objective is to make it invariantly
true. Typically, this objective can have the effect of inhibiting the transition from Rj to any
active state Aj

i for a task j, if taking this transition means that a later processor failure,
specified in the environment model, will not be tolerated without bounding problems. Here,
the DCS computes the most permissive controller such that all failures are guaranteed to be
tolerated without bounding problems. A terminating task can then release another waiting
task.

4.1.2 Insuring functionality

The previous properties were just simple state properties, used to avoid inconsistent con-
figurations. The discrete controller can inhibit indefinitely the start of a task if there is a
possibility that the only remaining processor has too low a bound for it (after the other
ones have failed). In that case, there is no solution for insuring functionality, defined here
as reaching termination. In other terms, tasks are activated only when “the path is clear
and wide enough all the way down” to termination, even in case of failures.

INRIA

Optimal discrete controller synthesis for fault-tolerant distributed systems 25

Property 3 (The functionality is fulfilled) From all reachable states, the terminal state
T of the program is reachable.

For the case of a tasks server, without a scheduler or program, one should make rachable
the configurations such that

∧

i T i.
Property 3 states that whatever the faults, as specified in the environment model, in any

sequence and possible simultaneity, a terminal configuration can be reached, for any occur-
rences and orders of incoming task requests and terminations. This property is instrumental
in characterizing fault-tolerance, as it excludes behaviors where all activity would be frozen
in the waiting states in order to avoid jeopardizing Properties 1 and 2. It can serve to detect
systems which do not have the capacity (logical or quantitative) to actually tolerate faults
while continuing to deliver their nominal functionality.

It is different from previous properties in the sense that it considers not only the current
state, but the trajectories of the system, requiring them to be able to reach termination.

4.2 Optimizing costs and qualities

4.2.1 One-step optimization

It is a matter of adopting a policy, by making switches only to the next configurations such
that they:

� maximize the overall quality, when the quality of tasks varies according to the proces-
sor;

� minimize the global consumption, which can be defined as the sum of costs of tasks
on processors.

Also, having this notion of quality (zero on inactive states and positive when active) provides
for a way of imposing progress to the controlled system, where the option of remaining in the
waiting state endlessly is removed; hence, proceeding to activity, and nearing to completion,
is pushed forward. Another, more self-standing, way of doing things would be to have a
separate weight accounting for the cost for waiting, and to minimize it [1].

4.2.2 Optimizing costs along paths through phases

It consists of choosing the sequence of phases where migrations minimize the cost between
the ready state and the termination state. In the example of Figure 9, different paths across
checkpoints and migrations can have different costs, and the choice of migration has to be
made according to the other constraints of the application: the invariance properties must
always hold, and the schedule must have the best cost that can be achieved despite the worst
scenarios driven by the uncontrollable events. The optimal synthesis algorithm achieves the
cost optimization through phases. It computes WQf

, the best cost function, that maps each
state of M to the best execution cost achievable to reach the target Qf = {(T 1, . . . , T n)}.

RR n
�

6137

26 E. Dumitrescu, A. Girault, H. Marchand & É. Rutten

A3
3A2

2A1
1

A2
1

A3
1

A1
3

2 + 2 ≤ 5 2 ≤ 6

2+2+3=7

A1
1

A3
3

A2
3

inconsistent (b3)

4 ≤ 5 3 + 4 > 6

3+5+5=13

A3
3

A2
1

A1
3

2 ≤ 5 2 + 4 ≤ 6

3+2+5=10

A3
3A2

2A1
1

4 ≤ 5 2 ≤ 3 4 ≤ 6power3+2+5=10quality

A3
3

A1
1

A2
1

inconsistent (b1)

2 + 4 > 5 4 ≤ 6

3+2+5=10
inconsistent (ERR2)

4 ≤ 62 ≤ 34 ≤ 5

3+2+5=10

{e2, a2
3}{e2, a1

2} {e2, a2
1, a3

1}{e2, a1
3, a2

1, a3
1}

{e2}

Figure 13: Example of states (only configuration is shown) and transition control.

An optimal solution exists iff WQf
(q0) < +∞. Then, the synthesis objective is expressed as

follows:

∀q ∈ Q choose imin
c s.t.:∀iu, ∀ic 6= imin

c : WQf
(δ(q, imin

c , iu)) ≤ WQf
(δ(q, ic, iu))

If an optimal solution exists (WQf
(q0) < +∞) then the reachability of the target state

is guaranteed and hence, the functionality fulfillment Property 3 is also satisfied.

5 Illustrative scenarii

5.1 Property 1: consistent execution

On the basis of our running example of three tasks and three processors, we illustrated in
Figure 13 an extract of the transition system. It shows configurations, with active tasks
in the squares corresponding to the respective processors, and with associated weights, of
quality and cost. The transitions that have to be inhibited by the controller are crossed,
and the avoided configurations are labeled with the reason why.

If P2 becomes faulty (event e2, state ERR2), then no task should be active on it (states
A1

2, A2
2, and A3

2). The same goes for P1 and P3. Obviously, for a fault model where all
processors can fail, no controller can be found satisfying the objective: it can not start a
task without risking all processors to fail before its termination, and therefore the behavior
will remain stuck in the ready state for all requested tasks.

Along the same lines, tasks with placement constraints can make a system harder to
control: indeed, once active on a processor Pi, there must always be another processor able
to host them in case of a failure of Pi.

INRIA

Optimal discrete controller synthesis for fault-tolerant distributed systems 27

5.2 Property 2: bounded capacity

For the sake of the example, we consider a global configuration where we have T 1 onto P1

(4 ≤ 5), T 2 onto P2 (2 ≤ 3), and T 3 onto P3 (4 ≤ 6) (in the task server view of the system).
Then, if P2 crashes, T 2 is forced to migrate either onto P1 or onto P3. However, none of
these two choices meet the constraint on the processor maximal utilization bound. Indeed,
the sum of costs of T 1 and T 2 on P1 would be 2 + 4 > 5, while T 2 and T 3 on P3 would give
3 + 4 > 6. Hence, the controller forces more migrations, e.g., T 1 onto P3 and T 2 onto P1.
This time constraints on the bounds will be met both on P1 (2 ≤ 5) and on P3 (2 + 4 ≤ 6).

A solution can be found when, after the other processors have failed as far as the en-
vironment model says, the remaining processors with the smallest capacity are still able to
host all the active tasks. This constraint can also block the system in the ready states, be-
cause the path is not clear and wide enough for execution. Here, as well as for the previous
objective, the environment model can have a determining influence: if it excludes intolerable
fault patterns, then a solution can be found.

Also, a task model without the possibility to have the control waiting in the ready
state until a favorable configuration is reached, allows less solutions. In that case, having
a program or scheduler can have an impact, in that only certain subsets of tasks can be
activated in parallel. This requires less capacity on the processors than a task server where
the worst case is that all tasks are active in parallel. On the other hand, with tasks with
a waiting state, the actual sequencing is under control of the controller, and a solution can
exist, which proceeds sequentially one task after another. For such tasks, considering a
program or scheduler is therefore not useful in the search of control solutions.

5.3 Property 3: functionality fulfilment

The results vary depending on the environment model:

� for a one fault model (Fig 5-a), everything works fine, as capacity is sufficient on any
group of two remaining processors;

� for a two faults model (Fig 5-b), capacity of P2 is insufficient to accommodate for task
T 1, therefore no controller can insure functionality for all possible sequences of faults
and requests;

� for the fault pattern example (Fig 5-c), a solution can be found, as the pathological
processor configuration (P2 only survivor) is excluded by the fault model.

One can note that, would the capacity bound of P2 be a little higher, a solution would exist
for the two faults model: changing the bounds allow us to obtain different controllability
solutions. When no solution is found, the user must relax some of the system’s constraints:
either the environment model, or the power consumption bounds. . . When one solution is
found, it means that we have a controller that will dynamically allocate the tasks onto the
live processors, while guaranteeing that all processor failures will be tolerated and that the
cumulative power consumption will always remain smaller than the bound on each processor.

RR n
�

6137

28 E. Dumitrescu, A. Girault, H. Marchand & É. Rutten

5.4 Optimizations

5.4.1 One-step optimizations

This enables us to further restrain behavior, using values as in Table 1, to maximize quality
(and possibly forcing migrations just to achieve this), and then to minimize the power
consumption cost. As said in Section 2.1, there may be several solutions with equal weights.
The example in Figure 13 shows two remaining configurations, with qualities 7 (left) and 10
(right)

These criteria can be played around with, for the same system under study: minimal
consumption can be applied first, before maximizing quality in the remaining solutions.

5.4.2 Optimization on paths

Figure 14 illustrates the execution of the synthesized controller, according to the particu-
lar scenario of two tasks running on three processors, each task having two phases. The
controller is generated under the assumption that both tasks start at the same moment,
i.e., events r1 and r2 are received simultaneously. Besides, we also assume that both tasks
execute only once, i.e., r1 and r2 are only received once. The fault model used is presented
in Figure 5. Static costs are represented as integer numbers next to their corresponding
states.

In this example, the best execution cost for task T 1 would be 1 + 1 + (2 + 1) + 1 = 6,
which corresponds to executing its first phase on P3 and its second phase on P1. The best
execution cost for task T 2 is 1 + 1 + (1 + 1) + 1 = 5, which corresponds to executing its first
phase on P2 and its second phase on P1.

The run proceeds as follows. At the beginning of the simulation, T 1 is scheduled on P3

and T 2 is scheduled on P2. At that moment, processor P2 fails. T 2 must migrate immediately
and the best cost solution is offered by processor P3. Task T 1 remains on processor P3. The
tasks can execute their own checkpoint independently of each other, when receiving the
corresponding uncontrollable event c1,2. Just after a checkpoint, processor migrations can
also occur for optimality reasons: both T 1 and T 2 migrate respectively from P3 to P1 in order
to achieve their best execution cost. Each task terminates when receiving an uncontrollable
event t1,2.

Thus, T 1 ends with a total execution cost of 6, which happens to be its lowest possible
execution cost. On the other hand, task T 2 ends with a total cost of 7, instead of the
minimal cost 5, due to the failure of P2 and the migration from P2 to P3.

The way uncontrollable self-loops are handled is fundamental. In the example, such self
loops are almost ubiquitous: each time there is an indefinite waiting for an uncontrollable
event. The start events r1,2, checkpoint events c1,2 and termination events t1,2 can be pos-
sibly awaited forever. The classical Bellman algorithm for optimal synthesis would directly
return the worst-case cost for all these self-loops, which is +∞; in this case, no optimal
solution would exist and all schedules would be equivalent since they would all cost +∞.
However, as mentioned before, self-loops should not penalize the worst-case execution cost.
Our algorithm computes the best execution cost by counting the self-loop states only once.

INRIA

Optimal discrete controller synthesis for fault-tolerant distributed systems 29

8 1 2

3
2

1

4 3 2

1 2
6

1 1 1 1

1 1

I2

A2
2 A2

3

T2

R2

a2
2a2

1 a2
3

a2
2f a2

3f

a2
1f a2

2f

a2
2f a2

3f

a2
1f a2

2f

A2
1

B2
1 B2

2 B2
3

t2

t2t2

r2

c2 c2 c2

r2

...

c2a2
3c2a2

1

I1

A1
2 A1

3

T1

R1

a1
2a1

1 a1
3

a1
2f a1

3f

a1
1f a1

2f

a1
2f a1

3f

a1
1f a1

2f

A1
1

B1
1 B1

2 B1
3

t1

t1t1

r1

c1 c1 c1

r1

...

c1a1
3c1a1

1

Figure 14: Simulation result for 2 tasks executing on 3 processors.

Sigaliz3z

encodingMode

Automata

system model

components

properties

weights

controller

SigalSimu
interactive

simulation

Figure 15: Tools used.

The optimal scheduler generated allows indefinite waiting for all uncontrollable events and
performs on-line reconfiguration each time a failure occurs and/or the global execution cost
can be improved.

6 Implementation

As we mentioned in the beginning, we are using existing synchronous and DCS techniques
as such, and hence will not present, in this limited space, details available elsewhere.
Matou

3 [20] was used for writing the model of our systems as sets of mode automata, while
the symbolic model-checker and DCS tool Sigali4 [22] was successfully used to automat-
ically synthesize fault-tolerant systems from a high-level specification, and SigalSimu [1]
was then used to co-simulate the system and the controller, as illustrated in Figure 15.

3http://www-verimag.imag.fr/∼maraninx/MATOU
4http://www.irisa.fr/vertecs/Logiciels/sigali.html

RR n
�

6137

http://www-verimag.imag.fr/~maraninx/MATOU
http://www.irisa.fr/vertecs/Logiciels/sigali.html

30 E. Dumitrescu, A. Girault, H. Marchand & É. Rutten

We first considered simple tasks, and consistent execution objectives, and then extended
our objectives with functionality fulfillment and optimization.

We then augmented the Sigali tool with an implementation of our optimal synthesis
technique for systems with self-loops.

Our method is limited by the technological state of the existing DCS tools, basically
the same limitations as with model checking tools. Given the current trend in this domain
(symbolic state space exploration, abstract interpretation, widening operators . . .), we be-
lieve that future improvements in DCS tools will make it an efficient solution for industrial
size problems.

7 Conclusion

7.1 Results

We have shown how to model a real-time distributed system, its heterogeneous architecture,
and its environment in order to produce automatically a controller enforcing fault-tolerance.
It reacts to the occurrences of failures by migrating tasks according to the fault-tolerance
policy. For this, we have applied DCS to LTS models of the whole system, with objectives
regarding consistent execution, functionality fulfillment, and optimizations.

We have coded and applied an algorithm for optimal DCS on bounded paths reaching a
target configuration, where we introduced the possibility of optimizing systems containing
waiting transitions, which is meaningful w.r.t. to reactive systems..

7.2 Discussion

Fault-tolerance for embedded systems can be divided into two classes of approaches: static
or dynamic. In the static approach, task redundancies are added such that any occurrence
of failures be tolerated during the execution; the drawback is that this is expensive since one
has to pay the overhead of redundancy even in the absence of failures; the advantage is that
a bound on the system’s reaction time can be computed prior to the system’s deployment,
with the guarantee that this bound will hold whatever the occurrence of failures during the
execution. In the dynamic approach, mechanisms are added to the system such that the
system will be able to react dynamically to any occurrence of failures during the execution;
the drawback is that no bound can be computed on the system’s reaction time since this
depends on the unpredictable occurrence of failures; the advantage is that no overhead has
to be paid in the absence of failure; that is, until a failure occurs, the execution cost of the
fault-tolerant system is (almost the same as) that of the corresponding non fault-tolerant
one.

We believe that our approach is interesting in the sense that, when the DCS actually suc-
ceeds in producing a controller, we obtain a system equipped with a dynamic reconfiguring
mechanism to handle failures (i.e., the controller), with a static guarantee that all specified
failures will be tolerated during the execution, and with a known bound on the system’s

INRIA

Optimal discrete controller synthesis for fault-tolerant distributed systems 31

reaction time. In other words, we have the advantages of both approaches. But remember
that this is true only when the DCS succeeds. If DCS fails, this failure can concern either
the invariance properties or the optimization. The failure of an invariant property means
that it cannot be guaranteed that a task is never scheduled on a faulty processor: the model
under development is not fault tolerant. The failure of the optimal synthesis means that
there is no optimal path towards the specified target, i.e., all paths cost +∞ or the target
is unreachable.

7.3 Perspectives

Interesting perspectives concern:

� variants on the model of tasks, for instance having several modes to account for Dy-
namical Voltage Scaling (DVS), where a slower speed is cheaper in terms of power, or
degraded modes for the same functionality,

� other logical properties of interest are exclusions between tasks, and sequencing con-
straints, using observers; other quantitative properties of interest are the use of devices
(sensors, co-processors), managing memory use, bounds on migration costs, minimum
levels of quality, ...

References

[1] K. Altisen, A. Clodic, F. Maraninchi, and E. Rutten. Using controller-synthesis tech-
niques to build property-enforcing layers. In Proceedings of the European Symposium
on Programming, ESOP’03, Warsaw, Poland, April 2003.

[2] R. Alur, O. Bournez, T. Dang, O. Maler, and A. Pnueli. Effective synthesis of switching
controllers for linear systems. Proc. of the IEEE, 88:1011–1025, 2000.

[3] M. Baleani, A. Ferrari, L. Mangeruca, M. Peri, S. Pezzini, and A. Sangiovanni-
Vincentelli. Fault-tolerant platforms for automotive safety-critical applications. In
International Conference on Compilers, Architectures and Synthesis for Embedded Sys-
tems, CASES’03, San Jose, USA, November 2003. ACM.

[4] R. Bellman. Dynamic programming. Princeton University Press, 1957.

[5] A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone.
The synchronous languages twelve years later. Proc. of the IEEE, 91(1):64–83, January
2003. Special issue on embedded systems.

[6] C. Bernardeschi, A. Fantechi, and L. Simoncini. Formally verifying fault tolerant system
designs. The Computer Journal, 43(3), 2000.

RR n
�

6137

32 E. Dumitrescu, A. Girault, H. Marchand & É. Rutten

[7] G. Bruns and I. Sutherland. Model checking and fault tolerance. In Proceedings 6th In-
ternational Conference on Algebraic Methodology and Software Technology, AMAST’97,
Sidney, Australia, 1997.

[8] A.P. Chandrakasan, S. Sheng, and R.W. Broderson. Low-power CMOS digital design.
IEEE Journal of Solid-State Circuits, 27(4):473–484, 1992.

[9] K.-H. Cho and J.-T. Lim. Synthesis of fault-tolerant supervisor for automated manufac-
turing systems: A case study on photolothographic process. IEEE Trans. on Robotics
and Automation, 14(2):348–351, April 1998.

[10] Gwenaël Delaval and Eric Rutten. A domain-specific language for multi-task sys-
tems, applying discrete controller synthesisd. Journal on Embedded Systems (spe-
cial issue on Synchronous Paradigm in Embedded Systems), (to appear), 2007.
http://www.hindawi.com/journals/es/raa.84192.html .

[11] Gwenaël Delaval and Éric Rutten. A domain-specific language for task handlers genera-
tion, applying discrete controller synthesis. In Proc. of the 21st ACM Symp. on Applied
Computing, SAC 06, Poitiers, France, April 23–27, 2006.

[12] E. Dumitrescu, A. Girault, and E. Rutten. Validating fault-tolerant behaviors of syn-
chronous system specifications by discrete controller synthesis. In IFAC Workshop on
Discrete Event Systems, WODES’04, Reims, France, Sept. 2004.

[13] Alain Girault and Éric Rutten. Discrete controller synthesis for fault-tolerant dis-
tributed systems. In Proceedings of the Ninth International Workshop on Formal Meth-
ods for Industrial Critical Systems, FMICS 04, September 20-21, 2004, Linz, Austria,
pages Electronic Notes in Theoretical Computer Science ENTCS, Volume 133 , 31 May
2005, Pages 81–100. http://www.sciencedirect.com/science/journal/15710661,
http://dx.doi.org/10.1016/j.entcs.2004.08.059, 2004.

[14] R. Guerraoui and A. Schiper. Consensus service: A modular approach for building
agreement protocols in distributed systems. In 26th IEEE Int. Symp. on Fault-Tolerant
Computing, FTCS’96, Sendai, Japan, June 1996.

[15] H.Marchand. Méthodes de synthèse d’automatismes décrits par des systèmes à
événéménts discrets finis. PhD thesis, Université de Rennes-I, 1997.

[16] P. Jalote. Fault-Tolerance in Distributed Systems. Prentice Hall, 1994.

[17] R. Jensen. DES controller synthesis and fault tolerant control – a survey of recent
advances. Res. report TR-2003-40, ITU, Copenhagen, Denmark, Dec. 2003.

[18] Ch. Kloukinas and S. Yovine. Synthesis of safe, QoS extendible, application specific
schedulers for heterogeneous real-time systems. In 5th Euromicro Conference on Real-
Time Systems (ECRTS’03), Porto, Portugal, July, 2003.

INRIA

Optimal discrete controller synthesis for fault-tolerant distributed systems 33

[19] J.-C. Laprie et al. Dependability: Basic Concepts and Terminology. Dependable Com-
puting and Fault-Tolerant Systems. Springer-Verlag, 1992.

[20] F. Maraninchi and Y. Rémond. Mode-automata: a new domain-specific construct for
the development of safe critical systems. Science of Computer Programming, 46(3):219–
254, 2003.

[21] H. Marchand, O. Boivineau, and S. Lafortune. Optimal control of discrete event systems
under partial observation. In Proc. of the 40th IEEE Conf. on Decision and Control,
CDC’01, Orlando, Florida, dec, 2001.

[22] H. Marchand, P. Bournai, M. Le Borgne, and P. Le Guernic. Synthesis of discrete-event
controllers based on the Signal environment. Discrete Event Dynamic System: Theory
and Applications, 10(4):325–346, October 2000.

[23] H. Marchand and M. Le Borgne. On the optimal control of polynomial dynamical
systems over z/pz. In 4th IEE International Workshop on Discrete Event Systems,
pages 385–390, Cagliari, Italie, August 1998.

[24] H. Marchand and E. Rutten. Managing multi-mode tasks with time cost and quality
levels using optimal discrete controller synthesis. In Euromicro Conference on Real-
Time Systems, ECRTS’02, Vienna, Austria, June 2002.

[25] P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete event
processes. SIAM Journal on Control and Optimization, 25(1):206–230, January 1987.

[26] J. Rushby. Critical system properties: Survey and taxonomy. Reliability Engineering
and Systems Safety, 43(2):189–219, 1994.

[27] H. Schepers and J. Hooman. Trace-based compositional proof theory for fault tolerant
distributed systems. Theoretical Computer Science, 128, 1994.

RR n
�

6137

34 E. Dumitrescu, A. Girault, H. Marchand & É. Rutten

Contents

1 Motivation 3
1.1 Safety critical embedded systems . 3
1.2 Problem statement . 3
1.3 Contributions . 4
1.4 An introductory example . 4
1.5 Related work . 6
1.6 Outline . 7

2 Background 7
2.1 Discrete controller synthesis . 7

2.1.1 Preliminaries . 7
2.1.2 Discrete controller synthesis on transition systems 8
2.1.3 One-step optimal discrete controller synthesis 9
2.1.4 Optimal discrete controller synthesis on paths 9

2.2 Property-enforcing layers . 11
2.3 Fault-tolerance . 12
2.4 DCS for fault-tolerance properties enforcing 12

3 Abstract model of a distributed system 13
3.1 Architecture model . 13

3.1.1 Local processor model . 13
3.1.2 Heterogeneous architecture model . 14
3.1.3 Environment or fault model . 15

3.2 Task model . 16
3.2.1 Simple tasks . 16
3.2.2 Tasks with checkpoints . 18

3.3 Application model . 21
3.3.1 Tasks server . 21
3.3.2 Scheduler or program . 21

3.4 System model . 22

4 Properties, objectives and fault-tolerance 24
4.1 Properties . 24

4.1.1 Insuring consistent execution . 24
4.1.2 Insuring functionality . 24

4.2 Optimizing costs and qualities . 25
4.2.1 One-step optimization . 25
4.2.2 Optimizing costs along paths through phases 25

INRIA

Optimal discrete controller synthesis for fault-tolerant distributed systems 35

5 Illustrative scenarii 26
5.1 Property 1: consistent execution . 26
5.2 Property 2: bounded capacity . 27
5.3 Property 3: functionality fulfilment . 27
5.4 Optimizations . 28

5.4.1 One-step optimizations . 28
5.4.2 Optimization on paths . 28

6 Implementation 29

7 Conclusion 30
7.1 Results . 30
7.2 Discussion . 30
7.3 Perspectives . 31

RR n
�

6137

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)��������� �	��
�

���������� ��� ���

ISSN 0249-6399

	Motivation
	Safety critical embedded systems
	Problem statement
	Contributions
	An introductory example
	Related work
	Outline

	Background
	Discrete controller synthesis
	Preliminaries
	Discrete controller synthesis on transition systems
	One-step optimal discrete controller synthesis
	Optimal discrete controller synthesis on paths

	Property-enforcing layers
	Fault-tolerance
	DCS for fault-tolerance properties enforcing

	Abstract model of a distributed system
	Architecture model
	Local processor model
	Heterogeneous architecture model
	Environment or fault model

	Task model
	Simple tasks
	Tasks with checkpoints

	Application model
	Tasks server
	Scheduler or program

	System model

	Properties, objectives and fault-tolerance
	Properties
	Insuring consistent execution
	Insuring functionality

	Optimizing costs and qualities
	One-step optimization
	Optimizing costs along paths through phases

	Illustrative scenarii
	Property 1: consistent execution
	Property 2: bounded capacity
	Property 3: functionality fulfilment
	Optimizations
	One-step optimizations
	Optimization on paths

	Implementation
	Conclusion
	Results
	Discussion
	Perspectives

