N
N

N

HAL

open science

Dynamic Learning Agents and Enhanced Presence on
the Grid
Stefano A. Cerri, Marc Eisenstadt, Clement Jonquet

» To cite this version:

Stefano A. Cerri, Marc Eisenstadt, Clement Jonquet. Dynamic Learning Agents and Enhanced Pres-
ence on the Grid. 3rd International Workshop on GRID Infrastructure to Support Future Technology

Enhanced Learning (LeGE-WG), Dec 2003, Berlin, Germany. lirmm-00269487

HAL 1d: lirmm-00269487
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269487
Submitted on 3 Apr 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269487
https://hal.archives-ouvertes.fr

Dynamic Learning Agents and Enhanced
Presence on the Grid

Stefano A. Cerri*, Marc Eisenstadt**, Clement Jonquet*

* LIRMM, CNRS & University Montpellier Il
161, Rue Ada 34392 Montpellier Cedex 5, France
{cerri,jonquet}@lirmm.fr

** Knowledge Media Institute, The Open University
Walton Hall, Milton Keynes, UK
m.eisenstadt@open.ac.uk

Abstract

Human Learning on the Grid will be based on the synergies between advanced software and Human agents.
These synergies will be possible to the extent that conversational protocols among Agents, human and/or
artificial ones, can be adapted to the ambitious goal of dynamically generating services for human learning.

In the paper we highlight how conversations may procure learning both in human and in artificial Agents.

The STROBE model for communicating Agents and its current evolutions shows how an artificial Agent

may "learn” dynamically (at run time) at the Data, Control and Interpreter level, in particular exemplifying
the "learning by being told” modality. The enhanced telepresence research, exemplified by Buddyspace,

in parallel, puts human Agents in a rich communicative context where learning effects may occur also as

a "serendipitous” side effect of communication. The integration of the two streams of research will be the
result of a workpackage within the E-LeGI EU Integrated Project, currently under negotiation.

Keywords: e-Learning, Grid, Social Informatics, service generation, Agents, Agent Communication Languages, Enhanced
Telepresence, STROBE model

1. INTRODUCTION

The concept of Learning Agent is seducing as much as confusing. There is no clear definition of what a software Agent
is, and often, in the best Al tradition, one calls Agents both software and human Agents communicating in a network
for performing jointly a task. The "learning” specification for an Agent may refer to learning as it occurs in human
Agents within a scenario such as the one of the E-LeGlI project, or else "machine learning” as it may be introduced
in software. In this paper we wish to address the issue of Learning both in artificial and in human Agents [3]. In order
to define our research directions, we need to identify a minimal lexicon, and its associated choices as a precondition
for the comprehension of further statements. As we wish our model to be the simplest possible one, we will perhaps
risk to oversimplify more complex situations; eventually extensions will be treated later as a result of critical remarks.
We assume first that artificial Agents are just software programs - and their associated processes - that at least are
autonomous, distributed and able to communicate asynchronously with the environment (consisting only of other
Agents) by means of a communication language that is independent on the content of the communication. Objects,
for instance, are neither autonomous nor properly communicating, as the communication language consists just of
selectors for methods (interfaces) thus is not independent of the objects themselves. Looking at the literature, in
spite of the high popularity of the Agent literature, one may seldom find Agents that really respect all the minimal
requirements for agentship. In previous papers, in order to give a provocative definition for Agents, we proposed
to consider them as "crazy” Operating Systems (the adjective denoting their autonomy in reacting to messages).
In the E-LeGIl ambitions, perhaps the most challenging one is the personalization of learning services for humans.
That will not be achieved unless a minimal formal, computational model of human Agents will be exploited during
the generation of the corresponding services. We take this challenge by trying to develop a computable model for
Agents that can serve also the purpose of modelling humans in a deliberately well-circumscribed context. Therefore,
the issue of learning for human Agents is put into correspondence with the same for artificial Agents. Our model for
artificial Agents has to be capable of modelling artificial learning; its corresponding software Agents similarly have to
show learning properties that are sufficient for modelling human learning and therefore personalizing the services.

Dynamic Learning Agents and Enhanced Presence on the Grid - Cerri, Eisenstadt, Jonquet

Again with the risk of oversimplifying, we will initially consider for human as well as for artificial Agents just three types
of learning:

1. Learning by being told, the classical "instructional effect”.
2. Learning by abstracting and generalizing (or by classifying examples, extracting rules and forming "theories”).
3. Learning as a side effect of communication, what we like to call "serendipitous™ learning.

We know that in a parallel paper [7] type 2 learning is extensively addressed. Perhaps what they call induction and
abduction in theory construction (or Ontology negotiation) may be reconducted to our abstraction and generalization.
At any rate, most of the machine learning work has been performed in this direction, while type 1 and 3 of learning
described above - for artificial Agents - did not really get much attention in the literature.

2. LEARNING BY BEING TOLD
2.1. The STROBE model and its evolution

Humans learn facts, rules (or procedures), and languages necessary to understand messages stating facts or
procedures, as well as necessary for generating behaviour when applying a particular procedure to parameters.
Although we are strong believers in the cognitive constructivist learning paradigm, we nevertheless focus on this
highly restricted area of learning, which contains important elements that are so naturally inherited from the
computational metaphor. Indeed facts, rules and languages are such as Data, Control and Interpreter levels in
computing. These three abstractions levels may be found in all programming languages. One may distinguish Data
(information) and Control (procedures) levels which corresponds to define new simple data and new procedures
abstracting on the existing ones, from the Interpreter level which means to identify the way of evaluating an
expression, or defining a special form which cannot be defined at the Control level. Currently, the two first levels
could be reached during execution but the challenge is to allow Interpreter level modifications at run time, in order to
generate processes.

In order for conversational processes in E-LeGl to be effective, they have to generate services that help humans to
learn facts, rules and... languages. That will be possible insofar we model human Agents by means of artificial Agents
able to learn dynamically facts, rules and languages. As a resulting side effect, we will have the opportunity to use
artificial Agents that learn (by being told) during conversations with other artificial Agents, thus that show a dynamic
behaviour that adapts to the context. The STROBE model proposes an architecture to support this Agent behaviour.
The key initial idea is to give to Agents an environment as a representation of any type of knowledge and consider
them as REPL (Read, Eval, Print, Listen) interpreters.

In the STROBE (STReams, OBjects, Environments) [2] model, that inherits most of its features from classical lambda
calculus [8], denotational semantics [9] and the Scheme language we have identified a few basic properties for
Agents:

1. First class? Environments to model memory: linking variable names to values, under the commitment that types
are on the values (dynamic typing) and that procedural abstractions are first class.

2. First class OBjects to model the control: the classical loop (message, reaction with another message). In fact
this option, very practical as a first approximation, is due to be abandoned for an Actor version, including a
dynamic scheduler.

3. First class STReams, modelling the evolving conversational processes by using the delayed (lazy) evaluation
of values associated to expressions.

4. First class continuations (K), in order to model non determinism and multiple conversational threads, i.e: a
formal model of the rest of the process consuming the results from the current one once it will be terminated or
suspended.

5. First class interpreters (l), modelling how to generate processes from procedures. They are included in the
above described environments.

For the representation of the interlocutor in a conversation STROBE uses the concept of Cognitive Environments [1]
which give to the Agent a "partner model” represented by an environment dedicated to this Agent. In this environment

Iwebster dictionary: Main Entry: serendipity; Pronunciation: -'di-p&-tE; Function: noun; Etymology: from its possession by the heroes of the Persian
fairy tale The Three Princes of Serendip; Date: 1754: the faculty or phenomenon of finding valuable or agreeable things not sought for.

2The notion of first-classness in a programming language was introduced by Christopher Strachey . First-class objects may be named by variables,
may be passed as argument to procedures, may be returned as results and may be included in data structures. Therefore our environments,
procedures, etc... profit from each of these properties.

Dynamic Learning Agents and Enhanced Presence on the Grid - Cerri, Eisenstadt, Jonquet

a dedicated interpreter is stored and used to interpret messages (and their content) sent by this Agent. Actually,
messages’ interpretation is done in a given environment and with a given interpreter. Learning at the Data and
Control level consist in modifying the dedicated environment; learning at the Interpreter level (meta-level) consist in
modifying the dedicated interpreter. Figure 1 illustrates an Agent representation.

Bogent & Agent B
GlobalEnva ol | GlobalEnve
Globallntery, Globallnterg
Other = {(Ba, InterBg, EnvBa) Other = {{Ap, Interdp, Envig)
(Cu, InterCy, EnvCy)} (Cg, InterCg, EnvCg))

Agent C /
GlobalEnwe

Globallnters
Other = {(Be, InterBe, EnvBe)
(A, Interde, Envie)} t L

Conversations

FIGURE 1: Agent attributes for representing others

Within this model, it is not difficult to envison "learning-by- being-told” of variables (Data) or procedural abstractions
(Control) insofar both are acceptable when declared bound to names by an external Agent that has the right to
"teach me” about facts or rules. That means that an Agent can learn from another one simple information (Data) and
procedures (Control) using an interpreter to evaluate "assertion” typed messages (such as definition or assignment).
What is not straightforward is how to learn at run time special forms or any other modification that affects the
interpreters. In the human Agent scenario, it is not difficult to teach a fact or a rule; what is less simple is to teach a
piece of "language”, i.e. teach people how to modify dynamically their interpretation behaviour for new facts or rules.
The STROBE model makes it possible by allowing Agents to modify dynamically their interpreters.

Agents, human and artificial ones, may be considered, in a first approximation, quite similar. Our challenge will be to
show that both may be represented by combinations of primitives (environments, objects (procedures, schedulers),
streams, continuations, interpreters) within the same model.

2.2. The Scheme architecture

Scheme classic REPL loop interpretation consists in waiting for a user expression, read and interpret this expression,
send back the result and wait for the next expression. This represents eventually a typical Data and Control level
modification. The higher level, Interpreter level, is not directly accessible. Our model uses another architecture.
Instead of interpreting user expressions with the current interpreter, this one calls (via apply-procedure) another
interpreter (stored in the dedicated cognitive environment), that interpret the user expressions. Thus, user expressions
may modify the interpreter which evaluates them. Our idea is to use this architecture with our Agents. If one considers
the three following interpreters each characterized by two procedures:

e Scheme: eval and apply
e Meta-eval: evaluate and apply-procedure
e Meta-ambeval: ambevaluate and ambapply-procedure

Then the classic REPL loop is equivalent to (eval e r k). where e is the expression to evaluate, r the environment
and k the continuation®. Our is: (eval (apply-procedure ’ambevaluate e r ks kf)). We need eval because
Scheme is the programming language used; apply-procedure is used as a dedicated interpreter selector, and
provides the first class environments. Finally, the last interpreter, the dedicated one (ambevaluate), is used to evaluate
the message and its content®.

2.3. Example of meta-level learning: "teacher-student” dialogue

We consider that the goal of education is to change the interlocutor’s state. This change is done after evaluating
new elements brought by the communication. The example in figure 2 (see also [5]) shows that a STROBE Agent

3These three elements constitute the execution context.
4This interpreter is a non deterministic one, useful to constraint programming and to allow multi-thread Agents.

Dynamic Learning Agents and Enhanced Presence on the Grid - Cerri, Eisenstadt, Jonquet

can modify its way of seeing things (i.e. of evaluating messages) by "changing” its dedicated interpreter while
communicating. It is a standard "teacher-student” dialogue, though of course highly simplified in light of our earlier
comments. An Agent teacher asks to another Agent student to broadcast a message to all its correspondents.
However, student does not initially know the performative® used by teacher. So, teacher transmits two messages
(assertion and order) clarifying to the student the way of processing this performative. Finally, teacher formulates
again its request to student and obtains, this time, satisfaction. Figure 2 describes the exact dialogue emerging from
the experimentation. After the last message process, the student function dedicated to the evaluation of message
(ambevaluate-kqmlmsg) is modified. Thus a part of its interpreter was dynamically changed. The corresponding code
in its environment dedicated to this conversation is changed. Then student Agent can process broadcast messages.

TEACHER STUDENT
Here is the definition of the square procedure: Ok, | know now this procedure:
(kgmlmsg ’assertion teacher student ’(define (kgmlmsg ’ack student teacher ’(*.%))
(square x) (* x x)))

Broadcast to all your current correspondents: Sorry, | don’t know this performative:
(kgmlmsg ’broadcast teacher student ’(order (kgmlmsg ’answer student teacher
(square 3))) ’? (no-such-performative broadcast))

Ok, here is the method to add this performative to
those you know:

Here is the code you have to generate and add to | Ok, | have added this code in a binding of my
your ambevaluate-kqmlmsg function: environment:
(kgmlmsg ’assertion teacher student (kgmlmsg ’ack student teacher ’(*.%))
learn-broadcast-code-msg)

Run this procedure: Ok, | have just modified my interpreter:
(kgmlmsg ’order teacher student ’(set! (kgmlmsg ’executed student teacher ’(*.*))
ambevaluate-kgmlmsg learn-broadcast-code)))

Broadcast to all your current correspondents: Ok, | broadcast
(kgmlmsg ’broadcast teacher student ’(order (kgmlmsg ’order student ... ’(square 3))

(square 3)))

FIGURE 2: broadcast learning teacher-student dialogue.

Notice that learn-broadcast-code-msg message indicates how to generate the new function code taking into
account the previous student code definition, and to store it in the learn-broadcast-code variable. This is a
constructivist method.

This toy-example is very simple but interesting because it shows the potentiality of such a model. We consider that it
is a meta-level learning because a part of the Agent interpreter is dynamically changed. Another paper [6] describes
also how using a nondeterministic interpreter in the model can enable the dynamic specification of a problem, in order
to fit with dynamic service generation scenarios, such as necessary on Grids. The paper gives a typical e-commerce
scenario example.

3. LEARNING AS A SIDE EFFECT OF COMMUNICATION

The examples provided in the previous section are of course characteristic of a very narrow spectrum of
learning activities, namely those that occur during a particular kind of synchronous (i.e. real time communicative)
interaction. Although the overwhelming majority of distance learning and e-learning literature emphasizes either
the asynchronous space (particularly via discussion forums) or the one-to-many large-scale synchronous activities
afforded by streaming media, there are nevertheless important and indeed profound opportunities that arise during
very small-scale synchronous interactions (i.e. one-to-one or among very small study groups up to say, three or four
participants). We note in particular the opportunistic learning dialogues that can occur in real time in such intensive
tutorial situations, and which are precisely suited for the examples presented earlier. Although seemingly small and
specialised in nature, it is nevertheless the case that if tutorial dialogues eventually occur between human and artificial
agents, then there are in fact no practical limits to scalability, because every one-to-one interaction that involves an
artificial agent can be replicated hundreds, thousands, or even millions of times.

50ur communication model protocol is speech act oriented, such as KQML or FIPA ACL messages.

Dynamic Learning Agents and Enhanced Presence on the Grid - Cerri, Eisenstadt, Jonquet

For the time being, our research progresses by studying the nature of synchronous interactions that occur between
two, three, or four human agents. The ideal paradigm for this is to investigate and facilitate the learning interactions
that take place via the world’s fastest-growing software phenomenon: Instant Messaging. In the context of the E-LeGl
project, we provide a custom environment for learners, called 'BuddySpace’ [4] which can be summed up as "Instant
Messaging + Smart Maps = Enhanced Presence”. It provides continual 'background presence awareness’ of peers,
by deploying significant extensions to the open-source XML technology from the Jabber Software Foundation. As
argued in Smart Mobs [10], tools like BuddySpace leverage the overwhelming power of social cohesiveness that can
be brought about by knowledge of the presence and location of others in both real and virtual spaces. We know
also from the work of Reffell and Eklund (2001) that this kind of presence awareness is used by students to locate
resources, for quick exchange of information and to organize meetings either online or face-to-face.

In reality, Enhanced Presence is much more than just 'messaging’ and 'maps’. In particular, we aim to provide tools
that enable us to express the entire situated context of the learner, which is clearly a lot more than just ’location X’
and 'online’ or 'offline’. The learner’s current state of mind, including goals, plans and intentions, must be understood,
as well as the way this connects with ongoing activities and devices accessible to the learner. When all these are
modelled, plausible inferences can be drawn about what the leaner wants and needs to know, and this gives us an
important 'foot in the door’ for addressing the problem of delivering the right knowledge to the right people in the right
place at the right time. So far, this notion of 'right knowledge’ has been nothing more than a Knowledge Management
'slogan’, but our belief is that Enhanced Presence capabilities, linked to the STROBE model, can make this dream a
reality.

4. CONCLUSION

In this paper we presented the current progress of our work in two domains: Agent Communication Languages and
Enhanced Presence. These are, at a first sight, very different one another nevertheless we have shown that they may
become highly synergic and perhaps also mutually dependent within a rich experimental context such as the one of
E-LeGl. The scenarios for integration of these two streams of research are currently under discussion. We perceive
their properties as consisting of the identification of models and tools for generating learning services that enable and
facilitate co-learning effects, i.e. humans AND machines construct their own representations - learn - by exploiting
the representation of the partner through conversations.

This social constructivist approach extends to machines the full right membership of societies of learning Agents both
as "destinations” of knowledge emerging from these societies, and as a continuous source of knowledge digitally
represented and stored and potentially consumed by other members through conversations. In these societies, it will
be important to partition the responsibilities among members according to their best capacities: exploiting therefore
Human Agents for what they are best in, and, at the same time, Artificial Agents for their optimal performance. The
consequence is to adopt an approach in Distributed Artificial Intelligence where Humans are privileged in their best
roles (e.g. motivation, trust, depth of conceptual analysis ...) and Machines in other roles (computing fast and reliably,
instantaneous transmission of information through the net, storing and retrieving ...).

5. ACKNOWLEDGEMENTS

The example cited in section 2 has been developed within the Ph.D research of one of the authors (CJ). Cited papers
and implementations are available on www.lirmm.fr/?jonquet. The support of the EU project LeGE-WG (Learning
Grid Excellence Working Group) is gratefully acknowledged.

REFERENCES

[1] Stefano A. Cerri. Cognitive environments in the strobe model. Presented at EuroAIED: the European
Conference in Artificial Intelligence and Education, 1996.

[2] Stefano A. Cerri. Shifting the focus from control to communication: the STReams OBjects environments model
of communicating agents. In In Padget, J.A. (ed.) Collaboration between Human and Artificial Societies, pages
74-101, Berlin, Heidelberg, 1999. New York: Springer-Verlag, Lecture Notes in Artificial Intelligence.

[3] Stefano A. Cerri. Human an artificial agents conversations on the grid. In Electronic Workshops in Computing
(eWiIC), 1st LeGE-WG International Workshop on Educational Models for Grid Based Services, Lausanne,
Switzerland, September 2002.

[4] M. Eisenstadt and M. Dzbor. Buddyspace: Enhanced presence management for collaborative learning, working,
gaming and beyond. JabberConf2002 Europe, June 2002.

Dynamic Learning Agents and Enhanced Presence on the Grid - Cerri, Eisenstadt, Jonquet

[5] Clement Jonquet and Stefano A. Cerri. Cognitive agents learning by communicating. In 7éme Collogue Agents
Logiciels, Coopération, Apprentissage et Activitt Humaine, ALCAA'03, pages 29-39, Bayonne, September
2003.

[6] Clement Jonquet and Stefano A. Cerri. Agents as scheme interpreters: Enabling dynamic specification by
communicating. In To be published in 14éme Congrés Reconnaissance des Formes et Intelligence Artificielle,
RFIA’04, Toulouse, January 2004.

[7] Philippe Lemoisson, Stefano A. Cerri, Jean Sallantin, and Serge-André Mahe. Constructive interactions. In
Summitted to Electronic Workshops in Computing (eWiC), 3rd LeGE-WG, Berlin, December 2003.

[8] John McCarthy. Recursive functions of symbolic expressions and their computation by machine, part i.
Communications of the ACM, 3(4):184-195, 1960.

[9] Christian Queinnec. Les languages Lisp. InterEditions, Paris, 1994.

[10] Howard Rheingold. Smart Mobs: The Next Social Revolution. Perseus, Cambridge, Mass., 2002.

