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Abstract—In this paper we consider the scenario where
a compressive sensing system acquires a signal of interest
corrupted by an interfering signal. Under mild sparsity
and orthogonality conditions on the signal and interference,
we demonstrate that it is possible to efficiently filter out
the interference from the compressive measurements in a
manner that preserves our ability to recover the signal of
interest. Specifically, we develop a filtering method that
nulls out the interference while maintaining the restricted
isometry property (RIP) on the set of potential signals
of interest. The construction operates completely in the
compressive domain and has computational complexity that
is polynomial in the number of measurements.

I. INTRODUCTION

A. Motivation

Recent results in compressive sensing (CS) have
shown that an N -dimensional signal can be efficiently
captured and recovered using M � N randomized
linear measurements provided that the signal can be
sparsely expressed in a known basis or frame [1, 2]. This
has motivated a number of practical hardware designs
that enable efficient acquisition of sparse signals at the
expense of a slight increase in the computation required
to recover the signal [3–5].

The compressive measurements acquired by these
systems capture the entire signal space, which often
includes undesired interference. Since CS-based sig-
nal acquisition and processing has been shown to be
more susceptible to noise and interference than classical
methods [6], it therefore seems prudent to eliminate as
much noise and interference as possible prior to any
processing.

In this paper we develop an efficient compressive
domain filtering algorithm that eliminates signal inter-
ference while preserving the geometry of the set of
possible signals of interest. Specifically, we show that
if the interfering signal lives in a known subspace that is
orthogonal to the signal of interest, then we can project
the compressive measurements into an orthogonal sub-
space and thus eliminate the interference. We further
demonstrate that the projection operator maintains the
restricted isometry property (RIP) for the set of signals
of interest. Thus, the projected measurements retain
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Fig. 1. Example application: broadband signal monitoring.

sufficient information to enable the direct recovery of
this signal of interest, or alternatively to enable the use
of efficient compressive-domain algorithms for further
processing.

B. Applications

In many applications we aim to acquire or monitor
a small class of signals in a very large signal space.
Such cases are amenable to CS-based acquisition when
the signals of interest are sparse or compressible. For
example, consider the wide-band signal monitoring and
processing station shown in Fig. 1 that receives signals
from a variety of sources, including various television,
radio, and cell-phone transmissions, radar signals, and
satellite communication signals.

In many cases, the monitoring station is only inter-
ested in a single type of signal, and the other signals
act as interference. A naı̈ve way to proceed would be to
recover all of the signal components using a standard
CS algorithm (such as `1-minimization or a greedy
algorithm), separate the components due to each of the
sources, and then process each recovered component
separately. However, this approach does not exploit the
particular properties of each component. For example,
the problems of detecting the satellite signal, tracking
an airplane trajectory, or classifying a cell-phone signal
could be amenable to a variety of compressive-domain
processing techniques [7–9].

Unfortunately, it is typically more difficult to apply
compressive-domain processing techniques when several
signals are acquired simultaneously, since the signals



that are not of interest become sources of noise and
interference. For example, the presence of a strong
television signal might interfere with our ability to detect
a weak signal of interest, especially in the compressive
domain. It is therefore desirable to filter out the interfer-
ence before processing in order to provide a degree of
robustness.

The compressive domain interference cancellation ap-
proach we develop below enables us to efficiently filter
out interference from the signals of interest when certain
mild sparsity and orthogonality conditions are met. Our
filtering approach maintains the geometry of the set of
signals of interest, while it eliminates the interference.

Our experiments demonstrate that this approach can
improve the performance of subsequent compressive
processing/recovery stages. Specifically we demonstrate
that rejecting the interference in the compressive domain
is beneficial in subsequent signal recovery compared to
the naı̈ve approach of first recovering the signal and
then rejecting the interference components. The gains
are measurable both in the recovery performance and in
the computational efficiency of the recovery algorithm.

C. Contrast to classical interference cancellation

The approach we propose in this paper is very differ-
ent in scope from classical interference cancellation—
a widely explored and mature topic with a variety of
adaptive and non-adaptive approaches [10]. There are
two primary approaches in the literature. Analog can-
cellation assumes that the interfering signal has enough
known parameters that it can be identified and removed
in the analog domain before signal acquisition. It is
implied that the interference content is not interesting
to the acquisition system or its user and can be safely
discarded. Digital cancellation assumes that the interfer-
ence is bandlimited and follows a similar approach after
sampling the signal at the Nyquist rate dictated by the
combined bandwidth of the signal of interest and the
interference.

In contrast, our approach emphasizes the value of
simple, general-purpose hardware that captures and pro-
cesses all the signal of interest together with the interfer-
ence in a small set of compressive samples. Our approach
enables storing and processing of the interfering signal
using other system components, a setting in which
classical interference cancellation techniques are difficult
to apply.

D. Contributions

To summarize, the main contributions of this paper
are the following: (i) we prove that we can use a simple
projection operator to filter out sparse interference with

known support in some basis from a compressively ac-
quired signal; (ii) we prove that our interference cancel-
lation maintains the RIP for the set of possible signals of
interest; (iii) we demonstrate that the projection operator
can be efficiently computed and applied to the measure-
ments; and (iv) we show experimentally that interference
cancellation followed by recovery performs significantly
better than recovery followed by cancellation both in
terms of recovery error and computational efficiency.

II. COMPRESSIVE SENSING

In the standard CS framework, we acquire a signal
x ∈ RN via the linear measurements

y = Φx, (1)

where Φ is an M × N measurement matrix modeling
the sampling system and y ∈ RM is the vector of
samples acquired. For simplicity, we deal with real-
valued rather than quantized measurements y. Classical
sampling theory dictates that to ensure that there is no
loss of information the number of samples M should be
greater than the signal dimension N . CS, on the other
hand, enables us to acquire significantly fewer samples
than N , as long as the signal x is sparse or compressible
in some basis [1, 2]. Specifically, if we are interested
in signals that are K-sparse when represented in the
sparsity basis Ψ, i.e., x = Ψα with ‖α‖0 ≤ K1, then one
can acquire only M = O(K log(N/K)) measurements
and still recover the signal x.

A fundamental question in CS concerns the properties
of Φ that guarantee satisfactory performance of the
sensing system. In [11], Candès and Tao introduced the
restricted isometry property (RIP) of a matrix Φ and
established its important role in CS. Slightly adapted
from [11], we say that a matrix Φ satisfies the RIP of or-
der K if there exists constants a, b ∈ R, 0 < a ≤ b < ∞,
such that

a‖x‖22 ≤ ‖Φx‖22 ≤ b‖x‖22, (2)

holds for all x such that ‖x‖0 ≤ K. In other words, Φ
acts as an approximate isometry on the set of vectors
that are K-sparse. When we wish to acquire signals that
are sparse with respect to the sparsity basis Ψ, we would
like to have Φ act as an approximate isometry on vectors
that are K-sparse with respect to Ψ. An important result
is that for any given Ψ, if we draw a random matrix
Φ whose entries φij are independent realizations from a
sub-Gaussian distribution, then ΦΨ will satisfy the RIP
of order K provided that M = O(K log(N/K)) [12].
Thus, it is common practice to assume for the sake

1‖ · ‖0 denotes the `0 quasi-norm, which simply counts the number
of non-zero entries of a vector.
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of simplicity that Ψ is the canonical (identity) basis, a
convention that we follow for the rest of this paper.

The RIP is a necessary condition if we wish to be able
to recover all sparse signals x from the measurements
y. Specifically, if ‖x‖0 = K, then Φ must satisfy the
RIP of order 2K with a > 0 in order to ensure that
any algorithm can recover x from the measurements
y. Furthermore, the RIP also suffices to ensure that a
variety of practical algorithms can successfully recover
any compressible signal from noisy measurements. The
following theorem, a slight modification of Theorem 1.2
from [13], makes this precise by bounding the recovery
error of x with respect to the sampling noise and with
respect the best approximation of x with a K-sparse
signal, known as best K-term approximation of x and
denoted using xK .

Theorem 1. Suppose that Φ satisfies the RIP of order
2K with isometry constants satisfying b/a < 1 +

√
2.

Given measurements of the form y = Φx + e, where
‖e‖2 ≤ ε, the solution to

x̂ = argmin ‖x‖1 subject to ‖Φx− y‖2 ≤ ε (3)

obeys

‖x̂− x‖2 ≤ C0ε + C1
‖x− xK‖1√

K
,

where

C0 =
4
√

2b

(
√

2 + 1)a− b
, C1 =

(
√

2− 1)a + b

(
√

2 + 1)a− b
.

While `1-minimization techniques are a powerful
method for CS signal recovery, there also exist a variety
of greedy algorithms that are commonly used in practice
and for which performance guarantees similar to that of
Theorem 1 can be established. In particular, a greedy
algorithm called CoSaMP was recently shown to satisfy
similar performance guarantees under slightly stronger
assumptions on the RIP constants [14].

III. COMPRESSIVE INTERFERENCE CANCELLATION

Suppose that our signal x ∈ RN consists of two
components:

x = xS + xI ,

where xS represents the signal of interest and xI repre-
sents interference that we would like to reject. We ac-
quire measurements of both components simultaneously

y = Φ(xS + xI). (4)

Our goal is to remove the contribution of xI to the
measurements y while preserving the information about
xS . While it is not strictly necessary, we assume for

simplicity that the sparsity basis Ψ is the same both for
xS and xI . As noted above, without loss of generality we
may assume this sparsity basis is the canonical (identity)
basis.

We cancel the interference by first constructing a lin-
ear operator P that operates on the measurements y. The
design of P is based solely on the measurement matrix
Φ and knowledge of the support of xI . Specifically,
we assume that xI belongs to a known KI -dimensional
subspace of RN having basis {ej}j∈J , where ej denotes
the vector of all zeros with a 1 in the j-th position and
J denotes a set of indices. Note that if ΦJ denotes the
matrix consisting of the columns of Φ indexed by the
set J , then ΦxI lies in R(ΦJ), the range of ΦJ . The
operator P we construct should map R(ΦJ) to zero;
i.e., we want the nullspace of P to be equal to R(ΦJ).
P will obviously depend on the set J , but for simplicity
we omit this dependence in our notation.

There are a variety of methods for constructing a P
with the desired nullspace properties. Furthermore, each
construction might be computed with several numerical
methods, which affect the performance and stability of
the construction. For example, if Φ̃J is any orthonormal
basis for R(ΦJ), then

P = I − Φ̃J Φ̃∗
J

is an orthogonal projection whose nullspace is equal
to R(ΦJ). One could obtain Φ̃J via Gram-Schmidt
orthogonalization of the columns of ΦJ or via the
singular value decomposition of ΦJ [15]. If Φ satisfies
the RIP, then ΦJ is well-conditioned, and so these
methods will provide a stable method for computing Φ̃J .
Extensive investigation of the numerical properties of
these constructions is beyond the scope of this paper.

We will focus on the case where Φ admits a fast
transform-based implementation; we will construct P to
leverage Φ’s structure and ease the computational cost of
applying P . For example, Φ may consist of random rows
of a Discrete Fourier Transform or a permuted Hadamard
Transform matrix. In this case, rather than constructing
the matrix Φ̃J , we use

P = I − ΦJΦ†
J ,

where Φ†
J is the pseudoinverse Φ†

J = (Φ∗
JΦJ)−1Φ∗

J .
Note that since ΦxI ∈ R(ΦJ) there exists an α ∈ RKI

such that

PΦxI = PΦJα

= (I − ΦJ(Φ∗
JΦJ)−1Φ∗

J)ΦJα

= ΦJα− ΦJα = 0. (5)
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Thus for any xI supported on the set J , PΦxI = 0,
i.e., P eliminates the interference xI from the samples
y. However, unlike the prior construction, if we have a
fast transform-based implementation of Φ and Φ∗, then
we can use the conjugate gradient method or Richardson
iteration to efficiently compute Py [14].

From (4) and (5), Py = PΦxS + PΦxI = PΦxS .
We now need to ensure that PΦxS contains sufficient
information about xS . In particular, we wish to show
that the matrix PΦ satisfies a relaxed version of the RIP.
Towards this end, we first establish a useful bound.

Lemma 1. Suppose that x and z are orthogonal and
that ‖x ± z‖0 ≤ K. If Φ satisfies the RIP of order K,
then

|〈Φx, Φz〉|
‖Φx‖2‖Φz‖2

≤ b− a

2a
.

Proof: First assume that ‖x‖2 = ‖z‖2 = 1. Since x
and z are orthogonal, ‖x± z‖22 = ‖x‖22 + ‖z‖22 = 2, and
hence from the RIP we have that

2a ≤ ‖Φx± Φz‖22 ≤ 2b.

From the parallelogram identity we obtain

|〈Φx, Φz〉| ≤ 1
4

∣∣‖Φx + Φz‖22 − ‖Φx− Φz‖22
∣∣

≤ 1
4
(2b− 2a) =

b− a

2
.

From the bilinearity of the inner product and the RIP,
for x, z with arbitrary norm, the lemma follows:

|〈Φx,Φz〉| ≤ b− a

2
‖x‖2‖z‖2

≤ b− a

2a
‖Φx‖2‖Φz‖2.

Thus, any sparse signal that is orthogonal to xI will
remain nearly orthogonal to ΦxI in the compressive
domain. Using this result we can show that if Φ has the
RIP, then PΦ satisfies the RIP restricted to the set of
signals that are orthogonal to the interference subspace.

Theorem 2. Given an index set J with cardinality #J ≤
KI , let ΦJc denote the matrix consisting of the columns
of Φ indexed by the set Jc = {1, 2, . . . , N} \ J . If Φ
satisfies the RIP of order K = 2KS + KI , then PΦJc

satisfies
ã‖x̃‖22 ≤ ‖PΦJc x̃‖22 ≤ b‖x̃‖22,

for all x̃ ∈ RN−KI such that ‖x̃‖0 ≤ 2KS , where

ã = a− (b− a)2

4a
.

R(ΦJ)

PΦx
Φx

(I −
P )Φxθ

Fig. 2. Decomposition of Φx into PΦx and (I − P )Φx.

Proof: We first let x̃ be any vector such that ‖x̃‖0 ≤
2KS . Now define x so that xn = x̃n for n ∈ Jc and
xn = 0 for n ∈ J , i.e., x is the extension of x̃ into
RN . Then ΦJc x̃ = Φx. We can decompose Φx as Φx =
PΦx + (I −P )Φx. Since P is an orthogonal projection
we can write

‖Φx‖22 = ‖PΦx‖22 + ‖(I − P )Φx‖22. (6)

This is illustrated in Fig. 2. Our goal is to show that
‖Φx‖2 ≈ ‖PΦx‖2, or equivalently that ‖(I − P )Φx‖2
is small. Towards this end, note that if θ is the angle
between Φx and (I − P )Φx, then

cos θ =
‖(I − P )Φx‖2

‖Φx‖2
=

〈(I − P )Φx,Φx〉
‖(I − P )Φx‖2‖Φx‖2

. (7)

Note that (I−P ) is a projection onto R(ΦJ). Thus there
exists an α such that (I−P )Φx = ΦJα. Furthermore, by
assumption, x is orthogonal to R(ΦJ). Hence we may
apply Lemma 1 to obtain

|〈(I − P )Φx,Φx〉|
‖(I − P )Φx‖2‖Φx‖2

≤ b− a

2a
.

Combining this with (7), we obtain

‖(I − P )Φx‖2 ≤
b− a

2a
‖Φx‖2.

Since we trivially have that ‖(I − P )Φx‖2 ≥ 0, we can
combine this with (6) to obtain(

1−
(

b− a

2a

)2
)
‖Φx‖22 ≤ ‖PΦx‖22 ≤ ‖Φx‖22.

Since ‖x‖0 ≤ 2KS , we have that(
1−

(
b− a

2a

)2
)

a‖x‖22 ≤ ‖PΦx‖22 ≤ b‖x‖22.

Recalling that ΦJc x̃ = Φx, and since ‖x‖2 = ‖x̃‖2, the
theorem follows.

One can easily verify that if b/a ≤ 1.91, then
b/ã ≤ 1 +

√
2. Thus, from Theorem 1 we conclude that

under a slightly more restrictive bound on the required
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RIP constants, we can directly recover a sparse signal
of interest xS that is orthogonal to the interfering xI

without actually recovering xI . This has a number of
practical benefits. For instance, if we were instead to
attempt to first recover x and then cancel xI , then we
would require RIP of order 2(KS + KI) to ensure
that this recover-then-cancel approach will be successful.
In contrast, our approach requires RIP of order only
2KS + KI . In certain cases (when KI is significantly
larger than KS), this results in a substantial decrease
in the required number of measurements. Furthermore,
since most recovery algorithms have computational com-
plexity that is at least linear in the number of coefficients
of the recovered signal, this can also result in substantial
computational savings.

IV. EXPERIMENTS

In this section we evaluate the performance of our pro-
posed cancellation method in the context of attempting
to recover the signal of interest xS while canceling out
the interfering signal xI . Rather than `1-minimization we
use the iterative CoSaMP greedy algorithm since it more
naturally naturally lends itself towards a simple modifi-
cation described below. More specifically, we evaluate
three interference cancellation approaches:

1) Cancel-then-recover: This is the approach advo-
cated in this paper. We cancel out the contribution
of xI to the measurements y and directly recover
xS using the CoSaMP algorithm.

2) Modified recovery: Since we know the support
of xI , rather than cancelling out the contribution
from xI to the measurements, we modify a greedy
algorithm such as CoSaMP to exploit the fact that
part of the support of x is known in advance. This
modification is made simply by forcing CoSaMP
to always keep the elements of J in the active set
at each iteration. After recovering x̂, we then set
x̂n = 0 for n ∈ J to filter out the interference.

3) Recover-then-cancel: In this approach, we simply
ignore that we know the support of xI and try to
recover the signal x using the standard CoSaMP
algorithm, and then set the x̂n = 0 for n ∈ J as
before.

In our experiments, we set N = 1000, M = 200,
and KS = 10. We then considered a range of values of
KI from 1 to 100. For each value of KI , we generated
2000 test signals where the coefficients were selected
according to a Gaussian distribution, and then contami-
nated with an N -dimensional Gaussian noise vector. As
a reference for comparison, we also considered an oracle
decoder that is given the support of both xI and xS and
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Fig. 3. SNR of xS recovered using the three different cancella-
tion approaches for different ratios of KI to KS compared to
the performance of an oracle.

solves the least-squares problem restricted to the known
support set.

We considered a range of signal-to-noise ratios
(SNRs) and signal-to-interference ratios (SIRs). Fig. 3
shows the results for the case where xS and xI are
normalized to have equal energy (an SIR of 0dB) and
where the variance of the noise is selected so that the
SNR is 15dB. Our results were consistent for a wide
range of SNR and SIR values, and we omit the plots
due to space limitations.

Our results show that the cancel-then-recover ap-
proach performed significantly better than both of the
other methods as KI grows larger than KS . While both
of the other methods begin to suffer as KI grows large,
the cancel-then-recover approach continues to perform
almost as well as the oracle decoder for the entire range
of KI . We also note that the while the modified recovery
method did perform slightly better than the recover-then-
cancel approach, the improvement is relatively minor.

We observe similar results in Fig. 4 for the recovery
time (which includes the cost of computing the matrix
P in the cancel-then-recover approach), with the cancel-
then-recover approach performing significantly faster
than the other approaches as KI grows larger than KS .

V. DISCUSSION

In this paper, we have demonstrated that with a small
penalty on the RIP constants we can efficiently null out
any known sparse interference via simple and efficient
filtering in the compressive domain.

Several of the compressive-domain processing algo-
rithms described in the Introduction rely on the com-
pressive sensing system preserving the geometry of the
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Fig. 4. Recovery time for the three different cancellation ap-
proaches for different ratios of KI to KS .

signal space [7–9]. Our interference cancellation method
maintains the RIP property of the sampling system
which guarantees that distances between signals in the
space are not affected by the sampling process. Thus
we ensure the stable embedding of signals of interest
in the compressive domain and provide robustness to
measurement noise and sampling non-idealities.

The interference cancellation computation is in gen-
eral more efficient than signal recovery, even when the
cost of computing the projection/cancellation operator
P is taken into account. Furthermore, in many practical
applications, there may exist extremely efficient methods
for computing Py. Alternatively, the projection operator
P can be precomputed and the cost amortized over
several applications of the same sampling operator Φ.

The work presented in this paper paves the way for
compressive-domain filtering and signal processing. For
example, a future step in this direction is to generalize
our filters beyond simple projection schemes to more
arbitrary compressive domain filters. Furthermore, there
exist even more efficient and structured approaches to
these problems for practical structured CS systems such
as the random sampler [4] or the random demodula-
tor [5]. More generally, one could study the impact of
such filtering approaches on a wide variety of compres-
sive domain processing algorithms.
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