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Abstract ~ The effect of heat-bath coupling on the conditions of access to
saddTe-point configurations of vacancy jumps in solid-state diffusion is in-
vestigated by analysing,in the framework of quantum statistics,the interplay
between i) the rate of phonon-phonon collisions caused by anharmonicity, re-
presenting the bath rate, ii) the resonant mode of the defect and its Tife-
time determined by the additional anharmonicity caused by the defect, and
iii) the rate of barrier relaxation of the multivariate deformable barrier.
At Tow temperature where damping is small, the resulting jump rate closely
approaches the rate law of Vineyard (1957) characterized by the fully re-
laxed saddle point. ;

With increasing temperature, damping of the resonant mode increases,
allowing but for a partial relaxation; jumps occur at reduced rate over non-
equilibrium configurations of the saddle point with increased migration en-
thalpy and, caused by large spatial gradients of the energy, with enlarged
values of migration entropy and activation volume, The typical non-Arrhenius
form of the rate resulting from temperature-dependent damping allows to in-
terpret self-diffusion in many metals by jumps of monovacancies only.

Anharmonic damping of the resonant mode involves essentially low-fre-
quency phonons not contained in the spectrum of crystallites with up to
1000 atoms. Computer modelling of jump rates thus underestimates the rele-
vant damping and yields always the low-temperature approximation, that is
the Vineyard rate.

I - INTRODUCTION

The temperature dependence of experimental data of the tracer self-diffusion coeffi-
cient DY of metals usually exhibits curved Arrhenius plots lg DT vs 1/T, /1/; the
curvature is strong for bcc metals like Nb, Ta, Mo, W and Na while it is small but
experimentally well established for the fcc metals Cu, Ag, Au, Ni, Pt, /1-3/. This
curvature may be caused either by the contributions DE of at least two migrating
types of intrinsic atomic defects i with suitably differing activation parameters,
or by curvature of Dy = £, a® ¢y I'y of one defect only, due most likely to its jump
rate T',. The jump rate of atomic defects has so far been estimated by transition
state theory (TST) /4,5,6/ and its extensions /7,8/ based on the assumption of the
equilibrium distribution of states and implying the relaxed Vineyard saddle point
SPyip. The activation enthalpy of this saddle point depends but little on tempera-
ture /9/; hence TST supports two-defect models of self diffusion /10,11,12/.

Any rate theory which is more complete than TST has to evaluate the deviations
from the equilibrium distribution. This affords consideration of the coupling to the
heat bath, which on the one hand establishes a temperature g=1 = kgT and thermal
fluctuations providing for hopping of atomic defects, and on the other hand imposes
damping or dissipation on the dynamical motions. These two effects of a heat bath
are inseparably interconnected like either side of one coin, as it is expressed in
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the fluctuation-dissipation theorem, cf. /13/. TST neglects dissipation and establi-
shes thereby an upper bound for any rate. Besides the early work of Kramers /14/ on
this topic, several hundred papers have appeared in the past eight years, cf. /15/
for a review, dealing often with reactions in molecules immersed in a solvent. The
present note discusses the elements to treat the jump rate of atomic defects in crys-
tals for the example of the monovacancy in metals. '

II - THE ONE-DIMENSIONAL PROBLEM

One-dimensional rigid barrier
We consider a particle with mass M in a

potential U(x), Fig. 1, describing a meta- U b Ub% 2
stable well at x = 0 and a barrier with E ( —M—)
height uP at xP. The curvatures in the 14

bottom and at the barrier are measured
by w° and w” > 0, respectively. Coupling

to a heat bath provides the inverse tem- X

perature B and imposes a friction {(x) or

a damping rate Y(x) = Z(x)/M. TST yields Fig. 1. The metastable well with
the rate of escape basic parameters Ub, w®, mb.

ve exp (-80°) ; (1)

13

FTST

we use w = 2m v throughout. Neither wb nor y are contained in this rate law. Kramers
/14/ found that in the limit of low friction (I) the thermal activation in the well
is the rate-limiting process and the rate is proportional to y° = y{0): with the
transmission coefficient r = F/FTST, he obtained

r. = y°sUb/V° for y° » O. (2)

For intermediate and high friction (II), activation of the particle to the barrier

is so fast that escage over the barrier is the rate~determining process. There, damp-
ing at the barrier vy y(x is essential in reducing the equilibrium rate TI'pgm.
With the normalized barrier damping o = vy /2wb the result is

roo= w};/wb = o (1#1/02)¥/2 _ 1}, oz 1/6, (3)
yielding ryy > 1/20 = wP/yP for o > 1 and ry; * 0.8 for o = 1/6. wg and wb are the
friction-induced and the bare transmission frequencies of the barrier, respectively.
This expression, formerly often judged as an approximate interpolation formula, is
now well established: it appears as the classical limit of the guantum-statistical
rate for linear coupling to the bath and for Ohmic or viscous damping /16,17/, and
it is obtained for non-Markovian dynamics /18,13/ where a memory-renormalized a re-
places a.

The complete solution combining the regimes I and II for arbitrary but uniform
damping y = const(x) is worked out in /13/, approximate solutions are given in
/19,20/. In regime I, UP in the exponent is replaced by Uy (y) with U, > uP for vy >+ O
and U, > 0 if ry approaches unity /13/. This decrease of the activation energy in
the transition region is a new result not obtained in the Kramers limits.

III - THE MULTI-DIMENSIONAL CASE

The rate constituting the diffusion coefficient of a monovacancy is the jump rate of
one nearest neighbour of the vacancy over the barrier formed mainly by one gate of
four gate atoms in the fcc lattice and by two consecutive gates of three atoms each
in the bec lattice. Various saddle-point configurations SP, are distinguished by c;
the equilibrium saddle point is SPyjp. The infinitesimal potential at extreme points
is described by mass weighted normal co-ordinates ¢,, ¢, and normal mode frequencies
w, , w, where A and g count modes in the ground state at the bottom of the well and
at the top of the energy barrier, respectively:

20(g) = =Y w,? % 2uq) = 20 - WD) 2q,? + W ’q,?. (4)
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b
Here w, is the bare transmission frequency and N the total number of degrees of free-
dom. These harmonic modes are mutually coupled by the anharmonic texms of the lattice
potential leading to the damping parameters YA' Yu /21/

v, =a I |v(3> |27+ ¢ |v¥ 1202 &+ .. (5)
A1ha A Aihg A1A2A3 A AiA2)s
and a corresponding expression for vy,. The Vﬁ?i. and Vé?{_ Gepend on the n-th deri-
vative of the potential about the we%l bottom and the barrier top, respectively. For
the stable modes the contributions to the Yy are interpreted as n-phonon collisions
which for T > Tg (= Einsteintemperature) are ~ 7(n=-2) | the Y) are the phonon widths
or the inverse of the lifetimes t). The entirety of modes X\ or L represent the heat
bath coupled by the anharmonicities of the potential to the modes involved immediate-
ly in the dynamics of the jump process. In the perfect lattice, theory /22/ and ex-
periment /23/ indicate Yy $0.5u, at T = Ty and v; = 0.05 w) for T -~ 0. The vacancy
introduces strong additional anharmonicities, especially at the barrier, where on
symmetry grounds the even coefficients are essential for the transmission damping:
yg X BCT2 + DCT“. The normalized barrier damping o, = yc/2wC depends thus on the
configuration ¢ and on T.

The TST result for the vacancy has been given by Vineyard /5/

: N N
Tosr = Vyin e¥P (B0, ). Voin 81V T2V (6)

Again neither mg nor any damping parameter do appear in this expression.

The regime I of low damping Yy, <« w) where vibrational energy transfer in the
well is rate limiting is possibly realized for T + 0. Assuming that N, modes A have
to be excited to reach SP., the reduced rate in N dimensions is /24,25/

N,
c

r_ < Y(SUC)NC exp(-S(Uc—U

I n))/(NC! v

Vi Vin
going to the Kramers limit for Nso = 1. Since BUc » 1 at low f, the rate is dramati-
cally increased with respect to the one-dimensional case and the turnover between I
and II /25/ should hardly be observable in solid-state diffusion; the TST rate is

expected to hold at low T until o, starts to increase.

Regime II where barrier damping reduces successful barrier crossings is governed
by a.. Expanding (3) we obtain

.~ P b
Yip %W EXP(—B(UC-UVin))/Yc(T), (8)
which for fixed ¢ is an exponential whose pre-factor decreases as T2 or T-% with
increasing temperature. The magnitude of the pre-factor depends on the ratio of the
harmonic to the anharmonic parts of the barrier and varies with c. Consider the bcc
lattice with its double-gate structure of the barrier of the vacancy jump. In the
relaxed state ¢ = Vin it tends to be close to a rectangular barrier with very small
oP ang large Yb. This case exhibits a strong reduction of ryy by damping due to nu-
merous recrossings of the diffusing particle before it moves away from the barrier.
For the unrelaxed or partially relaxed barrier with U, > Uy;, Wg is increased and
Yg decreased, and it depends on B what configuration is the most favourable: at in-
termediate T < Tp/2 the influence of the exponential is strong and Ug ¥ Uyy, with

a decreasing pre-factor is preferable while at high temperature T x Ty the decrease
of the pre-factor would be severer and the largest contribution to the rate comes
from jumps over non-equilibrium configurations of the partially relaxed barrier with
increased migration enthalpy and, caused by the finite spatial gradients of Ug, with
enlarged values of migration entropy and activation volume. These are the very fea-
tures found in the analysis of self-diffusion in bcc metals; two-defect models /10
-12/ to explain these properties are clearly not supported or postulated by the pre-
sent rate theory which goes beyond TST by estimating all implications of the heat
bath coupling. For fcc metals the effects are similar but less pronounced due to the
simpler barrier structure. It appears that the recrossings due to damping are at
least as important as the correction caused by dynamical return jumps /7,8/ associa-
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ted with anharmonicity and curvature of the saddle surface.

ACKNOWLEDGEMENTS. The author would like to thank H. Schultz for continuous critical
discussion during one year. He appreciates comments by D. Lazarus, C.P. Flynn, G.
Delorenzi, A.V. Granato; R. Benedek, J.N. Mundy, N.L. Peterson and R.W. Siegel; H.
Grabert and U. Weiss. The work is supported by the Bundesminister f@r Forschung und
Technologie.

REFERENCES

/1/ Siegel, R.W., in Yamada Conference V on "Point Defects and Defect Interaction
in Metals", University of Tokyo Press 1982, p. 533.

/2/ Peterson, N.L., J. Nucl. Mat. 69 & 70 (1978) 3.

/3/ Mehrer, H., J. Nucl. Mat. 69 & 70 (1978) 38.

/4/ Eyring, H., J. Chem. Phys. 3 (1935) 107, 492. Glasstone, S., Laidler, K.J. and
Eyring, H., The Theory of Rate Processes, Mc Graw Hill, New York, 1941.

/5/ Vineyard, G.H., J. Phys. Chem. Sol. 3 (1957) 121.
Vineyard, G.H., and Krumhansl, Phys. Rev. B31 (1985) 4929.

/6/ Glyde, H.R., Rev. Mod. Phys. 39 (1967) 373.

/7/ Delorenzi, G., Flynn, C.P. and Jacucci, G., Phys. Rev. B30 (1984) 5430.

/8/ Jacucci, G:, Toller, M., DeLorenzi, G. and Flynn, C.P., Phys. Rev. Lett. 52
(1984) 295, and to appear in Phys. Rev. B. -

/9/ Franklin, M.W., J. Chem. Phys. 52 (1942) 2659; in: Diffusion in Solids, A.S.
Nowick and J.J. Burton, eds. (Academic Press, 1975) p. 1.

/10/ Seeger, A. and Mehrer, H., in: Vacancies and Interstitials in Metals, North
Holland, Amsterdam, 1970, p. 1; and Ref. /3/.

/11/ Peterson, N.L., Comments Solid State Phys. 8 (1978) 107.

/12/ Schilling, W., J. Nucl. Mat. 69 & 70 (1978) 465.

/13/ cCarmeli, B. and Nitzan, A., Phys. Rev. A29 (1984) 1481; J. Chem. Phys. 80
(1984) 3596.

/14/ Kramers, H.A., Physica (Utrecht) 7 (1940) 284.

/15/ Hanggi, P., J. Stat. Phys., to appear in 1985.

/16/ Wolynes, P.G., Phys. Rev. Lett. 47 (1981) 968.

/17/ Grabert, H. and Weiss, U., Phys. Rev. Lett. 53 (1984) 1787.

/18/ Grote, R.F. and Hynes, J.T., J. Chem. Phys. 73 (1980) 2715; 74 (1981) 4465.

/19/ Skinner, J.L. and Wolynes, P.G., J. Chem. Phys. 69 (1978) 2143; 72 (1980)
4913,

/20/ Bittiker, M., Harris, E.P. and Landauer, R., Phys. Rev. B28 (1983) 1268.

/21/ Maradudin, A.A., Solid State Physics Vol. 19 (F. Seitz and D. Turnball, eds.),
(1966) p. 51.

/22/ Klein, M.L., Barker, J.A. and Koehler, T.R., Phys. Rev. B4 (1971) 1983

/23/ Stedman, R., Almgvist, L., Nilsson, G. and Raunio, G., Phys. Rev. 162 (1967)
545; Stedman, R. and Nilsson, G., Phys. Rev. 145 (1966) 492.

/24/ Borkovec, M. and Berne, B.J., J. Chem. Phys. 82 (1985) 794.

/25/ Zawadzki, G. and Hynes, J.T., Chem. Phys. Lett. 113 (1985) 476.



