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Abstract—In this paper we introduce the multiple-description
ℓ1-compression problem: minimize ‖z1‖1 +λ‖z2‖1 subject to the
three distortion constraints ‖A1z1 − y‖2 ≤ δ1, ‖A2z2 − y‖2 ≤ δ2,
and ‖1/2(A1z1 + A2z2) − y‖2 ≤ γ. This problem formulation
is interesting in, e.g., ad-hoc networks where packets can be
lost. If a description (z2) is lost in the network and only one
description is received (z1), it is still possible to decode and obtain
a signal quality equal or better than described by the parameter
δ1 (and vice versa). If both descriptions are received, the quality
is determined by the parameter γ. This problem is difficult to
solve using first-order projection methods due to the intersecting
second-order cones. However, we show that by recasting the
problem into its dual form, one can avoid the difficulties due
to conflicting fidelity constraints. We then show that efficient
first-order ℓ1-compression methods are applicable, which makes
it possible to solve large scale problems, e.g., multiple-description
ℓ1-compression of video.

I. INTRODUCTION

There has been great interest in sparse estimation techniques

for signal processing based on the convex ℓ1-approximation of

the otherwise intractable cardinality measure, see e.g., [1]. In

particular, efficient techniques based on sparse approximations

have been successfully applied to such different problems as,

e.g., estimation and coding [2], preconditioning [3] and linear

prediction [4]. For example, in [5], it is shown how a sparse

approximation of an image sequence (video) can be obtained

with a higher degree of sparsity than simple thresholding in the

transform domain using the discrete cosine transform (DCT).
One way of obtaining a sparse approximation is to solve

the so-called ℓ1-compression problem

min. ‖z‖1

s.t. ‖Az − y‖2 ≤ δ,
(1)

where δ > 0 is a given reconstruction error, A ∈ R
M×N is the

overcomplete dictionary (N ≥ M), z ∈ R
N is the variable

and y ∈ R
M is the signal we wish to decompose into a sparse

representation.

This work is part of the project CSI: Computational Science in Imaging,
supported by grant no. 274-07-0065 from the Danish Agency for Science
Technology and Innovation. The work of Jan Østergaard is supported by the
Danish research council for Technology and Production Sciences, grant no.
274-07-0383.

Another interesting problem in signal and source coding

is the multiple-description (MD) problem. The MD problem

is about encoding a source into multiple descriptions, which

are transmitted over separate channels. The channels may

occasionally break down causing erasures, in which case

only a subset of the descriptions are received. Which of the

channels that are working at any given time is known by

the decoder but not by the encoder. The problem is then to

construct a number of descriptions, which individually provide

an acceptable quality and furthermore are able to refine each

other. It is important to notice the contradicting requirements

associated with the MD problem; in order for the descriptions

to be individually good, they must all be similar to the source

and therefore, to some extend, the descriptions are also similar

to each other. However, if the descriptions are the same, they

cannot refine each other.
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Fig. 1. The MD ℓ1-compression problem.

The traditional MD coding problem aims at characterizing

the set of achievable quintuples (R1, R2, δ1, δ2, γ) where R1

and R2 denote the minimum coding rates required in order

to approximate the source y to within the distortion fidelities

δ1, δ2, and γ [6]. Specifically, let z1 and z2 be the two

descriptions representing the source y via their individual



reconstructions g1(z1) and g2(z2) and their joint description

gc(z1, z2) satisfying d(g1z1, y) ≤ δ1, d(g2(z2), y) ≤ δ2, and

d(gc(z1, z2), y) ≤ γ, where d(·, ·) denotes a fidelity measure.

The problem is then to construct z1 and z2 so that R1 and

R2 are minimized and the fidelity constraints are satisfied,

cf., Fig. 1. This well-known information theoretic problem

remains largely unsolved. In fact, it is only completely solved

for the case of two descriptions, with the squared error fidelity

criterion and a memoryless Gaussian sources [7].

In this paper, we cast the MD problem described above

into the framework of ℓ1-compression (1). Our idea is to form

the multiple-description ℓ1-compression problem using linear

reconstruction functions, i.e., g1(z1) = A1z1, g2(z1) = A2z2,

and gc(z1, z2) = 1
2 (A1z1 + A2z2).

1 That is

min. ‖W1z1‖1 + λ‖W2z2‖1

s.t. ‖A1z1 − y‖2 ≤ δ1

‖A2z2 − y‖2 ≤ δ2

‖ 1
2 (A1z1 + A2z2) − y‖2 ≤ γ .

(2)

In this problem, we have introduced λ > 0 to allow weighting

the ℓ1-norms in order to achieve a desired ratio
‖z1‖1

‖z2‖1
. Also,

even though that the ℓ1-norm is a well-known approxima-

tion of the minimal cardinality solution, it penalizes large

coefficients. One method to reduce the penalty is to weight

the coefficients with the diagonal matrices W1 = diag(w1),
W = diag(w2) [11]. The problem is first solved with

W1 = W2 = I . Then the weights w1, w2 are selected inversely

proportional to the solutions z∗1 , z∗2 and the problem is solved

again. These iterations can be executed a number of times.

For simplicity, we will assume that A1 and A2 are orthog-

onal transforms, which means that the central reconstruction

represents a two times overcomplete basis, A1z1 + A2z2 =
[A1 A2][z1; z2]. The two constraints on the side reconstruc-

tions can easily be fulfilled by simply truncating the smallest

coefficients to zero in the transform domain separately for each

set of coefficients. This will however not guarantee the central

reconstruction constraint ‖ 1
2 (A1z1 + A2z2) − y‖2 ≤ γ. So,

even by allowing A1 and A2 to be orthogonal transforms, the

problem is non-trivial. Also, traditionally orthogonal transform

such as the DCT and wavelets are used for image and video

coding.

It is worth emphasizing that the main difference between the

traditional MD problem and the proposed MD ℓ1-compression

problem, is that the former strives at minimizing description

rates in a stochastic setting whereas the latter minimizes the ℓ1-

norm in a deterministic setting. Interestingly, it has been shown

that for typical transform coding systems, there is a linear

relationship between the actual coding bit rate and the sparsity

(i.e., the cardinality) of the transformed signal [12]. Moreover,

it has been observed that minimizing the ℓ1-norm usually

results in a sparse signal, and there even exist cases where

1Interestingly, in the Gaussian case and for the mean squared error fidelity
criterion, it has been shown that linear reconstruction functions are sufficient
for achieving the MD rate-distortion function, see [8], [9] and [10] for the
white and colored cases, respectively.

one can mathematically prove that minimizing ℓ1 is equivalent

to minimizing the cardinality [13]. This brings forth the

possibility that the proposed MD ℓ1-compression framework,

provides a practical means for solving the otherwise difficult

classical information theoretic MD problem.
Related approaches using matching pursuit have been pre-

sented, see [14]–[16] and references there in, however, much

heuristics are used in order to obtain the two descriptions

and to ensure the desired fidelity. For example in [14], they

assign the 50 largest coefficients to both descriptions and then

alternate between the two descriptions when assigning the

remaining smaller coefficients.
The remaining paper is structured as follows: in Sec. II

we discuss different approaches to solve the proposed MD

problem and in Sec. III we present a numerical method to

solve the problem. In Sec. IV we give numerical examples of

ℓ1-compression of a full-size image and an image sequence.

Finally, we give discussions in Sec. V.

II. APPROACHES FOR SOLVING THE MD

ℓ1-COMPRESSION PROBLEM

The MD ℓ1-compression problem can be solved using

general-purpose interior point methods. To do so, we need to

solve several linear systems of equations of at least size N×N ,

arising from linearizing first-order optimality conditions. This

practically limits the size of the problems we can consider to

small and medium size, except if the problem has a certain

structure that can be used when solving the linear system

of equations [17]. Another approach is to use first-order

projection methods [18]–[20], where the projection is on the

feasible set. Such first-order projection methods have shown

to be efficient for large scale problems [5], [21]–[24]. But it is

difficult to solve the MD ℓ1-compression problem efficiently

because the feasible set is an intersection of the second-order

cones (z1 and z2 appears in one constraints each and one joint).
In order to illustrate the implications of the overlapping

constraints on the feasible set, consider the following simple

one-dimensional example. Let A1 = A2 = W1 = W2 = 1
and λ = 1 so that A1z1 = z1 and A2z2 = z2. From the

joint constraint it may be noticed that z1 and z2 can be

picked arbitrarily large but of different signs and yet satisfy

| 12 (z1+z2)−y| ≤ δ. However, due to the individual constraints

on z1 and z2, the feasible set is bounded as illustrated in Fig. 2.

The problem is to pick a pair (z1, z2) from within the shaded

region such that the sum |z1|+ |z2| achieves its minimum. In

this particular case, the optimal solution lies on the diagonal

line closest to the original as illustrated in Fig. 2.
If we instead consider the dual of the problem (2)

max
u1, u2, t

. −δ1‖
1
2 t + A1W1u1‖2 − δ2‖

1
2 t + A2W2u2‖2

−γ‖t‖2 + yT (A1W1u1) + yT (A2W2u2)

s.t. ‖u1‖∞ ≤ 1

‖u2‖∞ ≤ λ ,

(3)

we see that we have simple and non-intersecting constraints.

This makes the dual problem interesting for first-order pro-

jection methods. The objective in the dual problem (3) is not
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Fig. 2. An example of the feasible set (shaded region) in one dimension.
The thick line indicates the optimal solutions for the problem of minimizing
|z1| + |z2|.

smooth2 because of the ‖ · ‖2-norm. We could then apply an

algorithm such as the sub-gradient algorithm with complexity

O(1/ǫ2), but instead we will try to smooth the problem in order

to obtain faster convergence, as suggest in [20]. The primal

feasible set has intersecting second-order cone constraints,

so we can not efficiently perform smoothing using a prox-

function as in [20]. Instead we apply the smoothing directly by

modifying the ‖ · ‖2-norm to a function which is very similar.

III. A FIRST-ORDER METHOD

We start by approximating the ‖·‖2-norm with Ψµ(·) where

Ψµ(x) =

{

‖x‖2 − µ/2 if ‖x‖2 ≥ µ
1
2µ

xT x else
,

and µ is a parameter. For the selection µ = 0 we have

Ψ0(x) = ‖x‖2. This approximation is in-fact a result of the

prox-function smoothing in [20, ex. 4.2]. The function Ψµ(x)
has the (Lipschitz continuous) derivative

∇Ψµ(x) =
x

max{‖x‖2, µ}
.

Fig. 3 shows an example with the ‖ · ‖2-norm and the smooth

approximation Ψµ in one dimension.

∇‖x‖2

−µ −µ µµ

∇Ψµ(x)

xx

‖x‖2

Ψµ(x)

Fig. 3. Example of smoothing in one dimension. In this one-dimensional
case, the ℓ2-norm is equivalent to the ℓ1-norm.

2A smooth function is a function with Lipschitz continuous derivatives [19].

Let −f be the dual objective

f(u1, u2, t) = δ1‖
1
2 t + A1W1u1‖2 + δ2‖

1
2 t + A2W2u2‖2

+γ‖t‖2 − yT (A1W1u1) − yT (A2W2u2) .

and then we have the smooth function fµ

fµ(u1, u2, t)=δ1Ψµ(1
2 t + A1W1u1) + δ2Ψµ(1

2 t + A2W2u2)

+γΨµ(t) − yT (A1W1u1) − yT (A2W2u2) .

The error we make by substituting the 2-norm with the smooth

approximation Ψµ(x) is less than

max
x∈Rn

‖x‖2 − Ψµ(x) ≤
µ

2
,

and then we have

f(u1, u2, t) − fµ(u1, u2, t) ≤
µ

2
(δ1 + δ2 + γ) .

In order to obtain an ǫ-solution (uǫ
1, u

ǫ
2, t

ǫ), i.e.,

f(uǫ
1, u

ǫ
2, t

ǫ) − f(u∗
1, u

∗
2, t

∗) ≤ ǫ

we should not make a larger error on the function f than, say

ǫ/10, and we then simply select µ = ǫ/(5(δ1+δ2+γ)). In this

particular case, the gradient with respect to, e.g., u1 is

∇u1fµ(u1, u2, t)=W1A
T
1

(

δ1(A1W1u1 + 1
2 t)

max(‖A1W1u1 + 1
2 t‖2, µ)

− y

)

.

Without smoothing we would only have A1W1u1 + 1
2 t in

the denominator and the gradient would be undefined at

A1W1u1 + 1
2 t = 0.

Now we have a problem on the form

min h(x)

s.t. x ∈ Q
(4)

where h is a smooth function and Q is a closed convex set. We

then apply a gradient projection algorithm with Armijo rule

along the projection arc [18] and Barziliai-Borwein strategy

for the initial stepsize [25]. This algorithm is known to be

practical efficient [21], [22], and outlined in Fig. 4.

We note that projection of u on the set U = {u | ‖u‖∞ ≤ ρ}
is given by

PU (u)i =











ρ if ui ≥ ρ

−ρ if ui ≤ −ρ

ui else

.

A. Obtaining the primal variables

We can now solve the dual problem and obtain an ǫ-solution

of the dual variables. We will now show how we can obtain

the primal variables, using an approach similar to [26, §5.5.5].

By considering the Lagrangian

L(z1, z2, b1, b2, bc, κ1κ2, κc, t1, t2, tc) = f(z1, z2)

+κ1(‖b1‖2 − δ1) + κ2(‖b2‖2 − δ2) + κc(‖bc‖2 − γ)

+tT1 (A1z1 − y − b1) + tT2 (A2z2 − y − b2)

+tTc (1
2 (A1z1 + A2z2) − y − bc)



given a feasible x[0]

for k ≥ 0

1. Evaluate ∇h(x[k])

2. Bactracking line search with

β, σ ∈ (0, 1), M ∈ N0, hr = maxi=k−M,···, k h(x[i])

α =
‖x[k]−x[k−1]‖2

2

〈x[k]−x[k−1],∇h(x[k])−∇h(x[k−1])〉

x̄ = PQ(x[k] − αβ∇h(x[k]))

while h(x̄) ≥ hr − σ∇h(x[k])T (x[k] − x̄)

β := β2

x̄ = PQ(x[k] − αβ∇h(x[k]))

3. Set x[k+1] := x̄

Fig. 4. Outline of a first-order optimization algorithm for problem (4). The
algorithm uses gradient projection with Armijo rule along the projection arc
[18] and Barziliai-Borwein strategy for the initial stepsize [25].

we get the first-order optimality conditions, where

t1 = − 1
2 t − A1W1u1

t2 = − 1
2 t − A2W2u2

tc = t

κ1 = ‖ 1
2 t + A1W1u1‖2

κ2 = ‖ 1
2 t + A2W2u2‖2

κc = ‖t‖2

relates the dual variables in the Lagrangian to the dual problem

(3). By solving for z1, z2 using ∇L = 0 and the comple-

mentary condition for the Lagrange multipliers κ1, κ2, κc, we

obtain different equations for each combination κ1 = 0 or

κ1 > 0, κ2 = 0 or κ2 > 0, and κc = 0 or κc > 0. As an

example, we have

κ1 > 0, κ2 > 0, κc = 0 :

z̄1 = AT
1 (−δ1

A1W1u1

‖A1W1u1‖2
+ y)

z̄2 = AT
2 (−δ2

A2W2u2

‖A2W2u2‖2
+ y) ,

(5)

and
κ1 > 0, κ2 = 0, κc > 0 :

z̄1 = AT
1 (−δ1

+ 1
2 t+A1W1u1

‖ 1
2 t+A1W1u1‖2

+ y)

z̄2 = AT
2 (γ t

‖t‖2
+ 2y − A1z̄1) .

(6)

In the algorithm we try out all combinations, and see which

are feasible. For all primal feasible variables (z̄1, z̄2) we then

calculate the objective function g(z̄1, z̄2) = ‖z̄1‖1 + λ‖z̄2‖1,

and call the solution with the smallest objective for (z1, z2).

We terminate the algorithm when we have a duality gap

smaller than ǫ, i.e.,

g(z1, z2) + f(u1, u2, t) ≤ ǫ (7)

and return z1, z2 (Note that −f(u1, u2, t) is the dual objec-

tive).

There is a problem when κ1 = 0, κ2 = 0, κc > 0, because

the linear system of equations obtained from ∇L = 0 is no

longer full rank, and the relation between the dual and primal

variables is no longer unique. In this case, the only active

constraint is ‖ 1
2 (A1z1 +A2z2)−y‖ ≤ γ and the other two are

inactive. To make one of the side constraints active, such that

we will have the case (6), we slightly reduce argmin(δ1, δ2)
and repeatedly run the algorithm again until one of the side

constraints is active. This case with κ1 = 0, κ2 = 0, κc > 0
seems rare, and we can only generate it for small examples.

For the simulations in Sec. IV-A and IV-B we do not encounter

this case.

IV. SIMULATIONS

We will now show the usage af the algorithm with simula-

tions applied to a still image and an image sequence.

A. A STILL IMAGE EXAMPLE

We will first present an example of using MD ℓ1-

compression on a still image of the “cameraman”. We se-

lect A1 as the Symlet16 standard discrete wavelet transform

(DWT) with 3 levels and A2 as the Symlet8 standard DWT

with 4 levels. The distortions δ1, δ2, γ are selected such that

PSNR1 = PSNR2 = 26 dB, and PSNRc = 38 dB. We select

the accuracy as ǫ = 2mn 10−3 in (7), such that the average

accuracy per variable is at least 10−3. Fig 5 illustrates the

reconstructed images resulting from the simulations.

Reweighting the ℓ1-objective has proved a very efficient way

to enhance sparsity of the solution [11]. For the example in

Fig. 5, the number of non-zero coefficients (NNZC) used in

each reweighting iteration are given in Table I. Notice that the

sparsity is significantly imporved with only a few iterations of

reweighting.

×103 0 1 2 3 4 5

NNZC for z1 7.59 5.52 5.47 5.28 5.25 5.19

NNZC for z2 7.15 4.82 4.81 4.71 4.72 4.69

TABLE I
NNZC FOR A DIFFERENT NUMBER OF REWEIGHTING STEPS. THE IMAGE

HAS 2562 = 65.536 × 103 PIXELS.

We could distribute the coefficients equally among the two

channels by thresholding the smallest image coefficients to

zero in the transform domains (A1 and A2). Let us use the

(5.19+4.67)× 103 largest coefficients, that is the same num-

ber of coefficients as with the MD ℓ1-compression problem

example, see Table I. Then we would obtain the distortions

PSNR1 = 30.6 dB, PSNR2 = 30.8 dB and PSNRc = 32.0 dB.

These two descriptions does not refine each other very well
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Fig. 5. An example of the MD ℓ1-compression problem applied to the image
“cameraman” (256 × 256). The distortions δ1, δ2, γ are selected such that
PSNR1 = PSNR2 = 26dB, and PSNRc = 38 dB.

because the obtained central distortion is not much better

than the side distortions. In the MD ℓ1-compression case

the descriptions refine each other well, because the central

distortion is much better than the side distortions.

B. AN IMAGE SEQUENCE EXAMPLE

We now apply the MD ℓ1-compression algorithm on a 32
frame image sequence of “foreman” with image dimension

288 × 352. For A1 we apply the 3 dimensional DCT and

for A2 the 3 dimensional discrete sine transformation (DST).

In this framework we jointly encode multiple frames [5], 8
frames in this example. Hence, the image sequence is divided

into blocks of dimension 288 · 352 · 8, where each block is

used as the input y to the MD ℓ1-compression algorithm.

We again use PSNR1 = PSNR2 = 26 dB and then select 6
different PSNRc = {28, 30, 32, 34, 36, 38} dB and apply 5
reweight iterations. In the introduction we discussed that ℓ1-

norm minimization is used as an approximation of minimizing

the NNZC. We are hence interested in the relation between the

NNZC and ℓ1-norms of the solutions. Fig 6 shows the results

of this example where we plot ‖zi‖1 vs. NNZC for the two

descriptions z1, z2.

From Fig. 6 we observe that the lower ‖zi‖1 the lower

NNZC and vise versa, an interesting observation when approx-

imating NNZC with the convex ℓ1-norm. When we increase
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x 10
5
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Fig. 6. Plot of NNZC vs. ‖zi‖1 for a 32 frame video of “foreman” (288×
352). There is in total 27 ·105 pixels in this image sequence. Each data point
corresponds to a MD setup with PSNRc = {28, 30, 32, 34, 36, 38} dB and
fixed PSNR1 = PSNR2 = 26dB.

PSNRc we observe that the NNZC increases faster than ‖zi‖1

because at high PSNR the descriptions zi contains many small

coefficients which will increase the NNZC more than the ℓ1-

norm.

V. DISCUSSIONS

We have presented a problem we call multiple-description

(MD) ℓ1-compression, which combines the ℓ1-norm approach

for finding sparse solutions with constraints found in MD

related problems. We demonstrated how to implement an

efficient first-order optimization algorithm based on the dual-

problem, which makes it possible to solve large scale prob-

lems.

An interesting feature with this example of MD is that

each vector of coefficients z1, z2 are found in a single basis,

well known in the image/video compression community. This

makes it possible to apply state-of-the-art, of-the-shell coders

straightforward on z1 and z2.
Generalization of the number of channels and decodings

functions is a possible future direction. For example, the side

channel decoding function could be with an overcomplete

basis, e.g., g1(z1, z2) = [A1A2][z1; z2]. For more than two

channels there will be different joint decoding functions cor-

responding to each of the possible subsets on the receiver side.

For the case with three channels, there are three possible joint

decoding functions and one central decoding function.
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