
HAL Id: inria-00369488
https://inria.hal.science/inria-00369488

Submitted on 20 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dictionary learning with spatio-spectral sparsity
constraints

Yassir Moudden, Jérome Bobin, Jean-Luc Starck, Jalal M. Fadili

To cite this version:
Yassir Moudden, Jérome Bobin, Jean-Luc Starck, Jalal M. Fadili. Dictionary learning with spatio-
spectral sparsity constraints. SPARS’09 - Signal Processing with Adaptive Sparse Structured Repre-
sentations, Inria Rennes - Bretagne Atlantique, Apr 2009, Saint Malo, France. �inria-00369488�

https://inria.hal.science/inria-00369488
https://hal.archives-ouvertes.fr


DICTIONARY LEARNING WITH SPATIO-SPECTRAL SPARSITY CONSTRAINTS

Y. Moudden1, J. Bobin1,2, J.-L. Starck1 and J. Fadili3

1 DSM /IRFU/SEDI, CEA/Saclay, F-91191 Gif-sur-Yvette, France
2Department of Applied & Computational Mathematics , California Institute of Technology,

Pasadena, California 91125
3GREYC - CNRS UMR 6072, 10 Bd Maréchal Juin, 14050 Caen, France

ABSTRACT

Devising efficient sparse decomposition algorithms in large redun-
dant dictionaries has attracted much attention recently. However,
choosing the right dictionary for a given data set remains anis-
sue. An interesting approach is to learn thebestdictionary from
the data itself. The purpose of this contribution is to describe a
new dictionary learning algorithm for multichannel data analysis
purposes under specific assumptions. We assume a large number
of contiguous channels as in so-calledhyperspectraldata. In this
case it makes sense to considera priori that the collected data ex-
hibits sparse spectral signatures and sparse spatial morphologies in
specified dictionaries of spectral and spatial waveforms. Building
on GMCA, the proposed algorithm gives a practical way to enforce
the additionala priori spectral sparsity constraint on the dictionary
space. Numerical experiments with synthetic and real hyperspec-
tral data illustrate the efficiency of the proposed algorithm.

1. INTRODUCTION

Generalized Morphological Component Analysis (GMCA)
is a recent algorithm for multichannel data analysis de-
scribed in [1, 2]. It was derived as a multichannel extension
to MCA [3] and as such it is a powerful algorithm for the
sparse decomposition of multichannel data over multichan-
nel dictionaries. A major feature of the GMCA algorithm,
in comparison to other sparse decomposition algorithms, is
that it alternates sparse decomposition steps with dictionary
learning steps, in a fast iterative thresholding loop with a
progressively decaying threshold leading to a very robust
salient to fineestimation process. In fact, learning dictio-
naries for the sparse representation of given data sets is now
a growing field of interest [4, 5] although it is worth noting
that this problem has a long history [6, 7, 8].
Obviously, it is required to seta priori some constraints on
the dictionary space in which the optimal dictionary is to
be looked for. In the case of GMCA, it is assumed that
the size of the multichannel dictionaryΩ, i.e. the num-
ber of atomsn × t′, is specified beforehand and that the
multichannel atoms are all rank one matrices, product of a

spectralsignatureak ∈ R
m,1 and aspatialdensity profile

φk ∈ R
1,t. The column vectorsak are grouped into a ma-

trix notedA ∈ R
m,n and the line vectorsφk are taken from

matrix Φ ∈ R
t′,t. GMCA models the dataX ∈ R

m,t as
follows :

X = AνΦ + N =
∑

k

∑

k′

νk′

k akφk′ + N (1)

where the entries of the sparse matrix of coefficientsν rep-
resentingX in the multichannel dictionaryΩ = A ⊗ Φ
are notedνk′

k and N ∈ R
m,t is included to account for

Gaussian instrumental noise or modeling errors. GMCA
further assumes that the dictionary of spatial waveformsΦ
is known beforhand while the spectral componentsA, also
called the mixing matrix in blind source separation (BSS)
applications, is learned from the data. The image from the
pth channel is represented here as thepth row of X, xp.
The successful use of GMCA in a variety of multichannel
data processing applications such as BSS [2], color image
restoration and inpainting [1] motivated research to extend
its applicability. In particular, there are instances where one
is urged by additionalprior knowledge to further constrain
the dictionary space. For instance, one may want to enforce
equality constraints on some atoms, or the positivity or the
sparsity of the learned dictionary atoms.
Builiding on GMCA, the purpose of this contribution is to
describe a new dictionary learning algorithm for so-called
hyperspectraldata processing. Hyperspectral imaging sys-
tems collect data in a large number (up to several hundreds)
of contiguous regions of the spectrum so that it makes sense
to consider for instance that some physical property will
show some regularity from one channel to the next. In fact,
the proposed algorithm, referred to as hypGMCA, assumes
that the multichannel atoms to be learned from the collected
data exhibit diversely sparsespatial morphologies as well
as diversely sparsespectralsignatures in specified dictio-
nariesΦ ∈ R

t,t′ andΨ ∈ R
m,m′

of respectively spatial
and spectral waveforms. The proposed algorithm is used to
learn from the data rank one multichannel atoms which are
diversely sparse [2] in a given larger multichannel dictio-



nary.
In what follows, regardless of other models living in other
scientific communities, the termhyperspectraldenotes mul-
tichannel data following model (1) with the above two spe-
cific propertiesi.e. that the number of channels is large and
that these achieve aregular sampling of some additional
and meaningful physical index (e.g. wavelength, space,
time) which we refer to as thespectraldimension. We de-
scribe next the proposed modified GMCA which we devised
to account for thea priori sparsity of columnsak in Ψ,
a given dictionary of spectral waveforms. Accounting for
this prior requires a modified objective function, discussed
in section 2. The resulting hypGMCA algorithm is given
in section 3. Finally, numerical experiments in section 4
demonstrate the efficiency of the proposed method.

2. OBJECTIVE FUNCTION

With the above assumptions, equation (1) is rewritten as fol-
lows :

X =
∑

k

Xk + N =
∑

k

ΨγkνkΦ + N = ΨαΦ (2)

whereXk = aksk are rank one matrices sparse inΩ =
Ψ⊗Φ such thatak has a sparse representationγk in Ψ while
sk has a sparse representationνk in Φ. In a BSS context, the
rowssk of S are commonly referred to as sources. For the
sake of simplicity, we assume thatΨ andΦ are orthonormal
bases ant that the noiseN is uncorrelated inter- and intra-
channel with varianceσ2. Extensions to more general cases
are readily derived. Denoteαk = γkνk the rank one matrix
of coefficients representingXk in Ω .
Looking at the above matrix equation column-wise, each
column of Ψα = XΦT is represented as a sparse linear
combination of columns inA with coefficients in the cor-
responding column ofν = SΦT . Indeed, the assumption
that the lines ofν are diversely sparse (e.g. sparse and in-
dependent, or sparse with disjoint support, etc.) results in
the columns ofν also being sparse. Usual sparse decompo-
sition algorithms work on each column ofXΦT separately
to seek its sparsest representation inA. GMCA comes into
play when the dictionary is not fully known beforehand and
A needs to be learned from the data. GMCA constrains the
dictionary space assuming that matrixA is unknown yet of
specified sizem × n and thatΦ is given. This leads to a
joint sparse coding and dictionary learning objective which
can be expressed as a minimization problem in augmented
Lagrangian form using anℓ1 sparsity measure :

min
A,ν

K
∑

k=1

λk‖νk‖1 +

∥

∥

∥

∥

∥

X −
K

∑

k=1

akνkΦ

∥

∥

∥

∥

∥

2

2

(3)

which is clearly a difficult non-convex optimization prob-
lem. Nonetheless, the GMCA algorithm is able to provide

a practical approximate solution as reported in [1]. Prob-
lem (3) is readily interpreted as a MAP estimation of the
model parametersA andν where theℓ1 penalty terms im-
posing sparsity come from a Laplacian prior on the sparse
coefficient matrixν.
Building on GMCA, we want here to learn spectral dictio-
nary A so that again on average the columns ofXΦT are
simultaneously sparse inA and, what is more, the columns
of A are sparse inΨ.
A well known property of the linear mixture model (2) is
its scale and permutation invariance. A consequence is that
unlessa priori specified otherwise, information on the sepa-
rate scales ofγk andνk is lost, and only a joint scale param-
eter forγk, νk can be estimated. This needs to be translated
into a practical prior on γkνk. We propose here that the
following pπ is a good and practical candidatejoint sparse
prior for γk andνk after the loss of information induced by
multiplication :

pπ(γk, νk) ∝ exp(−λk‖γ
kνk‖1)

∝ exp(−λk

∑

i,j |γ
k
i νj

k|)
(4)

whereγk
i is the ith entry in γk andνj

k is the jth entry in
νk. The proposed distribution has the nice property, for
subsequent derivations, that the conditional distributions of
γk givenνk and ofνk givenγk are Laplacian distributions
which are commonly and conveniently used to model sparse
distributions. Finally, inserting the latter prior distribution
in a Bayesian MAP estimator leads to the following mini-
mization problem, expressed in coefficient space :

min
{γk,νk}

1

2σ2

∥

∥

∥

∥

∥

X−
∑

k

ΨγkνkΦ

∥

∥

∥

∥

∥

2

+
∑

k

λk‖γ
kνk‖1 (5)

Let us first note that the above can be expressed slightly
differently as follows :

min{αk}
1

2σ2 ‖X−
∑

k Xk‖
2

+
∑

k λk‖αk‖1

with Xk = ΦαkΨ and∀k, rank(Xk) ≤ 1
(6)

which uncovers a nice interpretation of our problem as that
of approximating the dataX by a sum of rank one matrices
Xk which are sparse in the specified dictionary of rank one
matrices. This is the usualℓ1 minimization problem [9] but
with the additional constraint that theXk are all rank one
at most. The latter constraint is enforced here mechanically
through a proper parametric representation ofXk = aksk

or αk = γkνk. A similar problem was previously investi-
gated by [10] with a very different approach.
We also note that rescaling the columns ofν ← ρν while
applying the proper inverse scaling to the rows ofS ←
1/ρS, leaves both the quadratic measure of fit and theℓ1



Fig. 1. Image data set used in the experiments.

sparsity measure in equation (5) unaltered. Although renor-
malizing is still worthwhile numerically, it is no longer dic-
tated by the lack of scale invariance of the objective func-
tion and the need to stay away from trivial solutions, as in
GMCA.
Finally, adopting a BSS point of view, the objective func-
tion (5) is fully symmetric in its treatment of the mixing
matrix A and the source processesS. The great major-
ity of BSS methods invoke a uniformimproper prior dis-
tribution for the spectral parametersA. Truly, A and S

often have different roles in the model and very differ-
ent sizes. However, dealing with so-calledhyperspectral
data, such an asymmetry is questionable. There have been
previous reports of a symmetric treatment ofA andS for
BSS [11, 12] however in the noiseless case. We also note
that very recently, the objective function (5) was proposed
in [5]. However the algorithm used in [5] is very different
from the method proposed here which benefits from all the
good properties of GMCA, notably its speed and robustness
which come along the iterative thresholding with a decreas-
ing threshold.

3. ALGORITHM

Unfortunately, there is no obvious closed form solutions
to optimization problem (5) which is again clearly non-
convex. Similarly to the GMCA algorithm, we propose here
a numerical approach by means of a block-coordinate re-
laxation iterative algorithm, alternately minimizing with re-
spect toγ andν. Indeed, thanks to the chosen prior, for
fixed γ (resp.ν), themarginalminimization problem over
ν (resp. γ) is convex and is readily solved using a variety
of methods. Inspired by the iterative thresholding methods
described in [13, 14, 15], akin to Projected Landweber al-
gorithms, we obtain the following system of update rules :

{

ν(+) = ∆η

(

ν(−) + Rν

(

α− γν(−)
))

γ(+) = ∆ζ

(

γ(−) +
(

α− γ(−)ν
)

Rγ

) (7)

whereRν andRγ are appropriate relaxation matrices for
the iterations to be non-expansive. Assume left invertibil-

ity of A and right invertibility ofS. Then, takingRν =
(

γT γ
)−1

γT andRγ = νT
(

ννT
)−1

, the above are rewrit-
ten as follows :

ν(+) = ∆η

(

(

γT γ
)−1

γT α
)

(8)

γ(+) = ∆ζ

(

ανT
(

ννT
)−1

)

(9)

where vector η has length n and entries η[k] =
λk‖γ

k‖1/‖γ
k‖22, while ζ has lengthm and entriesζ[k] =

λk‖νk‖1/‖νk‖
2
2. The multichannel soft-thresholding oper-

ator ∆η acts on each rowk of ν with thresholdη[k] and
∆ζ acts on each columnk of γ with thresholdζ[k]. Equa-
tions (8) and (9) rules are easily interpreted as thresholded
alternate least squares solutions. Finally, in the spirit of
the fast GMCA algorithm [2, 1], it is proposed that a so-
lution to problem (5) can be approached efficiently using
the following symmetric iterative thresholding scheme with
a progressively decreasing threshold, which we refer to as
hypGMCA :

1. Set the number of iterations Imax and initial
thresholds λ

(0)
k

2. Transform the data X into α
3. While λ

(h)
k ≥ λmin

k ,
– Update ν assuming γ is fixed using eq. (8).
– Update γ assuming ν is fixed using eq. (9) .
– Decrease the thresholds λ

(h)
k .

5. Transform back γ and ν to estimate A and S.

The salient to fineestimation process is again the core of
hypGMCA. With the threshold successively decaying to-
wards zero along iterations, the current sparse approxima-
tions for γ and ν are progressively refined by including
finer structures spatially and spectrally, alternatingly.The
final threshold should vanish in thenoiselesscase or it may
be set to a multiple of the noise standard deviation as in
common detection or denoising methods. Soft threshold-
ing results from the use of anℓ1 sparsity measure, which
comes as an approximation to theℓ0 pseudo-norm. Apply-
ing a hard threshold instead towards the end of the iterative
process, may lead to better results as was noted experimen-
tally in [1, 2]. When non-unitary or redundant transforms
are used, the above is no longer strictly valid. Nevertheless,
simple shrinkage still gives satisfactory results in practice as
studied in [16]. In the end, implementing the proposed up-
date rules requires only a slight modification of the GMCA
algorithm given in [1, 2]. Where a simple least squares lin-
ear regression was used in the GMCA update forak, the
proposed update rule applies a thresholding operator to the
least squares solution thus enforcing sparsity on the esti-
mated spectral signatures asa priori desired.



4. NUMERICAL EXPERIMENTS

4.1. Toy experiment with synthetic data

In this section, we compare the ability of hypGMCA and
GMCA to recover and learn the dictionary atoms that were
used to synthesize a given data set, generated according to
model (2). Using the language of BSS, we consider syn-
thetic 2D data consisting ofm = 128 mixtures ofn = 5
image sources. The sources were drawn at random from a
set of128×128 structured images shown on Figure 1. These
images provide us with 2D structured processes which are
sparse enough in the curvelet domain [17]. The spectra were
generated as sparse processes in some orthogonal wavelet
domain givena priori. The wavelet coefficients of the spec-
tra were sampled from a Laplacian probability density with
scale parameterµ = 1. Finally, white Gaussian noise with
varianceσ2 was added to the pixels of the synthetic mixture
data in the different channels. Figure 2 displays four typical
noisy simulated mixture data with SNR= 20dB.

Fig. 2. Four128 × 128 mixtures out of the 128 channels.
The SNR is equal to20dB.

The graph on figure 3 traces the evolution ofCA = ‖In −
PÃ

†
A‖1, which we use to assess the recovery of the spec-

tral dictionaryA, as a function of the SNR which was var-
ied from0 to 40dB. MatrixP serves to reduce the scale and
permutation indeterminacy inherent in model (2) andÃ

† is
the pseudo-inverse of the estimated spectral dictionary. In
simulation, the true source and spectral matrices are known
and so thatP can be computed easily. CriterionCA is then
strictly positive and null only if matrixA is correctly esti-
mated up to scale and permutation. Finally, as we expected
since it benefits from the addeda priori spectral sparsity
constraint it enforces, the proposed hypGMCA is clearly
more robust to noise. A visual inspection of figure 4 allows
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Fig. 3. Evolution of the mixing matrix criterion CA as
a function of the SNR in dB. Solid line : recovery results
with GMCA. • : recovery results with hypGMCA.

a further qualitative assessment of the improved dictionary
and source recovery provided by correctly accounting fora
priori spatial as well as spectral sparsity. The top images
were obtained with GMCA while the bottom images, were
obtained with hypGMCA. In all cases, both methods were
run in the curvelet domain [17] with the same number of
iterations.

4.2. Application to real data

We applied the proposed dictionary learning algorithm to
hyperspectral data from the 128 channels of spectrometer
OMEGA on Mars Express (www.esa.int/marsexpress), at
wavelengths ranging from0.93µm to 2.73µm. Example
maps collected in four different channels are shown on fig-
ure 5. Model 2 is clearly too simple to describe this hyper-
spectral reflectance data set. Non-linear instrumental and
atmospheric effects are likely to contribute to thetruegener-
ative process. In any case, we use hypGMCA to learn a dic-
tionary of spectral atoms, sparse in some orthogonal wavelet
dictionary, that well represent the data. The spectral dic-
tionary was learned assuming it is sparse in an orthogonal
wavelet representation. Preliminary results are shown on
figure 6. Interestingly, exactly two atoms were found to be
respectively strongly correlated with reference spectra for
H2O andCO2 ice. Given the simplicity of the model, the
close match between the learned spectra and the reference
spectra is is remarkable. Figure 7 shows the corresponding
spatial maps which were assumed sparse in an orthogonal
wavelet basis. We note that theCO2 ice appears spatially
concentrated at the poles which is in close agreement with
the results presented in [18].



Fig. 4. Left column : Estimated sources using the original
GMCA algorithm.Right column : Estimated sources using
the new hypGMCA.

5. CONCLUSION

We described a new dictionary learning algorithm,
hypGMCA, for sparse signal representation in the case
where it is knowna priori that the spatial and spectral
features in the data have sparse representations in known
dictionaries of template waveforms. The proposed method
relies on an iterative thresholding procedure with a progres-
sively decreasing threshold. This alone gives the method
true robustness to noise. As expected, taking into account
the additional prior knowledge of spectral sparsity leads to
enhanced performance. Numerical experiments focus on
a comparison between GMCA and hypGMCA. GMCA is
compared to state-of-the-art dictionary learning and BSS
algorithms in [2, 1].

Acknowledgments : The authors are grateful to Olivier
Forni for providing the hyperspectral data from Omega on

Fig. 5. From left to right : Mars Express observations at
wavelengths =1.38 - 1.75 - 1.94 and2.41µm.

Mars Express.
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