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Abstract: This paper provides new results on computing simultaneous sparse approximations
of multichannel signals over redundant dictionaries using two greedy algorithms. The first one,
p-thresholding, selects the S atoms that have the largest p-correlation while the second one, p-
simultaneous matching pursuit (p-SOMP), is a generalisation of an algorithm studied by Tropp
in [28]. We first provide exact recovery conditions as well as worst case analyses of all algorithms.
The results, expressed using the standard cumulative coherence, are very reminiscent of the single
channel case and, in particular, impose stringent restrictions on the dictionary. We unlock the
situation by performing an average case analysis of both algorithms. First, we set up a general
probabilistic signal model in which the coefficients of the atoms are drawn at random from
the standard gaussian distribution. Second, we show that under this model, and with mild
conditions on the coherence, the probability that p-thresholding and p-SOMP fail to recover
the correct components is overwhelmingly small and gets smaller as the number of channels
increases. Furthermore, we analyse the influence of selecting the set of correct atoms at random.
We show that, if the dictionary satisfies a uniform uncertainty principle [5], the probability that
simultaneous OMP fails to recover any sufficiently sparse set of atoms gets increasingly smaller
as the number of channels increases. To conclude, we study the robustness of these algorithms
to an imperfect knowledge of the dictionary, a situation met in sparsity-based blind source
separation where the dictionary, which corresponds to a mixing matrix, is only approximately
known. In this framework, we estimate the probability of failure of the considered algorithms
as a function of the similarity between the reference dictionary and the approximate one, which
we measure with the smallest correlation between corresponding pairs of atoms.
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Atomes de tous les canaux, unissez-vous!

Une analyse au cas moyen des algorithmes gloutons

de décomposition parcimonieuse multi-canal

Résumé : Cet article est consacré à l’analyse du comportement de deux algorithmes glou-
tons pour le calcul d’approximations parcimonieuses simultanées de signaux multicanaux avec
des dictionnaires redondants. Le premier algorithme, p-thresholding, sélectionne les S atomes qui
ont la plus grande p-corrélation avec le signal analysé, tandis que le second, p-Simultaneous Or-
thonormal Matching Pursuit (p-SOMP) est une généralisation d’un algorithme étudié par Tropp
[28]. Pour chaque algorithme, nous fournissons des conditions d’identifiabilité de représentations
parcimonieuses conjointes, ainsi qu’une analyse au pire cas de ces conditions. Les résultats, ex-
primés à l’aide de la cohérence cumulative classique, sont similaires au cas monocanal et imposent
des restrictions très fortes sur le dictionnaire pour garantir le succès des algorithmes considérés.

Nous débloquons la situation en effectuant une analyse au cas moyen de ces deux algo-
rithmes. Pour commencer, nous proposons un modèle probabiliste des signaux où les coefficients
des atomes de la représentation sont générés aléatoirement selon une distribution Gaussienne.
Ensuite, dans le cadre de ce modèle, nous prouvons que la probabilité que p-thresholding et
p-SOMP ne retrouvent pas les bons atomes devient négligeable lorsque le nombre de canaux
crôıt, sous des conditions assez faibles de cohérence du dictionnaire.

En outre, nous analysons un modèle génératif où l’ensemble des atomes de la représentation
est lui-même tiré au hasard. Dans ces conditions, nous montrons que si le dictionnaire satisfait
un principe d’incertitude uniforme [5] alors la probabilité que p-SOMP ne retrouve pas le bon
jeu d’atomes devient négligeable lorsque le nombre de canaux crôıt.

Pour finir, nous considérons la question de la robustesse de ces algorithmes vis-à-vis d’une
connaissance imparfaite du dictionnaire servant à modéliser les signaux, comme par exemple
dans le cadre de la séparation aveugle de sources où le dictionnaire, qui correspond la matrice
de mélange, est seulement approximativement connu. Dans ce cadre nous estimons la proba-
bilité d’échec des algorithmes considérés en fonction de la ressemblance entre le dictionnaire de
référence et le dictionnaire estimé, représentée par la plus faible corrélation entre paires d’atomes
associés.

Mots clés : représentation parcimonieuse, approximation simultanée, traitement du signal
multicanal, dictionnaire redondant, matching pursuit, seuillage, algorithme glouton, identifia-
bilité, robustesse.



Average case analysis of multichannel sparse recovery 3

Contents

1 Introduction 3
1.1 Signal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Recovery problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Technical tools and notations 7
2.1 Matrix norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Babel functions and isometry constants . . . . . . . . . . . . . . . . . . . . 8

3 Main results 9

4 Worst Case Analysis 15

5 Average case analysis for thresholding 17
5.1 Spirit of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Concentration of measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 Main result for p-thresholding . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Average case analysis of OMP 20
6.1 Spirit of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2 A general recovery result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.3 Bounds on c0(Λ) and d0(Λ) . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.4 Proof of Theorem 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.5 Proof of Theorem 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.6 Proof of Theorem 3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7 Robustness with respect to the dictionary 26

8 Conclusions and Outlook 29

A Proof of Theorem 5.1 29

B Computation of Ap(N) and Cp(N) 31

1 Introduction

Transform coding is one of the most successful paradigms in signal processing. Generally
speaking, it asserts that many signals can be efficiently compressed because they have
a sparse representation on some fixed basis. A simple transform coder would then de-
compose the signal over this optimal basis and threshold all projections to locate and
keep only the K strongest ones. This simple algorithm is at the core of the success of
modern image and video coders such as JPEG2000 where a wavelet basis is used [23, 11].
Recently though, new problems have come to challenge that paradigm. Restricting our
models to decompositions over fixed bases drastically narrows the class of signals that

0Math Subject Classifications: 41A28, 41A46, 60D05.
0Keywords and Phrases: Greedy algorithms, OMP, Thresholding, multi-channel, average analysis.
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4 Gribonval, Rauhut, Schnass & Vandergheynst

can be efficiently processed. A lively strand of research advocates richer models based
on redundant dictionaries, which can capture a much broader range of signals. A dic-
tionary Φ is a large collection of unit norm vectors ‖ϕn‖2 = 1, n = 1, ..., K in Rd,
usually with K ≫ d. Handling arbitrary dictionaries is no easy task, though. First,
uniqueness of a signal representation is not guaranteed anymore. Second, even com-
puting a decomposition becomes a complicated issue: several algorithms, most notably
greedy algorithms and convex relaxation techniques can be used, but analysing their per-
formances remained a daunting challenge. The situation unlocked with the realisation
that sparse models solve these problems. To illustrate the role of sparsity, let us intro-
duce the coherence of the dictionary, i.ethe strongest correlation between any two distinct
vectors in Φ: µ = maxi6=j |〈ϕi, ϕj〉|. Schematically, if a signal is a superposition of less
than µ−1 elements of Φ, this representation is unique and can be recovered by standard
algorithms [24, 26, 10].

In parallel to developments in sparse signal models, various application scenarios moti-
vated renewed interest in processing not just a single signal, but many signals or channels
at the same time. A striking example is sensor networks, where signals are monitored
by low complexity devices whose observations are transfered to a central collector [17].
This central node thus faces the task of analysing many, possibly high-dimensional, sig-
nals. Moreover, signals measured in sensor networks are typically not uncorrelated: there
are global trends or components that appear in all signals, possibly in slightly altered
forms. Modeling multichannel signals by means of redundant dictionaries, generalising
existing mono-channel algorithms and understanding their properties are thus important
challenges.

In this paper we analyse the theoretical performances of two classes of simultaneous
greedy algorithms, p-thresholding and p-SOMP. In both cases, we provide worst case
recovery conditions, but our main contribution with respect to prior art is a rigorous
average case analysis of both classes of algorithms. The spirit of our results, described in
Section 3, is that by allowing an overwhelmingly small probability of error, we get more
favourable recovery conditions, far better than what had been previously reported in the
worst case.

Our analysis is based on studying the average case instead of the worst case and the
spirit of our results is the following: We show that given a dictionary of coherence µ, p-
thresholding can recover superpositions of up to µ−2 atoms with overwhelming probability,
provided that the dynamic range of the signal coefficients is somewhat limited. Our
conditions on Φ are thus much less restrictive than in the worst case. In particular, we
provide quantitative versions of the results for distributed compressed sensing in [3], which
even allow to work with deterministic measurement matrices.

1.1 Signal model

Suppose we are to design a network of N sensors monitoring a common phenomenon.
Each of our sensors observes a d-dimensional signal yn ∈ Rd, n = 1, ..., N . As explained
in the previous section, a sparsity hypothesis will be the central assumption of our model:
we will assume that each signal yn admits a sparse approximation over a single dictionary
Φ,

yn = Φxn + en, n = 1, ..., N.

Irisa



Average case analysis of multichannel sparse recovery 5

Sparsity in this case is embodied in each of the coefficient vectors xn, which are assumed
to have few non zero entries as measured by their ℓ0 ”norm”1: ‖x‖0 ≤ S. In order to
model correlations between signals, we will refine this model by imposing that all signals
share a common sparse support, i.e

yn = ΦΛxn + en,

where ΦΛ is the restriction of the synthesis matrix Φ to the columns listed in the set Λ.
In this case, sparsity is conveyed by the size of the support set, |Λ| ≤ S, and there is
thus no restriction on the coefficient vectors. This model is inspired by a recent series of
papers on distributed sensing, see [2] and references therein. It describes a network of
sensors monitoring a signal with a strong global component that appears at each node.
Localised effects are modelled by letting synthesis coefficients xn vary across nodes and
through the innovations en. As an illustrative example, imagine sensors measuring the
chemical composition of the atmosphere at some locations of a geographical area. There
is a common component, say a mean regular chemical composition, modelled by the
fixed support Λ. But it changes slightly from node to node because of differences in
sensor location (latitude, altitude, ...); these are modelled by varying the amplitudes xn

of components from node to node. Localised effects, like pollution or forest fires, can
drastically alter the signal and are captured by transient innovations en. The very nature
of these innovation signals en will thus depend on the exact problem one wants to solve.
However, and for simplicity, we will in this paper assume that they are orthogonal to the
subspace spanned by Λ. Hence ΦΛxn is the best approximation of yn by elements of Λ
in mean squared sense. Note that we will sometimes refer to en as noise, in a clear but
hopefully not misleading abuse of language.

Let us now turn towards describing a generative model for the synthesis coefficients
xn. In order to obtain a sufficiently general model, we will assume that the components
xn(i), i ∈ Λ of the random vector xn are independent Gaussian variables of variance σi.
This model is fairly general to accommodate various practical problems: the Gaussian
assumption is one of the most widely used in signal processing, while incorporating dif-
ferent variances allows us to shape the synthesis coefficients, imposing statistical decay
for example on the xn(i).

In order to simplify our analysis we will adopt a global matrix notation. We will collect
all signals on the columns of the d×N matrix Y = [y1, . . . , yN ]. Let U be a S×N random
matrix with independent standard gaussian entries and let Σ be a S × S diagonal matrix
whose diagonal entries σ2

i are positive real numbers. Our model can then be written in
compact form:

Y = ΦΛ · Σ 1
2 · U + E, (1.1)

where E is a d×N matrix collecting innovation (noise) signals en on its columns.

1.2 Recovery problem

A typical problem consists in recovering either the support Λ (this is a recovery problem)
or the coefficients X (this is an estimation problem) from the observation Y . For that,
algorithms must be designed, and their success must be characterised depending on the

1Note that we adopted a common abuse of language, since ‖ · ‖0 is not a norm, neither a quasi-norm.
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6 Gribonval, Rauhut, Schnass & Vandergheynst

noise level and other characteristics of the multichannel sparse signal model. Typical
(single channel) sparse approximation algorithms rely on the computation of the inner
products 〈y, ϕk〉 between the signal y and the atoms ϕk of the dictionary, which are the
entries of the vector Φ⋆y. In the multichannel setting, we will consider algorithms that
similarly rely on the entries 〈yn, ϕk〉 of the matrix Φ⋆Y . Instead of inner products with
the atoms ϕk involved in the signal model, it is also interesting to consider variants where
other atoms ψk, which we will call sensing atoms, are used in the algorithms, cp. [22]. In
other words, the algorithms will rely on the entries of Ψ⋆Y . One of the reasons for intro-
ducing such sensing atoms is that, in some cases, the signal model is only approximately
known so one cannot use the (unknown) dictionary Φ in an algorithm. Another reason is
that an added freedom in the choice of the sensing matrix may also improve the provable
performance of the considered algorithms.

Thresholding algorithm. Of the two families of sparse approximation algorithms con-
sidered in this paper, the family of simultaneous thresholding algorithms is certainly the
simplest one. In the single channel case, thresholding amounts to selecting the atoms of
the dictionary which are most correlated with the signal y. In the multichannel setting,
the main change is that one should combine the correlation of the atom with the different
channels to get a single interchannel correlation criterion for the selection of the most
correlated atoms. For any 1 ≤ p ≤ ∞ one can consider the p-correlation

‖ψ⋆
kY ‖p :=

(
N∑

n=1

|〈ψk, yn〉|p
)1/p

(1.2)

with the standard modification for p = ∞. The p-thresholding algorithm simply amounts
to selecting a set ΛM of M atoms whose p-correlations with Y are among the M largest

‖ψ⋆
kY ‖p ≥ ‖ψ⋆

l Y ‖p, ∀k ∈ ΛM , ∀l /∈ ΛM . (1.3)

In addition to an estimated support ΛS, p-thresholding can also be used to provide an
estimate of the coefficients X, which is most easily done by least squares optimisation,
leading to XM := Φ†

ΛM
Y where Φ†

ΛM
denotes the Moore-Penrose pseudo-inverse of ΦΛM

.

Greedy algorithm. Simultaneous Orthogonal Matching Pursuit (SOMP) is a somewhat
more elaborate iterative algorithm for sparse signal approximation. At each iteration, an
atom index km is selected, and a residual is updated. At the first iteration the residual is
simply Y0 := Y . After M iterations, the set of selected atoms being ΛM := {km}M

k=1, the
new residual is computed as YM = Y −ΦΛM

XM = (I−PΛM
)Y where XM := Φ†

ΛM
Y and

PΛM
= ΦΛM

Φ†
ΛM

is the orthogonal projection onto the linear span of the selected atoms.
In p-SOMP, the next selected atom kM+1 is the one which maximises the p-correlation
with the residual YM

‖ψ⋆
kM+1

YM‖p = max
1≤k≤K

‖ψ⋆
kYM‖p. (1.4)

Recovering the right support. Given the model Y = ΦΛX + E, we will say by
definition that p-thresholding (respectively p-SOMP) “recovers” Λ if when we setM = |Λ|,
the selected set ΛM exactly matches Λ. Occasionally we may also be interested in partial
recovery, meaning that for some M ≤ |Λ| the algorithms only select “good” atoms,
i.e ΛM ⊂ Λ.

Irisa
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2 Technical tools and notations

This section provides the main tools and notations which will be used over and over in
the remaining of this article to state and prove our results.

2.1 Matrix norms

In order to be able to neatly analyse the algorithms in the next sections it will be conve-
nient to define the following matrix norms. Let A be a n ×m-matrix with rows (Ai)1...n

then we define

‖A‖p,∞ := max
i=1...n

‖Ai‖p = max
i=1...n

(
m∑

j=1

|Aij|p
) 1

p . (2.1)

Note that this matrix norm should not be confused with the operator norm |||A|||p→∞,
which for general 1 ≤ p, q ≤ ∞ is defined as:

|||A|||p→q = max
‖x‖p=1

‖Ax‖q. (2.2)

However, there exists a connection between the two norm types which we will exploit
later to prove some easy inequalities. Namely if 1

p
+ 1

p′
= 1 we have

‖A‖p,∞ = |||A|||p′→∞. (2.3)

Among the p, q-operator norms the 2, 2-operator norm will play an important role as it is
connected to the spectrum of the matrix, i.e,

|||A|||2→2 = λmax(A) = largest singular value of A. (2.4)

Also we will write for shortness ||| · ||| := ||| · |||2→2. The following lemma collects two useful
properties of operator norms.

Lemma 2.1. 1. For two matrices A,B we have

|||AB|||p→q ≤ |||B|||p→s|||A|||s→q. (2.5)

2. If A† denotes the Moore-Penrose pseudo-inverse of A we have

|||A†|||2→2 =
1

λmin(A)
, (2.6)

where λmin(A) denotes the smallest non-zero singular value of A.

The following trivial Corollary will be essential for some recovery results in this paper.

Corollary 2.2. For two matrices A,B we have

‖AB‖p,∞

‖B‖p,∞
≤ |||A|||∞→∞ = ‖A‖1,∞ = max

i=1..n

m∑

j=1

|Aij|. (2.7)

PI n˚1848



8 Gribonval, Rauhut, Schnass & Vandergheynst

2.2 Babel functions and isometry constants

A few essential tools have emerged from the literature to characterise which sparse repre-
sentations from a redundant dictionary can be recovered with typical algorithms such as
ℓ1-minimization and greedy algorithms. Here we recall the definitions of the Babel func-
tion, also known as cumulative coherence, and the restricted/global isometry constants
of a dictionary. Where necessary, we adapt these tools to handle pairs (Φ,Ψ) made of a
dictionary Φ, from which the sparse signals Y ≈ ΦX are built, and a sensing dictionary
Ψ, used to compute correlations with the signal Y .

p-Babel functions.
The p-Babel function for a subset Λ is the most tangible characteristics of a given pair of
dictionaries (Φ,Ψ) of equal size. It is defined in the computationally explicit form as

µp(Φ,Ψ,Λ) := sup
ℓ/∈Λ

(∑

j∈Λ

|〈ϕj, ψℓ〉|p
) 1

p (2.8)

and measures the amount of correlation between sensing atoms ψℓ outside the support
Λ and modeling atoms ϕj inside the support Λ. A complement to the p-Babel function
measures the amount of correlation between atoms inside the support Λ

µin
p (Φ,Ψ,Λ) := sup

i∈Λ
µp(ΦΛ,ΨΛ,Λ\{i}). (2.9)

Taking the supremum over all possible subsets of size at most S, we get the definition of
the p-Babel function for an integer S as

µp(Φ,Ψ, S) := sup
|Λ|≤S

µp(Φ,Ψ,Λ). (2.10)

A similar definition is used for µin
p (Φ,Ψ, S), which trivially yields the relation

µin
p (Φ,Ψ, S) ≤ µp(Φ,Ψ, S − 1). (2.11)

Most interesting for us will be the cases p = 1 and p = 2. When the sensing dictionary
Ψ equals the modeling one Φ, the reader can easily check that the p-Babel function for
p = 1 matches the standard definition of the Babel function which can be found, e.g., in
Tropp’s enjoyable paper [24].

Shorthands.
In several sections of this article, we will omit the reference to the dictionary pair (Φ,Ψ)
if it is clear which one we are considering and will write simply µp(Λ), µin

p (Λ), µp(S) and
µin

p (S). Similar shorthands will be used for the notations introduced hereafter.

Similarity between sensing and modeling dictionaries.
While p-Babel functions measure the similarity between non-corresponding atoms in the
original and the sensing dictionary, which we will want to be small to obtain recovery

Irisa



Average case analysis of multichannel sparse recovery 9

results, we will also need a measure for the similarity between matching atom pairs ϕk, ψk,
which we will then want to be large. For that we consider

βk := 〈ϕk, ψk〉 > 0, (2.12)

β(Λ) := min
i∈Λ

βi (2.13)

The assumption that βk > 0 is merely a convention which can always be guaranteed by
slightly changing the definition of the sensing dictionary Ψ, replacing ψk by −ψk if nec-
essary.

Isometry constants.
In order to bound the spectrum of a subdictionary ΦΛ we define the isometry constant
δΛ = δΛ(Φ) as the smallest quantity such that

(1 − δΛ) · ‖x‖2
2 ≤ ‖ΦΛx‖2

2 ≤ (1 + δΛ) · ‖x‖2
2 ∀x 6= 0. (2.14)

Note that the definition above provides the following bound on the extremal singular
values of ΦΛ

λmin(ΦΛ) ≥
√

1 − δΛ and λmax(ΦΛ) ≤
√

1 + δΛ. (2.15)

Since we also want a uniform estimate over all possible subdictionaries of a given size, we
define for an integer S the global (restricted) isometry constant

δS := sup
|Λ|=S

δΛ (2.16)

and easily check that δS is a non-decreasing function of S. Restricted isometry constants
were introduced by Candès, Romberg and Tao in [4, 5] in order to study recovery by
Basis Pursuit (ℓ1) in the context of compressed sensing. Indeed if δ3S + 3δ4S < 2 then
Basis Pursuit recovers all S-sparse (mono-channel) signals [4]. Good estimates of these
numbers were obtained for random Gaussian and Bernoulli d×K matrices Φ: If

S ≤ Cδ
d

log
(

K
Sǫ

) (2.17)

then with probability at least 1− ǫ the restricted isometry constant of Φ satisfies δS ≤ δ,
see e.g. [5, 1, 19]. A similar result holds for random partial Fourier matrices under the
condition S ≤ Cδd log−4(K) log−1(ǫ−1), see [5, 20, 18].

3 Main results

The analysis of both p-thresholding and p-SOMP follows a similar pattern. First, we pro-
vide subtle sufficient conditions which guarantee that the considered algorithm (partially)
recovers the desired support. In addition to the noise level, these recovery conditions de-
pend on subtle joint properties of the analysis and synthesis dictionaries, of the ideal
support Λ, of the signal coefficients X, etc. Next we proceed with a worst case analy-
sis which provides coarser worst case recovery conditions that depend more globally on
PI n˚1848



10 Gribonval, Rauhut, Schnass & Vandergheynst

the sparsity of X, on its “dynamic range”, etc. Such a worst case analysis gives results
expressed in terms of cumulative coherence of the dictionary which are essentially of the
same strength and flavour as similar results for recovery in the monochannel setting. Last,
we show how to switch from a worst case analysis to an average case analysis: assuming a
specific probabilistic model on the coefficients X, we provide conditions on the sparsity of
X that guarantee that the subtle recovery conditions are satisfied with high probability.
This drastically changes the strength of the required conditions, since by allowing a small
amount of failure of the algorithms for non typical coefficients, this significantly increases
the size of the supports that can be recovered.

In order to give a more quantitative feeling of our results, we will highlight them with
the example of a dictionary composed of the union of the Dirac and DCT bases (hereby
simply referred to as the Dirac-DCT dictionary). More precisely, ΦDDCT is the d × 2d
matrix obtained by concatenating the d × d identity matrix and the d × d DCT matrix
whose k-th column is:

ϕk(n) =

√

2

d
Ωk cos

( π

2d
(2n− 1)(k − 1)

)

, n = 1, ..., d,

w ith Ωk = 1/
√

2 for k = 1 and Ωk = 1 for 2 ≤ k ≤ d. This dictionary has coherence
µ =

√

2/d and it is also easy to see that µp(S) = S1/p · µ.
Recovery conditions for p-thresholding. The success of p-thresholding at recovering
the good support Λ is guaranteed for a given signal model Y = ΦΛX + E as soon as
the minimum p-correlation with good atoms mini∈Λ ‖ψ⋆

i Y ‖p exceeds the maximum p-
correlation with “bad” atoms ‖Ψ⋆

Λ
Y ‖p,∞ where Λ := {1 ≤ k ≤ K, k /∈ Λ}. By the

triangle inequalities

‖Ψ⋆
Λ
Y ‖p,∞ ≤ ‖Ψ⋆

Λ
ΦΛX‖p,∞ + ‖Ψ⋆

Λ
E‖p,∞

and
min
i∈Λ

‖ψ⋆
i Y ‖p ≥ min

i∈Λ
‖ψ⋆

i ΦΛX‖p − ‖Ψ⋆
ΛE‖p,∞,

we get the recovery condition

‖Ψ⋆
ΛE‖p,∞ + ‖Ψ⋆

Λ
E‖p,∞ < min

i∈Λ
‖ψ⋆

i ΦΛX‖p − ‖Ψ⋆
Λ
ΦΛX‖p,∞. (3.1)

Recovery conditions for p-SOMP. As far as p-SOMP is concerned, it partially recovers
the good support Λ after M steps if the set ΛM only contains “good” atoms, that is to say
if ΛM ⊂ Λ. Since ΛM+1 = ΛM ∪ {kM+1}, partial recovery after M + 1 steps is equivalent
to partial recovery after M steps with an additional good choice of the M + 1-th atom,
which is only guaranteed if ‖Ψ⋆

ΛYM‖p,∞ > ‖Ψ⋆
Λ
YM‖p,∞. Denoting QΛM

:= I − PΛM

the orthogonal projection onto the complement of the span of the selected atoms (by
convention Q∅ = I), by the triangle inequalities

‖Ψ⋆
ΛYM‖p,∞ ≥ ‖Ψ⋆

ΛQΛM
ΦΛX‖p,∞ − ‖Ψ⋆

ΛQΛM
E‖p,∞

and
‖Ψ⋆

Λ
YM‖p,∞ ≤ ‖Ψ⋆

Λ
QΛM

ΦΛX‖p,∞ + ‖Ψ⋆
Λ
QΛM

E‖p,∞
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Average case analysis of multichannel sparse recovery 11

we get the recovery condition

‖Ψ⋆
ΛQΛM

E‖p,∞ + ‖Ψ⋆
Λ
QΛM

E‖p,∞ < ‖Ψ⋆
ΛQΛM

ΦΛX‖p,∞ − ‖Ψ⋆
Λ
QΛM

ΦΛX‖p,∞. (3.2)

Under the simplifying assumption that Φ⋆
ΛE = 0, which we discuss below, if the first M

steps of p-SOMP have been successful (that is to say if ΛM ⊂ Λ) then QΛM
E = E, and

we obtain that the M + 1-th atom is guaranteed to be correct provided that

‖Ψ⋆
ΛE‖p,∞ + ‖Ψ⋆

Λ
E‖p,∞ < ‖Ψ⋆

ΛQΛM
ΦΛX‖p,∞ − ‖Ψ⋆

Λ
QΛM

ΦΛX‖p,∞. (3.3)

Remark 3.1. The assumption that Φ⋆
ΛE = 0 might seem a bit artificial if one considers

E as additive noise in the model, in which case it would seem more natural to assume it
is a realization of, e.g., a random Gaussian process. In contrast, from an approximation
theory perspective, E would typically represent the error of best approximation of Y with
the atoms in Λ, that is to say E = Y − ΦΛX with X = arg minZ ‖Y − ΦΛZ‖ for some
norm ‖ · ‖. When this norm is given by ‖Y −ΦΛX‖ = (

∑N
n=1 ‖yn −ΦΛxn‖q

2)
1/q for some

q, (e.g., q = 2 for the Froebenius norm), this implies that E satisfies Φ⋆
Λen = 0 for each

n.

Both condition (3.1) and (3.3) mean that the noise level, as measured by ‖Ψ⋆
ΛE‖p,∞+

‖Ψ⋆
Λ
E‖p,∞, should be small enough compared to some upper limit which jointly depends

on the analysis and synthesis dictionaries Φ, Ψ, the supports Λ and ΛM ⊂ Λ, the coeffi-
cients X, etc. Next, we express simpler conditions that somehow untangle the role of the
different objects that we are manipulating.

To state the worst case analysis of thresholding, we introduce a specific notation

X i
p =

(
N∑

n=1

|Xin|p
)1/p

, i ∈ Λ (3.4)

for the p-norms of the rows ofX, i.e X i
p is the p-norm of the vector of coefficients associated

to the i-th atom ϕi. A detailed analysis is carried out in the next section, yielding
Theorem 4.1. We state below a somewhat simpler form of this result, assuming Ψ = Φ.

Theorem 3.1 (Worst case analysis for thresholding). Assume that Y = ΦΛX + E with

‖Φ⋆
ΛE‖p,∞ + ‖Φ⋆

Λ
E‖p,∞ < min

i∈Λ
X i

p − max
i∈Λ

X i
p · (µ1(S) + µ1(S − 1)) , (3.5)

where S := |Λ|. Then, p-thresholding with Ψ = Φ exactly recovers the support Λ.

Observe that we want to maximise the right hand side of (3.5) and, in particular, we
want:

mini∈Λ X i
p

maxi∈Λ X i
p

> µ1(S) + µ1(S − 1).

Since the ratio on the l.h.s of this equation is at most one, the most favourable case arises
when the dynamic range of the coefficients is small, i.e when the components of Λ have
the same strength. In the same expression, incoherence rears its ugly head, for even in
the best case we have to assume

µ1(S) + µ1(S − 1) < 1. (3.6)
PI n˚1848



12 Gribonval, Rauhut, Schnass & Vandergheynst

Since µ1(S) ≤ Sµ, the sparsity of recoverable signals is thus roughly confined to the realm

S <
1

2
(µ−1 + 1),

making it nearly useless for dictionaries one would use in practice. On the other hand ex-
periments show that the range of useful sparsity is much bigger and confirm the intuition
that typical results are much more favourable [28]. Understanding the average perfor-
mance of simultaneous thresholding under the probabilistic signal model introduced in
Section 1.1 is precisely our next contribution, detailed in Section 5, and summarised by
the following result:

Theorem 3.2 (Average case analysis for 1-thresholding). Let p = 1 and S = |Λ|. Assume

that Y = ΦΛ Σ
1
2 U + E with U a S × N matrix of standard Gaussian random variables

and Σ = diag(σ2
i )i∈Λ, and suppose that

‖Φ⋆
ΛE‖1,∞ + ‖Φ⋆

Λ
E‖1,∞ <

√

2

π
N ·

(

min
i∈Λ

σi − max
i∈Λ

σi · µ2(S)

)

. (3.7)

Then the probability that p-thresholding with Ψ = Φ fails to exactly recover the support Λ
does not exceed K exp(−Nγ2/π) with K the number of atoms in Φ and

γ :=

min
i∈Λ

σi − max
i∈Λ

σi · µ2(S) −
√
π

2
N−1 ·

(
‖Φ⋆

ΛE‖1,∞ + ‖Φ⋆
Λ
E‖1,∞

)

min
i∈Λ

σi + max
i∈Λ

σi · µ2(S)
. (3.8)

Similar results hold for 1 < p ≤ ∞ where
√

2
π
N is replaced with a constant Cp(N).

Clearly, there is a common flavour with worst case results: we want to maximise the r.h.s
of (3.7) and, for any fixed number of channels N , this implies

mini∈Λ σi

maxi∈Λ σi

> µ2(S).

The most favourable situation is once again reached when all components of Λ have the
same strength, i.e when the ratio on the l.h.s gets close to one. This time however, observe
that the range of allowed sparsity is constrained by the 2-Babel function µ2(S) < 1. Since
µ2(S) grows much slower than µ1(S), we can now recover much more atoms, up to roughly
S = µ−2, with high probability. When the number of channels N grows, condition (3.7)
demands that the average noise per channel N−1(‖Φ⋆

ΛE‖1,∞+‖Φ⋆
Λ
E‖1,∞) be small enough,

but once this is satisfied the probability of failure decreases exponentially fast with the
number of channels N .

Even though the conditions for recovering typical signals with p-thresholding are
milder than their worst case counterpart, the constraint that each component of the
support be equally important remains quite a limitation of the algorithm. This motivates
turning our attention to p-SOMP in hope that this more complex technique will allow us
to relax those restrictions. We start by stating the worst case results for OMP which are
proved in Section 4. For p = 1 they match the results by Tropp et al. [28], and for all p
they generalise the results of Chen and Huo [7] to the noisy setting.
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Average case analysis of multichannel sparse recovery 13

Theorem 3.3 (Worst case analysis for p-SOMP). Assume that Y = ΦΛX +E where the
atoms in Λ are linearly independent and

‖Φ⋆
ΛE‖p,∞ + ‖Φ⋆

Λ
E‖p,∞ < min

i∈Λ
X i

p ·
(
1 − µ1(Λ) − µin

1 (Λ)
)
. (3.9)

Then S := |Λ| steps of p-SOMP with Ψ = Φ recover the support Λ.

This result is expressed in slightly different and finer terms than Theorem 3.1: here we
give a characterisation of recoverable index sets by explicitly controlling the correlations
among atoms on the support through the quantity µin

1 (Λ) and correlations of the support
with the rest of the dictionary through µ1(Λ). Comparing (3.9) and (3.5) clearly shows
the main advantage of OMP over thresholding: both conditions require the noise level to
be small enough compared to some measure of dictionary coherence, but the restriction on
the dynamic range of the signal has disappeared in (3.9). However, there is no quantitative
gain on the size of S. If we give up our fine characterisation of Λ and estimate the r.h.s
of (3.9) in terms of S, the right most term becomes 1 − µ1(S) − µ1(S − 1) and we are
back to (3.6). Once again, the obvious way to transcend this barrier is to understand
the behaviour of the algorithm for typical signals and not in the worst case. A detailed
analysis is performed in Section 6, but a simplified version of our result reads as follows.

Theorem 3.4. Let p = 1, S := |Λ| and Y = ΦΛ Σ
1
2 U + E with U a S × N matrix of

standard Gaussian random variables, Σ = diag(σ2
i )i∈Λ, and E an error term orthogonal

to the atoms in Λ. Suppose

κ := 1 − µin
2 (Λ) + µ2(Λ)

1 − δΛ
> 0

and in addition

‖Φ⋆
Λ
E‖1,∞ <

√

2

π
Nκmin

i∈Λ
σi. (3.10)

Then the probability that S steps of 1-SOMP with Ψ = Φ fail to exactly recover the support
Λ does not exceed K · 2S · exp(−Nγ2/π) with K the number of atoms in Φ with

γ :=
κ−

(
√

2
π
N · mini∈Λ σi

)−1 · ‖Φ⋆
Λ
E‖1,∞

κ
. (3.11)

This theorem gives a characterization of those index sets Λ that can be recovered with
high probability. As expected, there are similarities with the worst case: we see that the
main requirement embodied by (3.10) is that the approximation error be sufficiently small
compared to a measure of correlations of atoms on the support and correlations of the
support with the rest of the dictionary. However, observe that these correlations are now
measured using the 2-Babel function and that we are basically asking that:

µin
2 (Λ) + µ2(Λ) < 1 − δΛ.

If that is the case, and the average approximation error per channel N−1 · ‖Φ⋆
Λ
E‖1,∞ is

small enough, then the probability that 1-SOMP fails to recover Λ becomes increasingly
smaller as the number of channels grows. It might be more convenient to state a condition
PI n˚1848



14 Gribonval, Rauhut, Schnass & Vandergheynst

on the dictionary as a whole, and not on a given support. If the dictionary satisfies a
uniform uncertainty principle [5], that is to say if the S-restricted isometry constants δS
are small, the following result shows that the probability that 1-SOMP fails to recover
any support of size S decays exponentially fast with the number of channels.

Theorem 3.5 (Average case analysis of 1-SOMP). Let p = 1 and S = |Λ|. Assume
that the dictionary Φ obeys a uniform uncertainty principle with S-restricted isometry
constants δS+1 < 1/3 and

‖Φ⋆
Λ
E‖1,∞ <

√

2

π
N · min

i∈Λ
σi · (1 − 3δS+1) . (3.12)

Then the probability that S steps of 1-SOMP with Ψ = Φ fail to exactly recover the support
Λ does not exceed K · 2S · exp(−Nγ2/π) with K the number of atoms in Φ and

γ := 1 − 3δS+1 −
(
√

2

π
N · min

i∈Λ
σi

)−1 · ‖Φ⋆
Λ
E‖1,∞. (3.13)

The previous result provides a quantitative average case analysis of multi-channel
OMP based on the restricted isometry constants δS alone. Together with the condition
(2.17) for random Gaussian or Bernoulli matrices to have small δS it therefore gives
a theoretical explanation to numerical results in the context of distributed compressed
sensing conducted in [3].

Note that because of the term 2S in the probability bound above, which also appears
in Theorem 3.4, the required number of channels must be quite high, typically N ≈ S.
Getting rid of this factor would therefore be highly desirable, but the technique we used
to prove the theorems does not seem to be easily adaptable to do so, and it remains an
open question whether this can be done at all.

In practice, computing the S-restricted isometry constant of Φ is a daunting task.
Fortunately, when Φ is a tight frame and for any support of size at most S selected at
random, our last result shows that the behaviour of 1-SOMP is essentially controlled by
the 2-Babel function.

Theorem 3.6. Assume Φ to be a tight frame. Let Y = ΦΛΣ
1
2U with U a S×N matrix of

standard Gaussian random variables and Λ drawn at random among all supports of size
at most S. Assume that µ2(S) < 1/3 and

‖Φ⋆
Λ
E‖1,∞ <

√

2

π
N · min

i∈Λ
σi · (1 − 3µ2(S)) and S < d/37. (3.14)

Then the probability that S steps of 1-OMP with Ψ = Φ fail to exactly recover the support
Λ does not exceed K · 2S · exp(−Nγ2/π) + 2 exp(−γ̃2) with

γ = 0.9

(

1 − 3µ2(S) −
(
√

2

π
N · min

i∈Λ
σi

)−1 · ‖Φ⋆
Λ
E‖1,∞

)

.

and γ̃ = ( 1
37

− S
d
)/(µ

√
S).
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Average case analysis of multichannel sparse recovery 15

Before proceeding to the technical core of this paper, let us synthesise our findings using
the Dirac-DCT dictionary introduce above. Since in that case we have µq(S) = S1/q

√

2/d,
for q = 1, 2, worst case analysis tell us that both p-thresholding and p-SOMP can recover
supports of size S ≈

√
d. For 1-thresholding however, average case analysis when all Gaus-

sian coefficient have equal variances asserts that the probability of recovering supports of
size S ≈ d gets overwhelmingly large as the number of channels grows. We reach the same
conclusion for 1-SOMP by inspecting equation (3.14). Average case analysis confirms a
large body of experiments that illustrate the effectiveness of simultaneous approximations
with greedy algorithms. In particular, strong hypotheses on either the size of Λ or the
incoherence of the dictionary are relaxed. Note, though, that for both p-thresholding or
p-SOMP our bounds require a large number of channels to be effective. It is not absolutely
clear, as of this writing, whether that is an inherent limit of the algorithms or an artefact
of our proofs and more experimental results are needed to draw a decisive conclusion.

4 Worst Case Analysis

In this section we develop conditions that ensure recovery of all signals with a certain
support set Λ. Our main contribution is an extension of existing results to the case
where noise is present on the signal. In contrast to the expository Section 3 we now
work with a sensing matrix Ψ (possibly different from Φ) and a general p ∈ [1,∞] to

measure multichannel correlations. We will need some assumptions on {X (m)
p }|Λ|

m=1, a non-
increasing rearrangement of the row p-norms X k

p , k ∈ Λ of the signal coefficients X. The
shorthands µp(Λ) and µin

p (Λ) will respectively denote µp(Ψ,Φ,Λ) and µin
p (Ψ,Φ,Λ).

Theorem 4.1 (Worst case recovery with p-thresholding.). If

‖Ψ⋆
ΛE‖p,∞ + ‖Ψ⋆

Λ
E‖p,∞ < min

i∈Λ

{
X i

p · |〈ψi, ϕi〉|
}
− max

k∈Λ

{
X k

p ·
(
µ1(Λ) + µin

1 (Λ)
)}

(4.1)

then p-thresholding recovers the support set Λ from Y = ΦΛX +E. Moreover, the recon-
structed coefficients X̃ satisfy

‖X − X̃‖∞,2 ≤ ‖Φ†
ΛE‖∞,2 ≤

(
1 + µin

1 (Φ,Φ,Λ)
)
· ‖E‖∞,2.

Note: the latter inequality involves µin
1 (Φ,Φ,Λ) and not µin

1 (Φ,Ψ,Λ).

Proof 1. Denoting B := diag (〈ψk, ϕk〉)k∈Λ, observe that ‖ψ⋆
i ΦΛX‖p is the p-norm of the

i-th row of Ψ⋆
ΛΦΛX = BX + (Ψ⋆

ΛΦΛ − B)X. Since the p-norm of the i-th row of BX is
|〈ψi, ϕi〉| · X i

p we get

‖ψ⋆
i ΦΛX‖p ≥ |〈ψi, ϕi〉| · X i

p − ‖(Ψ⋆
ΛΦΛ −B)X‖p,∞.

Therefore, the recovery condition (3.1) is satisfied whenever

‖Ψ⋆
ΛE‖p,∞ + ‖Ψ⋆

Λ
E‖p,∞ < min

i∈Λ

{
〈ψi, ϕi〉| · X i

p

}
− ‖(Ψ⋆

ΛΦΛ − B)X‖p,∞ − ‖Ψ⋆
Λ
ΦΛX‖p,∞.

(4.2)
To conclude, we use Corollary 2.2 to estimate

‖(Ψ⋆
ΛΦΛ − B)X‖p,∞ + ‖Ψ⋆

Λ
ΦΛX‖p,∞ ≤

(
‖Ψ⋆

ΛΦΛ −B‖1,∞ + ‖Ψ⋆
Λ
ΦΛ‖1,∞

)
· ‖X‖p,∞

≤
(

sup
k∈Λ

∑

j∈Λ\{k}

|〈ψk, ϕj〉| + sup
k/∈Λ

∑

j∈Λ

|〈ψk, ϕj〉|
)

· ‖X‖p,∞

PI n˚1848



16 Gribonval, Rauhut, Schnass & Vandergheynst

and identify with the definitions of µin
1 (Λ) and µ1(Λ). For the claim on the error of the

reconstructed coefficients we note that X̃ = Φ†
Λ(ΦΛX + E) = X + Φ†

ΛE. Moreover,
|||Φ†

Λ||| ≤ 1+µin
1 (Φ,Φ,Λ), see for instance [25, Proposition 4.3] or [9]. This completes the

proof.

The success of p-thresholding is thus governed by the condition that the noise level
should be smaller than a threshold determined both by the dynamic range of the coeffi-
cients X i

p and by the sum of correlations among atoms on the support as well as between
the support and the remaining of Φ. The conditions on the correlations between the
sensing and synthesis dictionaries are expressed in terms of the cumulative coherence and
are very reminiscent of Tropp’s recovery condition [24]. These conditions are based on
worst case analysis and are fairly restrictive. The cumulative coherence in particular is an
ℓ1 norm and can be very big even for reasonably small Λ. In the next sections, we develop
an average case analysis of p-thresholding and show that the typical recovery conditions
are much less restrictive.

Theorem 4.2. Worst case recovery with p-SOMP Assume that, for the support set
Λ, the sensing matrix and the dictionary matrix are such that Φ⋆

ΛΨ⋆
Λ is invertible and

sup
k/∈Λ

‖(Φ⋆
ΛΨΛ)−1Φ⋆

Λψk‖1 < 1. (4.3)

Consider a multichannel signal Y = ΦΛX + E and suppose that M ≤ |Λ| satisfies

‖Ψ⋆
Λ
E‖p,∞ +‖Ψ⋆

ΛE‖p,∞ < X (M)
p ·

(

1 − sup
k/∈Λ

‖(Φ⋆
ΛΨΛ)−1Φ⋆

Λψk‖1

)

· |||(Φ⋆
ΛΨΛ)−1|||−1

1→1. (4.4)

Then the first M steps of p-OMP recover distinct elements of the support Λ. If (4.4) is
valid for M = |Λ| then in addition the reconstructed coefficients X̃ satisfy ‖X − X̃‖∞,2 ≤
(1 + µin

1 (Φ,Φ,Λ)) · ‖E‖∞,2.

Proof 2. We will proceed by induction. Suppose we have performed M iterations suc-
cessfully, i.e., ΛM ⊂ Λ (this assumption is clearly true for M = 0 since Λ0 = ∅ when
no iteration of SOMP has been performed yet) and, with only a slight abuse of notations,
let ΦXM = ΦΛXM be an approximant of Y generated by SOMP after M iterations, i.e.,
XM = Φ†

ΛM
Y on its support ΛM and zero outside. Further, let YM = QΛM

Y = Y −ΦXM

be the associated residual. If M = |Λ| there is nothing to prove, so we consider the
case M < |Λ|. The next selected atom is in Λ as soon as ‖Ψ⋆

ΛYM‖p,∞ > ‖Ψ⋆
Λ
YM‖p,∞.

Decomposing the residual, we just need

‖Ψ⋆
ΛΦΛ(X −XM) + Ψ⋆

ΛE‖p,∞ > ‖Ψ⋆
Λ
ΦΛ(X −XM) + Ψ⋆

Λ
E‖p,∞.

Using triangle inequalities and rearranging we get the stronger condition

‖Ψ⋆
Λ
E‖p,∞ + ‖Ψ⋆

ΛE‖p,∞ < ‖Ψ⋆
ΛΦΛ(X −XM)‖p,∞ − ‖Ψ⋆

Λ
ΦΛ(X −XM)‖p,∞. (4.5)

From Corollary 2.2 we have ‖X − XM‖p,∞ ≤ |||(Φ⋆
ΛΨΛ)−1|||1→1 · ‖Ψ⋆

ΛΦΛ(X − XM)‖p,∞,
and using the fact2 that XM has at most M nonzero entries, we also get ‖X −XM‖p,∞ ≥

2see also [10, Lemma 4.4]
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Average case analysis of multichannel sparse recovery 17

X (M+1). Combining these facts with an estimate due to Tropp [24, 28] and Chen and
Huo [6] (which is also recovered using Corollary 2.2)

‖Ψ⋆
Λ
ΦΛ(X −XM)‖p,∞

‖Ψ⋆
ΛΦΛ(X −XM)‖p,∞

≤ sup
Z

‖Ψ⋆
Λ
ΦΛ(Ψ⋆

ΛΦΛ)−1Z‖p,∞

‖Z‖p,∞
= sup

k/∈Λ

‖(Φ⋆
ΛΨΛ)−1Φ⋆

Λψk‖1 (4.6)

shows that the r.h.s in (4.5) is lower bounded by

(

1 − sup
k/∈Λ

‖(Φ⋆
ΛΨΛ)−1Φ⋆

Λψk‖1

)

· |||(Φ⋆
ΛΨΛ)−1|||−1 · X (M+1)

which yields the sufficient condition (4.4). The statement on the approximation error of
the reconstructed coefficients X̃ is shown in the same way as in the proof of Theorem 4.1.

Standard techniques based on von Neumann series, see e.g. [24, 12] can be used to
prove that

(

1 − sup
k/∈Λ

‖(Φ⋆
ΛΨΛ)−1Φ⋆

Λψk‖1

)

· |||(Φ⋆
ΛΨΛ)−1|||−1 ≤ 1 − µ1(Λ) + µin

1 (Λ).

This enables us to obtain Theorem 3.3 as a corollary of Theorem 4.2, since the main
assumption (3.9) of Theorem 3.3 will imply both that (4.4) is satisfied for M = |Λ| and
that (4.3) holds true.

5 Average case analysis for thresholding

In this section we will study the average performances of simultaneous p-thresholding.
Our goal, as announced in Section 4, is to show that under the multichannel Gaussian
signal model X = Σ

1
2U , the typical behaviour of the algorithm is much better than in

the worst case. More precisely, we will prove that the probability that p-thresholding
fails to identify a sparse superposition of atoms decays exponentially with the number of
channels. Interestingly, the hypotheses under which our result holds are reminiscent of
the worst case conditions (4.1) but involve switching from the usual cumulative coherence
µ1 to the milder 2-cumulative coherence µ2.

5.1 Spirit of the proof

Let us first streamline our reasoning so the busy or lazy readers can get enough insight and
intuition to go directly to Theorem 5.2, which can be simplified to get Featured Theorem
3.2, and skip its proof. If we want thresholding to succeed we need to show that

min
i∈Λ

‖ψ⋆
i ΦΛΣ

1
2U‖p − max

ℓ∈Λ
‖ψ⋆

ℓΦΛΣ
1
2U‖p > ‖Ψ⋆

ΛE‖p,∞ + ‖Ψ⋆
Λ
E‖p,∞.

The main idea of the proof is based on concentration of measure appearing when the
number of channels N is sufficiently large. Then for each p-correlation of the noiseless
multichannel signal with a sensing atom we have with very large probability

‖ψ⋆
j ΦΛΣ

1
2U‖p ≈ Cp(N) · ‖ψ⋆

jΦΛΣ
1
2‖2,
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18 Gribonval, Rauhut, Schnass & Vandergheynst

p = 1 p = 2 p = ∞
Cp(N)

√
2
π
N

√
2 Γ(N/2)

Γ((N−1)/2)
∼

√
N ≍

√

log(N)

Ap(N) N
π

Γ2(N/2)
Γ2((N−1)/2)

∼ N/2 ≍ log(N)

Table 1: Constants Ap(N) and Cp(N), the computations can be found Appendix B

where Cp(N) grows with N . Therefore the recovery condition will be satisfied with high
probability as long as

min
i∈Λ

‖ψ⋆
i ΦΛΣ

1
2‖2 − max

ℓ/∈Λ
‖ψ⋆

ℓΦΛΣ
1
2‖2 &

‖Ψ⋆
Λ
E‖p,∞ + ‖Ψ⋆

ΛE‖p,∞

Cp(N)
,

and all we need to check is under which conditions on the dictionary and the coefficient
ranges the left hand side in the above is large enough.
The next section will supply us with tools to estimate the typicality and precision of the
approximation ‖ψ⋆

jΦΛΣ
1
2U‖p ≈ Cp(N) ·‖ψ⋆

jΦΛΣ
1
2‖2 in order to give a fully detailed proof.

5.2 Concentration of measure

As mentioned above the corner stone on which both the average case analyses of thresh-
olding and OMP rely are the following concentration of measure inequalities. Their actual
proofs in all gory mathematical detail are awaiting the interested reader in Appendix A.

Theorem 5.1. Let U be an N × S matrix with independent standard Gaussian entries,
and {vk}k∈Ω ⊂ RS a finite family of nonzero vectors. Then for ε1 > 0 and 0 < ε2 < 1,

P
(

‖v⋆
kU‖p ≥ (1 + ε1)Cp(N)‖vk‖2

)

≤ exp(−ε2
1Ap(N)) (5.1)

P
(

‖v⋆
kU‖p ≤ (1 − ε2)Cp(N)‖vk‖2

)

≤ exp(−ε2
2Ap(N)) (5.2)

for each vector vk, and

P
(

max
k∈Ω

‖v⋆
kU‖p ≥ (1 + ε1)Cp(N) max

k∈Ω
‖vk‖2

)

≤ |Ω| · exp(−ε2
1Ap(N)) (5.3)

P
(

max
k∈Ω

‖v⋆
kU‖p ≤ (1 − ε2)Cp(N) max

k∈Ω
‖vk‖2

)

≤ exp(−ε2
2Ap(N)) (5.4)

P
(

min
k∈Ω

‖v⋆
kU‖p ≥ (1 + ε1)Cp(N) min

k∈Ω
‖vk‖2

)

≤ exp(−ε2
1Ap(N))

P
(

min
k∈Ω

‖v⋆
kU‖p ≤ (1 − ε2)Cp(N) min

k∈Ω
‖vk‖2

)

≤ |Ω| · exp(−ε2
2Ap(N)). (5.5)

5.3 Main result for p-thresholding

To keep the notational mess in the proof to a minimum we use the following abbreviations.
We capture all the noise related terms in

η := ‖Ψ⋆
Λ
E‖p,∞ + ‖Ψ⋆

ΛE‖p,∞, (5.6)

Irisa



Average case analysis of multichannel sparse recovery 19

and to deal with the coefficients more efficiently we use for the minimal and maximal
entry in Σ = diag(σ2

i )i∈Λ

σmin := min
i∈Λ

σi and σmax := max
i∈Λ

σi.

Theorem 5.2. Assume that the noise level η is sufficiently small, i.e

η < Cp(N) ·
(
β · σmin − µ2(Λ) · σmax

)
. (5.7)

Then, under the multichannel Gaussian signal model X = Σ
1
2U , the probability that

p-thresholding fails to recover the indices of the atoms in Λ does not exceed

P(p− thresholding fails) ≤ K · exp
(
−Ap(N) · γ2

)

with

γ :=
β · σmin − µ2(Λ) · σmax − η/Cp(N)

β · σmin + µ2(Λ) · σmax

(5.8)

Proof 3. We can bound the probability that thresholding fails with the following trick,

P
(
min
i∈Λ

‖ψ⋆
i ΦΛΣ

1
2U‖p − max

ℓ∈Λ
‖ψ⋆

ℓΦΛΣ
1
2U‖p ≤ η

)

≤ P
(
min
i∈Λ

‖ψ⋆
i ΦΛΣ

1
2U‖p ≤ C

)
+ P

(
max
ℓ∈Λ

‖ψ⋆
ℓ ΦΛΣ

1
2U‖p ≥ C − η

)
.

Motivated by the concentration of measure results we set

C = (1 − ε1) · Cp(N) · min
i∈Λ

‖ψ⋆
i ΦΛΣ

1
2‖2,

where we choose ε1 later. Using (5.5) we can bound the first probability in the above as:

P
(
min
i∈Λ

‖ψ⋆
i ΦΛΣ

1
2U‖p ≤ (1 − ε1) · Cp(N) · min

i∈Λ
‖ψ⋆

i ΦΛΣ
1
2‖2

)
≤ |Λ| · exp

(
− Ap(N) · ε2

1

)
.

To bound the second probability we have to work a little bit more before applying (5.3).

P
(
max
ℓ∈Λ

‖ψ⋆
ℓ ΦΛΣ

1
2U‖p ≥ C − η

)

= P
(
max
ℓ∈Λ

‖ψ⋆
ℓΦΛΣ

1
2U‖p ≥ C − η

Cp(N) · maxℓ∈Λ ‖ψ⋆
ℓΦΛΣ

1
2‖2

︸ ︷︷ ︸

=:1+ε2

·Cp(N) · max
ℓ∈Λ

‖ψ⋆
ℓ ΦΛΣ

1
2‖2

)

≤ |Λ| · exp
(
− Ap(N) · ε2

2

)
.

For the last equality to hold we need to make sure that ε2 > 0. We will do this by adjusting
the choice of ε1 so that ε2 = ε1,

ε2 =
(1 − ε1) · Cp(N) · mini∈Λ ‖ψ⋆

i ΦΛΣ
1
2‖2 − η

Cp(N) · maxℓ∈Λ ‖ψ⋆
ℓΦΛΣ

1
2‖2

− 1 = ε1.
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Solving the equation above for ε1 we get

ε1 :=
mini∈Λ ‖ψ⋆

i ΦΛΣ
1
2‖2 − maxℓ∈Λ ‖ψ⋆

ℓΦΛΣ
1
2‖2 − η/Cp(N)

mini∈Λ ‖ψ⋆
i ΦΛΣ

1
2‖2 + maxℓ∈Λ ‖ψ⋆

ℓΦΛΣ
1
2‖2

. (5.9)

To see that ε1 > 0 observe that

min
i∈Λ

‖ψ⋆
i ΦΛΣ

1
2‖2

2 = min
i∈Λ

∑

k∈Λ

|σk|2|〈ϕk, ψi〉|2 ≥ σ2
min · min

i∈Λ
(|〈ψi, ϕi〉|2 + ‖Φ⋆

Λ/iψi‖2
2) ≥ σ2

min · β2

max
ℓ∈Λ

‖ψ⋆
ℓΦΛΣ

1
2‖2

2 = max
ℓ∈Λ

∑

k∈Λ

|σk|2|〈ϕk, ψℓ〉|2 ≤ σ2
max · max

ℓ∈Λ

∑

k∈Λ

|σk|2|〈ϕk, ψℓ〉|2 ≤ σ2
max · µ2

2(Λ).

Thus we can estimate ε1 from below as,

ε1 >
β · σmin − µ2(Λ) · σmax − η/Cp(N)

β · σmin + µ2(Λ) · σmax
=: γ. (5.10)

This is larger than zero by condition (5.7) and we get as final bound for the probability
that thresholding fails,

P(p− thresholding fails) ≤ K · exp
(
−Ap(N) · ε2

1

)
≤ K · exp

(
−Ap(N) · γ2

)
.

To get from the above theorem to Featured Theorem 3.2 we need to insert the expres-
sion for η and the concrete values for Cp(N), Ap(N) for p = 1 and observe that because
µ2(Λ) ≤ µ2(S) we can use it instead in the above formulas.

6 Average case analysis of OMP

In the previous section we have seen that even in the average case thresholding requires
balanced coefficients in order to ensure viable recovery results. This is quite a strong
limitation. Motivated by the fact that in the worst case OMP enabled us to overcome
this restriction we will now analyse the average performance of OMP.

6.1 Spirit of the proof

A sufficient condition for OMP to succeed is that it will always pick another component
in the support, whatever residual RJ = QJY = (I − PJ)(ΦΛΣ

1
2U + E) we have. So for

all J ⊂ Λ we want to ensure

‖Ψ⋆
ΛQJΦΛΣ

1
2U‖p,∞ − ‖Ψ⋆

Λ
QJΦΛΣ

1
2U‖p,∞ > ‖Ψ⋆

ΛQJE‖p,∞ + ‖Ψ⋆
Λ
QJE‖p,∞. (6.1)

Concentration of measure tells us that for any matrix A we have with very high probability

‖AU‖p,∞ ≈ Cp(N) · ‖A‖2,∞.

Therefore, condition (6.1) should be satisfied with high probability as long as

‖Ψ⋆
ΛQJΦΛΣ

1
2‖2,∞ − ‖Ψ⋆

Λ
QJΦΛΣ

1
2‖2,∞ >

‖Ψ⋆
ΛQJE‖p,∞ + ‖Ψ⋆

Λ
QJE‖p,∞

Cp(N)
. (6.2)
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To ensure the condition above we need to find a lower bound for the left hand side that
does not depend on J itself but only on its size.
The first term on the left hand side in (6.2) can be estimated from below as

‖Ψ⋆
ΛQJΦΛΣ

1
2‖2

2,∞ = sup
i∈Λ

∑

k∈Λ

σ2
k · |〈QJϕk, ψi〉|2

≥ sup
i∈Λ\J

σ2
i · |〈QJϕi, ψi〉|2 ≥ sup

i∈Λ\J

σ2
i · inf

i∈Λ\J
|〈QJϕi, ψi〉|2.

Using QJϕi = 0 whenever i ∈ J , the second term can be estimated from above as

‖Ψ⋆
Λ
QJΦΛΣ

1
2‖2

2,∞ = sup
ℓ/∈Λ

∑

i∈Λ

σ2
i · |〈QJϕi, ψℓ〉|2

= sup
ℓ/∈Λ

∑

i∈Λ\J

σ2
i · |〈QJϕi, ψℓ〉|2 ≤ sup

i∈Λ\J

σ2
i · sup

ℓ/∈Λ

∑

i∈Λ\J

|〈QJϕi, ψℓ〉|2

≤ sup
i∈Λ\J

σ2
i · ‖Ψ⋆

Λ
QJΦΛ\J‖2

2,∞.

The combination of these two bounds leads to

‖Ψ⋆
ΛQJΦΛΣ

1
2‖2,∞−‖Ψ⋆

Λ
QJΦΛΣ

1
2‖2,∞ > sup

i∈Λ\J

σ2
i ·
(

inf
i∈Λ\J

|〈QJϕi, ψi〉|2−‖Ψ⋆
Λ
QJΦΛ\J‖2

2,∞

)
.

Now observe that if we denote with {σ(i)}|Λ|
i=1 the decreasing rearrangement of σi we have

supi∈Λ\J σi ≥ σ(M) for J of size at most M − 1. Therefore defining the two constants

c0(Λ) = inf
J Λ

inf
i∈Λ\J

|〈QJϕi, ψi〉|, and d0(Λ) = sup
J Λ

‖Ψ⋆
Λ
QJΦΛ\J‖2,∞ (6.3)

we can finally lower bound the left hand side in (6.2) as

‖Ψ⋆
ΛQJΦΛΣ

1
2‖2,∞ − ‖Ψ⋆

Λ
QJΦΛΣ

1
2‖2,∞ > σ(M) ·

(
c0(Λ) − d0(Λ)

)
.

Based on the bounds c0(Λ), d0(Λ) we can now formulate a general recovery result.

6.2 A general recovery result

Theorem 6.1. Assume that the noise is orthogonal to all the atoms in the support,
Φ⋆

ΛE = 0, and that the noise level η is sufficiently small, i.e

η <
(
c0(Λ) − d0(Λ)

)
· Cp(N) · σ(M). (6.4)

Then, under the multichannel Gaussian signal model X = Σ
1
2U , the probability that one

of the first M atoms selected by p-OMP is incorrect (not in Λ) does not exceed

P(p-OMP fails after at most M steps) ≤ (1 + |Λ|) · CM · exp
(
−Ap(N) · γ2

M

)
(6.5)

with CM :=
∑M−1

m=0

(
|Λ|
m

)
and

γM :=
c0(Λ) − d0(Λ) − η ·

(
Cp(N) · σ(M)

)−1

c0(Λ) + d0(Λ)
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Proof 4. We have to show that for any subset J of size at most M − 1 equation (6.1)
holds. However since we assume that the noise is orthogonal to the span of the support
we have QJE = E −PJE = E and so it suffices to show that

‖Ψ⋆
ΛQJΦΛΣ

1
2U‖p,∞ − ‖Ψ⋆

Λ
QJΦΛΣ

1
2U‖p,∞ > ‖Ψ⋆

ΛE‖p,∞ + ‖Ψ⋆
Λ
E‖p,∞ = η.

We can bound the probability that the above condition is violated using the same tricks as
before for thresholding. Again we collect all the noise terms on the right hand side in η.

P
(
‖Ψ⋆

ΛQJΦΛΣ
1
2U‖p,∞ − ‖Ψ⋆

Λ
QJΦΛΣ

1
2U‖p,∞ < η

)
=

= P
(
‖Ψ⋆

ΛQJΦΛΣ
1
2U‖p,∞ < C

)
+ P

(
‖Ψ⋆

Λ
QJΦΛΣ

1
2U‖p,∞ > C − η

)
.

We choose C = (1− ε1) ·Cp(N) · |Ψ⋆
ΛQJΦΛΣ

1
2‖2,∞ and use concentration inequality (5.4)

to bound the first probability as

P
(
‖Ψ⋆

ΛQJΦΛΣ
1
2U‖p,∞ < (1 − ε1) · Cp(N) · ‖Ψ⋆

ΛQJΦΛΣ
1
2‖2,∞

)
≤ exp

(
−Ap(N) · ε2

1

)
.

To bound the second probability we proceed as for thresholding and use inequality (5.3),

P
(
‖Ψ⋆

Λ
QJΦΛΣ

1
2U‖p,∞ > C − η

)
=

= P
(
‖Ψ⋆

Λ
QJΦΛΣ

1
2U‖p,∞ >

C − η

Cp(N) · ‖Ψ⋆
Λ
QJΦΛΣ

1
2‖2,∞

︸ ︷︷ ︸

=:1+ε2

·Cp(N) · ‖Ψ⋆
Λ
QJΦΛΣ

1
2‖2,∞

)

≤ |Λ| · exp
(
− Ap(N) · ε2

2

)
.

Again we require ǫ1 = ǫ2,

ε2 =
(1 − ε1) · ‖Ψ⋆

ΛQJΦΛΣ
1
2‖2,∞ − η/Cp(N)

‖Ψ⋆
Λ
QJΦΛΣ

1
2‖2,∞

− 1 = ε1.

Solving the above for ε1 we get

ε1 =
‖Ψ⋆

ΛQJΦΛΣ
1
2‖2,∞ − ‖Ψ⋆

Λ
QJΦΛΣ

1
2‖2,∞ − η/Cp(N)

‖Ψ⋆
ΛQJΦΛΣ

1
2‖2,∞ + ‖Ψ⋆

Λ
QJΦΛΣ

1
2‖2,∞

.

If we now insert the definition of c0(Λ), d0(Λ) from (6.3) we can estimate ε1 from below
as:

ε1 >
c0(Λ) − d0(Λ) − η ·

(
Cp(N) · σ(M)

)−1

c0(Λ) + d0(Λ)
= γM > 0

Condition (6.4) ensures that γM > 0 and so we can bound for any subset J of size at most
M − 1 the probability that OMP fails to pick another good atom as

P(‖Ψ⋆
ΛQJΦΛΣ

1
2U‖p,∞ − ‖Ψ⋆

Λ
QJΦΛΣ

1
2U‖p,∞ > η) < (1 + |Λ|) · exp

(
− Ap(N) · γ2

M

)
.

In the end to be independent of the sequence of subsets that OMP finds we use a union
bound over all CM :=

∑M−1
m=0

(
|Λ|
m

)
subsets J ⊂ Λ of size at most M − 1 to get the upper

estimate on the probability of failure in (6.5).
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Note that the union bound we take above leads to a constant CS = 2S if we want to
estimate recovering the whole support. This is a considerable factor, for which there is
no numerical evidence in either our simulations or the results in [3]. One of our future
goals therefore is to improve the probability estimate by finding a way around taking the
crude union bound.
Also note that in the proof instead of estimating ε1 in terms of c0(Λ), d0(Λ) we could
have used any other pair of constants c, d satisfying c ≤ c0(Λ) and d ≥ d0(Λ). While
these constants result in a smaller γM and a stronger restriction on the noise level they
may have the advantage of having a more tangible form than the original ones. Thus the
next subsection is dedicated to finding new constants c, d in terms of properties of the
dictionary, which lead directly to the results in the featured theorems in Section 3 when
used instead of c0(Λ), d0(Λ).

6.3 Bounds on c0(Λ) and d0(Λ)

The following results estimate constants in terms of the 2-cross-Babel function µ2(Λ) =
µ2(Φ,Ψ,Λ), the similarity β and the (local) restricted isometry constants δΛ = δΛ(Φ).

Lemma 6.2. For any subset J ( Λ

|||Φ†
J ||| ≤ (1 − δJ)−

1
2 ≤ (1 − δΛ)−

1
2 ,

|||(Φ∗
JΦJ)−1||| ≤ (1 − δJ)−1 ≤ (1 − δΛ)−1,

|||Φ∗
JΦΛ\J ||| ≤ δΛ, (6.6)

|||Φ†
JΦΛ\J ||| ≤ δΛ

1 − δJ
≤ δΛ

1 − δΛ
,

sup
ℓ∈Λ

‖Φ⋆
Jψℓ‖2 ≤ µ2(Λ),

sup
ℓ∈Λ

‖Φ⋆
Λ\Jψℓ‖2 ≤ µ2(Λ),

sup
i∈Λ\J

‖Φ⋆
Jψi‖2 ≤ µin

2 (Λ).

Proof. All the statements except for (6.6) essentially follow directly from Lemma 2.1 about
matrix norms and the definitions of δΛ, µ2(Λ) and µin

2 (Λ) in Section 2. To get to (6.6)
note that by definition of the restricted isometry constants we have |||Φ∗

ΛΦΛ − I||| ≤ δΛ,
therefore

|||Φ⋆
Λ\JΦJ |||2 = sup

‖aJ‖2≤1

‖Φ⋆
Λ\JΦJ · aJ‖2

2

≤ sup
‖aJ‖2≤1

(
‖Φ⋆

Λ\JΦJ · aJ‖2
2 + ‖(Φ⋆

JΦJ − I) · aJ‖2
2

)

= sup
‖aJ‖2≤1

∥
∥
∥
∥

(
Φ⋆

JΦJ − I Φ⋆
JΦΛ\J

Φ⋆
Λ\JΦJ Φ⋆

Λ\JΦΛ\J − I

)(
aJ

0

)∥
∥
∥
∥

2

2

≤ sup
‖a‖2≤1

‖(Φ⋆
ΛΦΛ − I)a‖2

2 ≤ δ2
Λ.
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Lemma 6.3. Valid bounds for the constants c0(Λ), d0(Λ) are given by

c(Λ) := β − µin
2 (Λ)√
1 − δΛ

, and d(Λ) :=
µ2(Λ)

1 − δΛ
. (6.7)

Proof 5. First we need to show that c(Λ) as defined above is smaller than c0(Λ) =
infJ Λ infi∈Λ\J |〈QJϕi, ψi〉|. Recall the definition of the operator QJ = I − PJ . We write

the projection explicitely as PJ = (Φ†
J)⋆Φ⋆

J = ΦJ(Φ⋆
JΦJ)−1Φ⋆

J , where Φ†
J denotes the

pseudo-inverse of ΦJ . Fixing J  Λ for the moment we get (using self-adjointness of PJ)

inf
i∈Λ\J

|〈QJϕi, ψi〉| = inf
i∈Λ\J

|〈(I− PJ)ϕi, ψi〉| ≥ inf
i∈Λ\J

(|〈ϕi, ψi〉| − ‖PJψi‖2‖ϕi‖2)

≥ inf
i∈Λ\J

(|〈ϕi, ψi〉| − ‖(Φ†
J)⋆Φ⋆

Jψi‖2) ≥ inf
i∈Λ\J

(|〈ϕi, ψi〉| − |||Φ†
J |||‖Φ⋆

Jψi‖2). (6.8)

Using Lemma 6.2 and the fact that infi |〈ϕi, ψi〉| ≥ β we obtain

inf
i∈Λ\J

|〈QJϕi, ψi〉| ≥ β − (1 − δΛ)−
1
2 · µin

2 (Λ).

Since the term on the right hand side no longer depends on the subset J , the inequation
is valid for the infimum over all subsets J , thus leading to the first bound in (6.7).

For the second claim we need to show that d(Λ) as defined above is larger than d0(Λ) =
supJ Λ ‖Ψ⋆

Λ
QJΦΛ\J‖2,∞. We again start by fixing J  Λ.

‖Ψ⋆
Λ
QJΦΛ\J‖2,∞ = sup

ℓ/∈Λ

‖Φ⋆
Λ\J(I −PJ)ψℓ‖2 ≤ sup

ℓ/∈Λ

(‖Φ⋆
Λ\Jψℓ‖2 + ‖Φ⋆

Λ\J(Φ†
J)⋆Φ⋆

Jψℓ‖2)

≤ sup
ℓ/∈Λ

(‖Φ⋆
Λ\Jψℓ‖2 + |||Φ†

JΦΛ\J ||| ‖Φ⋆
Jψℓ‖2). (6.9)

Using Lemma 6.2 yields

‖Ψ⋆
Λ
QJΦΛ\J‖2,∞ ≤ µ2(Λ) ·

(

1 +
δΛ

1 − δΛ

)

=
µ2(Λ)

1 − δΛ
.

Again since the bound is independent of the subset J it is valid for the supremum over all
subsets and thus leads to the second part of (6.7).

Based on the estimates for c(Λ) and d(Λ) as they appear above we can now give proofs
for the featured theorems in Section 3.

6.4 Proof of Theorem 3.4

All we need to do is replace c0(Λ), d0(Λ) in Theorem 6.1 by the bounds derived in the
lemma above. However to make the formulas less ugly we further estimate

c0(Λ) ≥ β − µin
2 (Λ)√
1 − δΛ

≥ β − µin
2 (Λ)

1 − δΛ
:= c(Λ).

To finally arrive at Theorem 3.4 simply note that whenever Ψ = Φ we have β = 1 and
because of the assumption that E is orthogonal to the atoms in Λ the noise level reduces
to η = ‖Φ⋆

Λ
E‖1,∞.
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6.5 Proof of Theorem 3.5

The only missing ingredient we need for this proof is the following lemma, providing
further bounds for the constants c0(Λ), d0(Λ) to be used instead in Theorem 6.1.

Lemma 6.4. Suppose that Ψ = Φ, and let S be the cardinality of Λ. Then we can bound
c0(Λ), d0(Λ) by

cS := 1 − δS+1√
1 − δS

and dS :=
δS+1

1 − δS
.

Proof 6. We first show that for any S we have µ2(Φ,Φ, S) ≤ δS+1. For ℓ /∈ J we
define Λ = J ∪ {ℓ} and obtain from (6.6) that ‖Φ⋆

Jϕℓ‖2 = |||Φ⋆
Jϕℓ||| ≤ δJ∪{ℓ}. Therefore

µ2(Φ,Φ, J) ≤ supℓ 6∈J δJ∪{ℓ} and

µ2(Φ,Φ, S) = sup
|J |≤S

µ2(Φ,Φ, J) ≤ sup
|J |≤S

sup
ℓ/∈J

δJ∪{ℓ} = δS+1.

Combing this estimate with Lemma 6.3 then leads to

c0(Λ) ≥ 1 − µin
2 (Λ)√
1 − δΛ

≥ 1 − µ2(S)√
1 − δS

≥ 1 − δS+1√
1 − δS

,

d0(Λ) ≤ µ2(Λ)

1 − δΛ
≤ µ2(S)

1 − δS
≤ δS+1

1 − δS
.

Again to prove the theorem we replace c0(Λ), d0(Λ) by cS, dS in Theorem 6.1 and then
need the noise level η to satisfy

η ≤ C1(N) · σmin ·
(
cS − dS

)
=

√

2

π
N · σmin ·

(
1 − δS+1 ·

√
1 − δS + 1

1 − δS

)
.

The above condition is ensured by η <
√

2
π
N · σmin · (1 − 3δS+1) since for δS+1 < 1/3 the

fraction in the expression above is smaller than 3 (it is always larger than 2) and so by
Theorem 6.1 the probability of failure is smaller than

(1 +K − S)2S exp(−Ap(N)γ2
S) with γS =

cS − dS − η · (
√

2
π
N · σmin)

−1

cS + dS
.

Inserting the explicit values for cS, dS and δS+1 < 1/3 we get from a lengthy but uninter-
esting calculation that γS > 1−3δS+1−η ·(N

π
·σmin)

−1 = γ. Together with the observation
that for p = 1 we have Ap(N) = N/π this leads to the final bound for failure featured in
Theorem 3.5.

P(failure of 1-OMP) ≤ K · 2S · exp(−Nγ2/π).
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6.6 Proof of Theorem 3.6

In order to prove the second main theorem we need Joel Tropp’s result that for a random
support set Λ the local isometry constants δΛ are well behaved provided the coherence µ
is small. The following statement is [27, Theorem B] rewritten.

Theorem 6.5. Suppose Λ is selected uniformly at random among all subsets of {1, . . . , K}
of size S ≥ 3. If cδ − |||Φ|||2S/K > 0 then

P (δΛ > δ) < 2 exp

(

−
(
cδ − |||Φ|||2S/K

µ
√
S

)2
)

,

where the constant c is not smaller than 0.0818.

With this theorem we can now estimate the probability that 1-OMP fails as:

P(1-OMP fails) ≤ P(1-OMP fails|δΛ < 1/3) + P(δΛ > 1/3)

To estimate the first term on the right hand side we can proceed as before. Because of
Lemma 6.3 and µ2(S − 1) ≤ µ2(S) we can replace c0(Λ), d0(Λ) by

cS = 1 − µ2(S)√
1 − δΛ

and dS =
µ2(S)

1 − δΛ
.

We then need the noise η to satisfy

η ≤ C1(N) · σmin ·
(
cS − dS

)
=

√

2

π
N · σmin ·

(
1 − µ2(S) ·

√
1 − δΛ + 1

1 − δΛ

)
,

which is again ensured by δΛ < 1/3 and η <
√

2
π
N · σmin · (1 − 3µ2(S)). Inserting all the

values, i.e δΛ < 1/3 and µ2(S) < 1/3 (as a consequence of the condition on the noise),
into the formula for γS leads to the estimate γS > 0.9(1 − 3µ2(S) − η · (N

π
· σmin)

−1) = γ
and we get the bound,

P(1-OMP fails|δΛ < 1/3) ≤ K · 2S · exp(−Nγ2/π).

Finally to bound the probability that P(δΛ > 1/3) we simply note that c/3 > 1/37 and
that for a tight frame we have |||Φ|||2 = K/d. Thus whenever S < d/37 the condition of
Theorem 6.5 is satisfied and

P (δΛ > 1/3) < 2 exp

(

−
(

1/37 − S/d

µ
√
S

)2
)

.

7 Robustness with respect to the dictionary

In some applications the sparsity inducing dictionary Φ might not be known exactly and
one actually uses a slightly different dictionary Ψ in the algorithms instead. This is the
case in particular in blind source separation where the equivalent of the dictionary is a
mixing matrix [12], which is unknown but estimated from the observed data. The success
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of sparsity based blind source separation shows that even an approximate knowledge of the
dictionary (the mixing matrix) still makes it possible to obtain a ”reasonable” estimate
of the coefficients (the sources) [16], but the question arises under which conditions it is
possible to robustly recover the support of a signal.

Concerning thresholding one can actually directly apply the results for worst case and
average case analysis obtained in Sections 4 and 5. Indeed, one can treat Φ and Ψ in
the same way as they were treated there. The fact that we do not know the ”synthesis”
dictionary Φ precisely does not affect the analysis. The only difference is that in the
final projection step we use the dictionary ΨΛ instead of ΦΛ. However, this just slightly
changes the reconstructed coefficients but not the reconstructed support Λ (see also the
statement on the reconstruction error in Theorem 7.1 below).

For an analysis of OMP slightly more effort has to be invested. Indeed, when we
update the new residual at each step of OMP we project onto the span of the assumed
atoms (ψi)i∈J instead of the original atoms (ϕi)i∈J . Thus, the residual has the form

RJ = (I − ΨJΨ
†
J)Y.

Hence, we have to work now with Q̃J = (I− ΨJΨ
†
J) instead of QJ = (I− ΦJΦ

†
J).

Concerning the worst case analysis, one can simply write

Y = ΦΛX = ΨΛX + (ΦΛ −ΨΛ)X.

Setting E = (ΦΛ − ΨΛ)X and assuming |||ΦΛ − ΨΛ||| to be small it is straightforward to
apply the results of Section 4 also to the robustness problem.

To deal with the average case analysis, the simple trick which consists in considering
the modeling error as noise cannot be used directly since our average case analysis of p-
SOMP is based on a deterministic model of the noise and a probabilistic and independent
model of the coefficients X. Here, the noise and the coefficients would be two highly de-
pendent random variables, and the previous results could not be used in a straightforward
fashion. Instead, for the average case analysis we will use essentially the same techniques
as in Section 6. In the noiseless case Y = ΦΛX, we want to show that

‖Ψ⋆
ΛQ̃JΦΛΣ

1
2U‖p,∞ − ‖Ψ⋆

Λ
Q̃JΦΛΣ

1
2U‖p,∞ > 0, (7.1)

and concentration of measure tells us that this will be satisfied with very high probability
as long as

‖Ψ⋆
ΛQ̃JΦΛΣ

1
2‖2,∞ − ‖Ψ⋆

Λ
Q̃JΦΛΣ

1
2‖2,∞ > 0. (7.2)

Again to ensure the condition above we need to find a lower bound for the left hand side
that does not depend on J itself but only on its size, |J | ≤M − 1.
The first term on the left hand side can be estimated analogously to before as

‖Ψ⋆
ΛQ̃JΦΛΣ‖2,∞ ≥ sup

i∈Λ\J

σi · inf
i∈Λ\J

|〈Q̃Jϕi, ψi〉|.

To get an upper bound on the second term we need to pay more attention because the
contribution of the atoms in ΦJ is no longer annihilated by the projection on the assumed
atoms in ΨJ . To circumvent the difficulties arising from that we will use the following
trick

‖Ψ⋆
Λ
Q̃JΦΛΣ‖2,∞ ≤ ‖Ψ⋆

Λ
Q̃JΨΛΣ‖2,∞ + ‖Ψ⋆

Λ
Q̃J (ΦΛ −ΨΛ)Σ‖2,∞.
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The first norm in this expression can again be estimated as

‖Ψ⋆
Λ
Q̃JΨΛΣ‖2,∞ ≤ sup

i∈Λ\J

σi · ‖Ψ⋆
Λ
Q̃JΨΛ\J‖2,∞.

To estimate the second norm we use |||QJ ||| = ‖ψk‖2 = 1 and ‖φi − ψi‖2
2 ≤ 2(1 − β),

‖Ψ⋆
Λ
Q̃J(ΦΛ −ΨΛ)Σ‖2

2,∞ = sup
k/∈Λ

∑

i∈Λ

|σi|2|〈Q̃J(ϕi − ψi), ψk〉|2

≤ sup
k/∈Λ

∑

i∈Λ

|σi|2|||Q̃J |||2‖ϕi − ψi‖2
2‖ψk‖2

2

≤
∑

i∈Λ

|σi|22(1 − β) ≤ ‖σ‖2
2 · 2(1 − β) ≤ S · σ2

max · 2(1 − β).

If we now define the coefficients c′0(Λ), d′0(Λ)

c′0(Λ) = inf
J Λ

inf
i∈Λ\J

|〈Q̃Jϕi, ψi〉|, d′0(Λ) = sup
J Λ

‖Ψ⋆
Λ
Q̃JΨΛ\J‖2,∞ +

σmax

σmin

·
√

2S(1 − β)

(7.3)

we can finally lower bound the left hand side in (7.2) as

‖Ψ⋆
ΛQ̃JΦΛΣ

1
2‖2,∞ − ‖Ψ⋆

Λ
Q̃JΦΛΣ

1
2‖2,∞

> sup
i∈Λ\J

σi ·
(

inf
i∈Λ\J

|〈Q̃Jϕi, ψi〉| − ‖Ψ⋆
Λ
Q̃JΨΛ\J‖2,∞ − ‖σ‖2

supi∈Λ\J σi

√

2(1 − β)
)

> σ(M) ·
(
c′0(Λ) − d′0(Λ)

)
.

Using the notation above we could now formulate and proof the analogue of Theorem 6.1.
However since that would basically mean rewriting Section 6.2 replacing c0(Λ), d0(Λ) by
c′0(Λ), d′0(Λ) we will directly formulate the analogue of Theorem 3.4.

Theorem 7.1. Let p = 1 and Y = ΦΛ Σ
1
2U with U a S×N matrix of standard Gaussian

random variables, Σ = diag(σ2
i )i∈Λ. Suppose in addition the following condition on the

dynamic range is satisfied

σmax

σmin
<

1
√

2S(1 − β)
·
(
β − µin

2 (Ψ,Ψ,Λ) + µ2(Ψ,Ψ,Λ)

1 − δΛ(Ψ)

)
. (7.4)

Then the probability that S steps of 1-SOMP with Ψ instead of Φ fail to exactly recover
the support Λ does not exceed K · 2S · exp(−Nγ2/π) with K the number of atoms in Φ
and

γ :=
β − µin

2 (Λ)+µ2(Λ)

1−δΛ
− σmax

σmin
·
√

2S(1 − β)

β − µin
2 (Λ)−µ2(Λ)

1−δΛ
+ σmax

σmin
·
√

2S(1 − β)
. (7.5)

Proof 7. Follow the same line of argument as in the proof of Theorem 3.4 and replace
c′0(Λ), d′0(Λ) by their bounds

c′(Λ) = β − µin
2 (Ψ,Ψ,Λ)

1 − δΛ(Ψ)
and d′(Λ) =

µ2(Ψ,Ψ,Λ)

1 − δΛ(Ψ)
+
σmax

σmin

·
√

2S(1 − β)

Both estimates can be derived as in the proof of Lemma 6.3 simply by reversing the roles
of Φ and Ψ. For the first one simply note that this works because Q̃J is self-adjoint and
so we have infJ Λ infi∈Λ\J |〈Q̃Jϕi, ψi〉| = infJ Λ infi∈Λ\J |〈Q̃Jψi, ϕi〉|.
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Contrary to Theorem 3.4, the dynamic range σmax/σmin is now constrained, which is
more similar to the behaviour of p-thresholding. With p-thresholding the condition on
the dynamic range to allow recovery (in the noiseless case) is

σmax

σmin

<
1

µ2(S)
.

This is much less stringent than the condition (7.4) when the dictionaries Φ and Ψ are
very different, that is to say when β is small. However if Φ and Ψ are very similar (β is
close to one) then the condition on the dynamic range essentially vanishes and one can
check that we recover the noiseless version of Theorem 3.4. This suggests that it might
be preferable to choose the decomposition algorithm depending on the available precision
of the estimate of Φ.

8 Conclusions and Outlook

Sparse approximations of signals over redundant dictionaries is an emerging methodology
that has attracted researchers from a remarkably broad community, from signal processing
practitioners to mathematicians. Despite remarkable practical success, there has always
been quite a gap between the performances predicted by theory and those achieved in
practice. Clearly, the weak element in theory was the prominent role of worst case analysis,
casting overly pessimistic shadows on achievable results. In this paper we shed new light on
the problem by turning to average case analysis, showing that greedy algorithms perform
much better than the worst case prediction in most cases.

Nevertheless, our results are far from being the final answer. First, we had to restrict
ourselves to the multichannel case where we could take advantage of the collective be-
haviour of atoms across channels. A similar average case analysis in the single channel case
would be a major breakthrough. Advances have been reported for the simple thresholding
algorithm [21], but success for iterative greedy algorithms remains elusive. Second, some
of our theorems, most notably in the case of p-SOMP, use pachydermal union bounds that
seem to require many channels in order to reach practical success probabilities. Solving
this issue with finer arguments would also lead to further bridging the gap between theory
and practice.
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A Proof of Theorem 5.1

The proof of Theorem 5.1 relies heavily on the following standard result, see e.g. [14,
eq. (2.35)] or [15, eq. (1.6)].
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Theorem A.1. Let f be a Lipschitz function on RN , i.e., |f(x)− f(y)| ≤ L‖x− y‖2 for
all x, y ∈ RN . Further assume that Z = (Z1, . . . , ZN) is a vector of independent standard
Gaussian random variables. Then

P(f(Z) ≥ E[f(Z)] + t) ≤ exp

(

− t2

2L2

)

and P(f(Z) ≤ E[f(Z)] − t) ≤ exp

(

− t2

2L2

)

.

Let us specialize this theorem to the p-norm (with the usual modification for p = ∞).
To this end we let

Cp(N) := E [‖Z‖p] = E

(
N∑

n=1

|Zn|p
)1/p

.

Further, we let Lp(N) be the smallest constant such that

‖x‖p ≤ Lp(N)‖x‖2 for all x ∈ RN .

Further, we define

Ap(N) :=
Cp(N)2

2Lp(N)2
.

We will later on give estimates of these constants for the most interesting cases, i.e p = 1,
2, ∞. Theorem A.1 thus leads to the following.

Corollary A.2. Let 1 ≤ p ≤ ∞. Suppose Z = (Z1, . . . , ZN) is a vector of independent
standard Gaussians. Then

P(‖Z‖p ≥ (1 + ǫ)Cp(N)) ≤ exp
(
−ǫ2Ap(N)

)
(A.1)

and
P(‖Z‖p ≤ (1 − ǫ)Cp(N)) ≤ exp

(
−ǫ2Ap(N)

)
. (A.2)

Proof 8. The Lipschitz constant of the function f(x) = ‖x‖p can be estimated as

|‖x‖p − ‖y‖p| ≤ ‖x− y‖p ≤ Lp(N)‖x− y‖2. (A.3)

Taking y = 0 shows that this estimation is sharp. Applying Theorem A.1 with t = ǫCp(N)
and using the definition of Ap(N) yields the statement.

Remark A.1. We could even worked with 0 < p < 1. Then one has to replace Lp(N) by
21/p−1Lp(N), and hence Ap(N) by 41−1/pAp(N). Indeed, though ‖.‖p is not a norm for
p < 1, we have the quasi-triangle inequality ‖x+ y‖p ≤ 21/p−1(‖x‖p + ‖y‖p), see e.g. [8].
This would then be used in the first inequality in (A.3) instead of the usual triangle
inequality.

Proof 9. Consider the vector v⋆
kU ∈ RN . Its entries are given by 〈vk, Un〉, n = 1, . . . , N

where Un = (Un1, . . . , UnS) is a vector of independent standard Gaussians. Observe that
the inner products 〈vk, Un〉, n = 1, . . . , N are stochastically independent with the same
distribution as the (univariate) scaled Gaussian ‖vk‖2Un1. Denoting Z = (U11, . . . , UN1),
Corollary A.2 yields

P
(

‖v⋆
kU‖p ≥ (1 + ǫ1)Cp(N)‖vk‖2

)

= P
(∥
∥(‖vk‖2Un1)

N
n=1

∥
∥

p
≥ (1 + ǫ1)Cp(N)‖vk‖2

)

= P (‖Z‖p ≥ (1 + ǫ1)Cp(N)) ≤ exp(−ǫ21Ap(N)).
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In the same fashion we obtain the second inequality. Now by a union bound

P

(

max
k∈Ω

‖v⋆
kU‖p ≥ (1 + ǫ1)Cp(N) max

k∈Ω
‖vk‖2

)

≤
∑

k∈Ω

P

(

‖v⋆
kU‖p ≥ (1 + ǫ1)Cp(N) max

k′∈Ω
‖vk′‖2

)

≤
∑

k∈Ω

P
(

‖v⋆
kU‖p ≥ (1 + ǫ1)Cp(N)‖vk‖2

)

≤ |Ω| · exp(−ǫ21Ap(N)) (A.4)

and, denoting k0 ∈ Ω such that ‖vk0‖2 = maxk′∈Ω ‖vk′‖2

P

(

max
k∈Ω

‖v⋆
kU‖p ≤ (1 − ǫ2)Cp(N) max

k∈Ω
‖vk‖2

)

≤ min
k∈Ω

P
(

‖v⋆
kU‖p ≤ (1 − ǫ2)Cp(N)‖vk0‖2

)

≤ P
(

‖vk0U‖p ≤ (1 − ǫ2)Cp(N)‖vk0‖2

)

≤ exp(−ǫ22Ap(N)). (A.5)

Similar techniques yield the last two estimates.

We could actually slightly improve the probability bound in the previous lemma.
Indeed, in inequality (A.4) we were a bit crude when replacing maxk′∈Ω ‖vk′‖2 with ‖vk‖2

for each k. However, the resulting estimates improving (5.3) and (5.5) would be much
more complicated, and in particular, if all the norms ‖vk‖2 were roughly the same the
gain would be marginal (which might be expected when vk = ΣΦ⋆

Λψk as used below).
So we preferred to state the result in the current form. We thus sacrificed a little bit of
precision to gain a much simpler looking result.

B Computation of Ap(N) and Cp(N)

Let us now determine Ap(N) and Cp(N) for the important cases p = 1, 2,∞.

Lemma B.1. (a) For p = 1 it holds C1(N) =
√

2
π
N , L1(N) =

√
N and

A1(N) =
N

π
.

(b) For p = 2 we have C2(N) =
√

2 Γ(N/2)
Γ((N−1)/2)

∼
√
N , where Γ denotes the Γ function.

Hence,

A2(N) =
Γ2(N/2)

Γ2((N − 1)/2)
∼ N/2.

(c) For p = ∞ there is a constant D such that D−1
√

log(N) ≤ C∞(N) ≤ D
√

log(N)
and hence

A∞(N) ≍ log(N).

Proof. Case (a) (p = 1) is obvious. For p = ∞, case (c), we have L∞(N) = 1 and [15,
eq. (3.14)] tells us that there exists a constant K such that

K−1
√

log(N) ≤ E‖Z‖∞ ≤ K
√

log(N).
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Hence,
A∞(N) ≍ log(N).

Concerning p = 2, case (b), we clearly have L2(N) = 1. The claim on C2(N) = E‖Z‖2

is proved as follows.
The random variable

Y :=

N∑

n=1

Z2
n

has the χ2(N − 1) distribution (see e.g. [13]), that is, its probability density is given by

f(x) =
1

Γ((N − 1)/2)
(1/2)(N−1)/2x(N−1)/2−1e−x/2, x ≥ 0

Hence,

E‖Z‖2 = E
√
Y =

∫ ∞

0

x1/2f(x)dx =
1

Γ((N − 1)/2)
(1/2)(N−1)/2

∫ ∞

0

xN/2−1e−x/2dx

=
1

Γ((N − 1)/2)
(1/2)(N−1)/22N/2

∫ ∞

0

xN/2−1e−xdx =
√

2
Γ(N/2)

Γ((N − 1)/2)
.

Here, we used a substitution in the integral and the definition of the Γ-function, Γ(z) =
∫∞

0
xz−1e−xdx. Further, using Stirling’s formula, Γ(z) ∼

√
2πzz−1/2e−z, we obtain

Γ(N/2)

Γ((N − 1)/2)
∼ (N/2)(N−1)/2e−N/2

((N − 1)/2)(N−2)/2e−(N−1)2
=

√

1

2e

N (N−1)/2

(N − 1)(N−2)/2

=

√

1

2e

√
N
[
(1 − 1/N)N+2

]−1/2 ∼
√

N

2
.

The claim for A2(N) follows immediately.
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