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Abstract—Due to their noise-like features, SAR images are difficult to

acquire with compressed sensing techniques. However, some parts of the

images, typically associated to man-made structures, are compressible

and we investigate two techniques exploiting that information to allow a

compressive acquisition of the whole image. These techniques result in

a significant enhancement of the image quality compared to classical

compressed sensing. Moreover, compared to classical sampling and

quantisation of the SAR raw data, they allow a significant reduction of

bitrate with a limited increase of the distortion. However, their efficiency

depends strongly on the presence of compressible parts in the image.

I. INTRODUCTION

Synthetic aperture radar (SAR) is an active ground imaging system

based on coherent processing of multiple radar echoes acquired along

the path of a moving platform (aircraft or satellite). Due to the low

computational resources of the acquisition platforms and the steadily

increasing resolution of SAR systems, the data cannot generally

be processed on board and must be stored or transmitted to the

ground where the image formation process is performed. The amount

of image data produced is now constrained by on board storage

capabilities and transmission links.

To address this problem, many techniques have been proposed

to compress the raw SAR data [1][2][3]. However, SAR systems

in practice mostly use the simplest methods because of their low

computational requirements. In this context, an appealing idea is to

apply results of the rapidly developing field of compressed sensing

introduced in [4][5]. Unlike traditional compression/decompression

methods, compressed sensing allows very simple non-adaptive com-

pression schemes at the expense of a significantly increased com-

plexity for the decompression. The key idea is to exploit redundancy

in the data modelled as sparsity in an appropriate dictionary.

In the context of SAR, sparsity has been mostly used for de-

noising [6] and superresolution [6][7][8] with excellent performance.

Compressed sensing has also been proposed in [9][10][11] with

encouraging simulation results. However the only known realistic

example provided in [11] has shown the application of compressed

sensing to SAR to be particularly challenging in practice. In this

contribution, we build on the results of [11] and investigate two

simple methods aimed at improving the quality of the reconstructed

images.

The paper is organised as follows. In Section II we propose a brief

overview of SAR data processing and of the properties of the resulting

images. The compressed sensing based SAR acquisition and decoding

framework is presented in Section III together with the two proposed

enhancements. The performance of the methods is then assessed in

Section IV.

II. SAR DATA AND IMAGE PROPERTIES

A. SAR image formation - nature of SAR raw data

In the “spotlight” mode, SAR data is acquired from a moving

platform by emitting at close intervals a bandpass microwave radar

signal in direction of a specific area, or scene, and sampling the signal

backscattered by the ground objects.

When the size of the scene is small compared to its distance to

the radar platform, the curvature of the wavefront of the radar signal

over the scene can be neglected. This approximation, illustrated in

Fig. 1, results in a simple interpretation of SAR data in the Fourier

domain (2D Fourier transform of the scene) and is the basis of a

SAR processing technique referred to as “polar format algorithm”.

In this approximation, each received signal only contains information

averaged over the scene in a direction orthogonal to the direction

of propagation of the emitted radar signal. In the Fourier domain,

each received signal thus contains information included in a radial

line orthogonal to the averaging direction, i.e. in the direction of

propagation. Further analysis shows that the actual information is

in fact included in a segment, whose radial position is related to

the band of the radar signal by a factor 2/c, where c is the speed

of light. Thus, the whole SAR data approximately correspond to a

polar grid in the Fourier domain, centred away from the origin at a

distance corresponding to twice the mean wavelength of the emitted

radar signal. A natural consequence of this bandpass property is that

SAR images are complex-valued. In order to form the SAR image,

the polar grid data are interpolated to a rectangular grid from which

the image is computed by means of an inverse DFT.

In practice, the angular range of the polar grid (corresponding to

the angle between the dashed gray lines in Fig. 1 (b)) is often very

small, in which case the polar grid can already be well approximated

by a rectangular grid. For this reason, we will simply assume in this

preliminary work that the raw data correspond to the 2D Fourier

transform of the SAR image. The effect of the mapping from the

polar grid to the rectangular one is expected to be small and is under

current investigation as well the impact of more accurate SAR system

models.

B. Statistical properties

Two properties of SAR images will be important to understand

the methods proposed in this paper and their results. The first one is

the noise-like characteristics of SAR images. The second one is their

often very high dynamic range caused by a few very bright objects.

1) Noise-like properties: As the output of a coherent imaging

system, SAR images are extremely noisy. This feature comprises

two aspects. First, the magnitude of the SAR image contains what

is referred to as speckle noise which can be efficiently modelled

as multiplicative exponential white noise. Second, the phase of the

image can also be modelled as uniform white noise in [0, 2π].

These two features have the same origin which is that each pixel

of the image corresponds to an area whose dimensions are large

compared to the wavelength of the radar signal (typically at least

30cm × 30cm for an average radar wavelength of 3cm) containing

multiple objects. These objects generally have different reflectivities

which can be modelled as complex-valued: the magnitude corre-

sponds to the intensity of the reflected radiation while the phase
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Fig. 1. Geometry of SAR data acquisition. a) In the spatial domain. b) In
the Fourier domain. In a) the curved wavefront (red line) is approximated by
a straight line (dashed red line).

corresponds to a phase shift. More importantly, the reflectivities

of these objects can typically be modelled as uncorrelated. For

this reason, the radiations reflected by them interfere incoherently

when added up to obtain the reflectivity of a pixel of the SAR

image. The result is that the magnitude of a pixel can take any

value in the interval between zero (destructive interference) and

the sum of the magnitudes of the subpixel objects (constructive

interference). This is the usual explanation for the speckle noise.

Since the number of subpixel objects is typically very large, the

distribution of the complex-valued reflectivity of a pixel is Gaussian

with independent real and imaginary parts both following the same

Gaussian distribution. As a consequence the magnitude of a pixel

is exponentially distributed and its phase is uniformly distributed in

[0, 2π]. Moreover, the way subpixel objects interfere within a pixel

is also independent from the way they interfere for a neighboring

pixel. Hence both the multiplicative speckle noise and the phase of

the image can be modelled as stationary and white.

Thus, a SAR image f ∈ C
N×N can be efficiently modelled at a

pixel (k, l) as

fkl = f̃klskle
iϕkl ,

where f̃ , s and ϕ are real-valued images and stand respectively for

the SAR image without noise, the speckle noise and the phase. Since

both the speckle noise and the phase in this model can be modelled

as stationary and white, the global multiplicative noise seiϕ is a zero-

mean stationary white noise. As a consequence, the SAR image f
can be modelled as a zero-mean nonstationary white noise.

2) Dynamic range: In most cases, the radiation emitted by the

radar antenna is scattered when hitting the ground and only a very

small proportion of the energy is reflected in the direction of the

antenna. This typically happens in natural areas without any man-

made objects. However, in some cases, a much larger proportion

of the energy is reflected towards the antenna. A well-known cause

for this phenomenon is the presence of corner shapes which are very

common in man-made buildings or vehicles. As a consequence, SAR

images containing man-made objects typically have very bright pixels

located on those objects while the background of the image is much

a)

b)

Fig. 2. Compressibility of a SAR image in the spatial and wavelet domains.
a) Image and its Haar wavelet transform. b) Compressed images obtained by
only keeping the 5% largest coefficients in both domains. All images are in
log scale with 70dB dynamics.

darker. Moreover, these bright pixels are usually highly localised: for

a building, only a few edges and corners appear as very bright in

the SAR image. In practice, the brightest pixels of a SAR image can

typically be 103 times larger than the background pixels.

C. Compressibility

Due to their noise-like properties, complex-valued SAR images are

very difficult to compress efficiently. Considering the previous model

f = f̃seiϕ, the image without noise f̃ typically has the same good

compression properties as most natural images. However the mul-

tiplicative noise seiϕ endows the whole image with a high entropy,

thus drastically reducing its compressibility in any dictionary. For this

reason, typical sparsifying transforms used in image processing such

as wavelet transforms do not result in good sparse approximations

for SAR images.

Considering for example a Haar wavelet decomposition (see

Fig. 2), we observe that the wavelet coefficients are not concentrated

in the coarser scales as for usual compressible natural images. The

wavelet decomposition instead looks similar to the decomposition of

a white noise image where all wavelet scales are similarly populated1.

As a consequence, if only the 5% largest wavelet coefficients are kept,

most of the details of the original image are lost. Comparatively,

keeping the 5% largest pixels of the image results in a greater loss of

detail but not as drastically as for usual natural images. In both cases

the remaining parts correspond mostly to the brightest objects of the

image, which are compressible because they are highly localised.

III. COMPRESSED SENSING BASED CODING OF SAR DATA

A. Compressed sensing basics

According to compressed sensing theory (see e.g. [12] for a

tutorial), a discrete signal or image expressed as a vector f ∈ C
n can

be exactly reconstructed with a reduced number of samples compared

to the Nyquist rate provided that it is sparse in some basis: f = Ψx

1Using more sophisticated wavelets may increase slightly the concentration
of the large coefficients in the coarser scales but the improvement in
compressibility is rather small.
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where Ψ ∈ C
n×n is a matrix whose columns are the basis vectors,

and x ∈ C
n is a vector with a small number of non zero components

k ≪ n.

In a compressed sensing framework, the signal/image is acquired

through linear projections: y = Φf , where y ∈ C
m is the mea-

surements vector and Φ ∈ C
m×n is referred to as the measurement

matrix. Considering the k-sparse representation x, this results in the

measurement equation

y = ΦΨx.

In order to recover a k-sparse vector x, the number of measurements

m must be at least greater than k but can be significantly smaller

than the signal/image dimension k < m ≪ n. While this cannot be

achieved with any combination of measurement matrix and basis, it

has been shown that several classes of random measurement matrices

allow it for any basis with high probability.

Given the measurements y, the reconstruction of the sparse vector

x can be achieved by searching for the sparsest vector x̃ compatible

with the measurements. This is usually referred to as the ℓ0 opti-

misation problem “ x = argminx̃ ‖x̃‖
0

subject to y = ΦΨx̃ ”,

where the ℓ0 pseudo-norm ‖·‖
0

corresponds to the number of non

zero elements. As it is well known, this is a combinatorial problem

which cannot be solved directly in practice. The two most common

approaches are therefore to replace it with an ℓp optimisation problem

with 0 < p ≤ 1 or to use a greedy algorithm such as Orthogonal

Matching Pursuit.

In this simplified overview of the compressed sensing theory, we

have only focused on the noiseless acquisition of an exact sparse

signal. To be applicable in practice, the theory has also been adapted

to the noisy and non exactly sparse cases but the principles remain

essentially the same.

B. Compressed sensing for SAR

In order to define a compressed sensing based acquisition scheme

for SAR images, three elements must be specified: a basis where the

data are assumed sparse (or close to sparse), a measurement operator

and a re contruction algorithm.

1) Sparse representation: As shown previously, the statistics of

SAR images imply that there is no basis or dictionary where the data

can be assumed sparse. For this reason, it seems a priori impossible to

acquire with a decent quality a whole SAR image in a compressed

sensing framework. However, the very bright objects often related

to man-made structures or vehicles are typically sparse in the space

domain and slightly sparser in a wavelet domain. The image f ∈ C
n

can thus be decomposed into two components f = fs + fn, where

fs corresponds to the sparse bright objects and fn to the remaining

non sparse areas. In this decomposition, the sparse component fs is

typically larger than the other component because the bright objects

are often several orders of magnitude brighter than the background

of the image, thus compensating for their limited spatial support. If

the image is represented in an orthonormal wavelet basis Ψ, this

property is preserved, leading to a decomposition f = Ψxs + Ψxn

where xs is sparse and larger than xn. Thus, when bright objects are

present, the whole SAR image can be assumed close to sparse in a

wavelet basis. In the following, we will consider more specifically a

Haar wavelet basis because more sophisticated wavelet bases appear

to result in non significant improvement.

2) Measurement operator: As previously mentioned, SAR raw

data can be assimilated to samples of the Fourier transform of the

SAR image. Among the classes of generic measurement matrices

used for compressed sensing, this naturally calls for the partial

Fourier matrix [4] class where the measurements y correspond to

uniformly randomly selected Fourier coefficients of the SAR image.

If F ∈ C
n×n is the matrix representing the 2D DFT operator, we

define the measurement matrix Φ
m×n as a random subset of m lines

of F .

3) Reconstruction algorithm: Given the measurements y = Φf ,

our aim is to recover the sparse signal xs such that

y = ΦΨxs + ΦΨxn.

In this equation, the second term of the right hand side is expected

to be smaller than the first term and can be treated as noise as far as

the reconstruction of the sparse component xs is concerned. It will

be the purpose of the next sections to address the reconstruction of

xn. Given the above measurement equation, the reconstruction of a

sparse approximation x̂s is obtained by means of a recent greedy

algorithm referred to as “stagewise weak approximate conjugate

gradient pursuit” [13][14][15]. This algorithm is well supported by

theoretical analysis and its performance is comparable to state of the

art algorithms such as CoSaMP [16]. A significant advantage however

is that it can be much faster thanks to an approximate estimation of

the least squares estimate. In the context of the application to SAR

images investigated in this paper, this algorithm allows for a very

efficient computation of the sparse approximation, taking typically

one minute for a 1.5 million pixels image on a recent computer (using

only one CPU core and a non fully optimised Matlab code).

C. Possible improvements for SAR data

In order to improve the compressed sensing based recovery of

whole SAR images, we propose two simple techniques to enhance

the quality of the reconstructed image in the non compressible areas

which cannot be well described by a sparse approximation. The

first one consists in classical compressed sensing acquisition with

an additional postprocessing. The second one is inspired by the so-

called “hybrid compressed sensing” proposed in [17].

1) Postprocessing — compressed sensing as an interpolation in

the Fourier domain: The previously described compressed sensing

acquisition and reconstruction of a SAR image results in a sparse

approximation of the image roughly corresponding to the brightest

objects. Assuming that these objects have been perfectly recovered

(i.e. x̂s = xs), the residual ŷn = y−ΦΨxs = Φfn carries informa-

tion corresponding to the non sparse areas of the image. As Φ is a

partial Fourier matrix, this information corresponds to the knowledge

of some of the Fourier coefficients of fn. Without better assumptions

on fn, a trivial solution is to choose the estimate f̂n = Φ
Hyn,

which corresponds to setting the other Fourier coefficients to zero.

The result of this choice is that the final estimate of the SAR image

f̂ is simply the orthogonal projection of the sparse approximation

f̂s = Ψx̂s on the subspace solution to the linear equation y = Φf .

As a consequence, the distance between the true image f and the

estimate f̂ is necessarily reduced, which means that this projection

always reduces the mean square error of the reconstruction.

From a global point of view, the whole process of computing a

sparse approximation and then project on the solution subspace can

also be interpreted as an interpolation in the Fourier domain. Indeed,

the known Fourier samples y are kept unchanged while the unknown

Fourier samples are reconstructed using a sparsity hypothesis.

2) Hybrid compressed sensing: The underlying idea of the hybrid

compressed sensing method proposed in [17] is that the sparse

wavelet approximations of natural images typically have full coarser

scales while only the finer scales are effectively sparse. The method

consists in first separating the image f = fa +fd into an approxima-

tion component fa corresponding to the coarser wavelet scales and

a detail component fd corresponding to the finer scales. Then, the

approximation is sampled exhaustively (in the wavelet domain) while

the detail is sampled and reconstructed using compressed sensing.
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In the case of SAR images, the assumption that the wavelet

coefficients corresponding to the coarser scales are typically larger

than the finer scales is not valid. However, exhaustively sampling an

approximation of the image can still be useful insofar as most parts of

the image are difficult to recover using compressive sampling. Thus,

using a hybrid compressed sensing scheme guarantees at least a low

resolution everywhere while the brightest objects can be acquired

with a better resolution using compressed sensing on the detail part.

This might make sense for surveillance applications if one is e.g.

interested in detecting vehicles while keeping a coarse monitoring of

the area.

In order to reduce the computational load on the sensing platform,

the hybrid compressed sensing method can be further adapted to avoid

the computation of a partial wavelet transform. Indeed, the above

approximation fa is a specific low-pass filtered version of the image

f but other low-pass filters may be as good for our purpose. Since the

SAR raw data are assimilated to Fourier samples, the simplest low-

pass filter to implement is the perfect low-pass filter corresponding

to a rectangular subset of the 2D Fourier transform of the image.

Thus we define the approximation as a specific rectangular subset of

the 2D Fourier samples while the detail corresponds to the remaining

Fourier coefficients.

The corresponding measurement matrix for the approximation is

referred to as Φa and results in the measurements ya = Φa. Since

the approximation is exhaustively sampled it can be reconstructed as

fa = Φ
H
a ya.

The measurement matrix Φd for the detail component is not a

random partial Fourier matrix anymore: it contains all the Fourier

coefficients corresponding to the approximation (whose values are

zero for the detail) and random coefficients among the remaining

Fourier coefficients. It results in measurements yd which are used to

reconstruct a sparse approximation f̂d of the detail component using

the compressed sensing procedure defined above with Φd instead

of Φ.

Given fa and f̂d, the estimate of the SAR image f̂ is defined as

f̂ =
“

I − Φ
H
a Φa

”

f̂d + fa.

This definition means that f̂ is equal to f̂d except for the Fourier

coefficients corresponding to the approximation which are replaced

by their value from fa.

In addition, the postprocessing proposed in the previous paragraph

can also be applied to f̂d before it is combined with the approximation

to form the final estimate. The performance of both cases, with and

without postprocessing, will be assessed in the simulation section.

D. Quantisation

In order to provide a complete coding scheme, the next step

is to quantise the compressive measurements. The traditional way

of coding SAR raw data is to quantise the samples with a Block

Adaptive Quantiser (BAQ) [1]. Better quantisers have been proposed

in the literature [2][3] but the BAQ remains popular because of its

simplicity. The latter consists of two steps. First, the raw data are

divided into small blocks, which are normalised by their standard

deviation. The real and imaginary parts of the data within each block

are then quantised independently with scalar normalised Gaussian

quantisers.

In our simulations, we use a slightly modified BAQ that seem

to perform slightly better in our case. The first modification is to

normalise the data by the maximum modulus value of each block

instead of the standard deviation. The second one is to use a vector

BAQ [2] instead of a standard BAQ. The difference is that the scalar

quantisers are replaced by a vector quantiser trained with the statistics

Fig. 3. Test SAR images. The image on the left contains very bright objects
and is represented in log scale with 70dB dynamics. The image on the right
does not contain any very bright objects and is represented in log scale with
30dB dynamics.

of the block normalised data, which are almost Gaussian provided

the blocks are not too small.

IV. SIMULATIONS

In order to assess the performance of the proposed modifications

of the usual compressed sensing framework, we consider two SAR

images with and without very bright objects (see Fig. 3). Typical

results of the proposed methods are shown in Fig. 4.

In case of moderate subsampling (like 50% missing samples), we

observe that standard compressed sensing (second row of Fig. 4)

allows the recovery of the main structures of the images, whether

they contain very bright objects or not. However the flat areas where

the statistics of the images are similar to stationary white noise are

badly recovered and are only sparsely filled with small blocks. This

behaviour is consistent with the fact that sparse approximations in the

wavelet domain badly describe such flat areas. The addition of the

proposed postprocessing (third row of Fig. 4) allows the suppression

of the blocky artifacts and thus enhances the visual quality of the

image. Moreover, this also significantly reduces the mean square

error.

For strong subsampling (like 90% missing samples), standard

compressed sensing only allows the reconstruction of the very bright

objects when such objects are present. In this case the postprocessing

does not yield any noticeable visual improvement even though the

mean square error is still reduced. When no bright objects are present,

the compressed sensing reconstructed image looks like a random

collection of wavelet blocks with no apparent correlation with the

original image.

In the hybrid case, the approximation image is combined with the

sparse reconstruction of the detail image. For moderate subsampling,

this results in an image with a high resolution on the main struc-

tures which benefit from the sparse reconstruction, and a reduced

resolution otherwise. Compared to standard compressed sensing with

postprocessing, the image looks much closer to the original image

and is especially significantly better contrasted. However, the hybrid

method is slightly worse in terms of mean square error. This can be

compensated by applying the proposed postprocessing in the hybrid

case too but the contrast of the image is then reduced without any

significant improvement of the visual image quality.

Quantitatively, the performance of the proposed methods can be

represented as rate distortion curves showing the normalised mean

square error between the complex-valued original and reconstructed

images as a function of the number of bits per pixel (see Fig. 5). For a

given number of bits per pixel, multiple combinations of subsampling

ratios and numbers of bits per sample are generally possible. The

displayed rate distortion curves correspond to the ones leading to the

best performance.
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Fig. 4. Examples of reconstructed images using the proposed methods. The four columns correspond to the two test images with different subsampling ratios.
The top three rows correspond to subsampling using random Fourier coefficients. The first row shows the result of a linear (or minimum energy) reconstruction
where the unknown Fourier samples are assumed equal to zero. The second row shows the sparse approximation obtained using standard compressed sensing.
The third row shows the result after postprocessing. The bottom three rows correspond to hybrid subsampling where half of the samples are taken from a
square area in the Fourier domain while the other samples are drawn randomly from the remaining Fourier coefficients. Similarly to the first three rows, the
fourth row shows the linear reconstruction; the fifth row shows the combination of the approximation and of the sparse reconstruction of the detail; the sixth
row shows the result after postprocessing. All images are based on quantised samples using the block adaptive vector quantiser described in paragraph III-D
with 6 bits per sample. All sparse reconstructions contain arbitrarily ≈ 0.1m nonzero wavelet coefficients, where m is the number of samples.
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The results show that compressed sensing based methods can

outperform classical Nyquist rate sampling for low bitrates when

the image contains very bright objects. Moreover, both the proposed

postprocessing and the hybrid compressed sensing investigated in

this paper lead to significant performance improvement over standard

compressed sensing. However, the mean square error appears to be

slightly misleading here because the combination of the two proposed

methods results in significant error reduction, whereas the visual

quality of the image may appear reduced because of the loss of

contrast.

When no bright objects are present in the image, the performance

of standard compressed sensing is always worse than Nyquist rate

sampling. The cause of this bad performance is simply that the image

is far from being sparse, and therefore the sparsity hypothesis is

not useful. In this case, the proposed modifications still result in

significant improvement over standard compressed sensing but none

of them achieves better results than Nyquist rate sampling.

V. CONCLUSION

In the case of SAR, standard compressed sensing performs rather

poorly. While this was expected because of the also poor sparse

approximation of the images, better performance can be achieved

by modifying the standard compressed sensing framework. The two

proposed ideas investigated in this paper both improve the quality of

the image by adding details corresponding to the non compressible,

white noise-like, parts of the image. When the compressive samples

are furthermore quantified, this results in coding strategies potentially

more efficient than classical Nyquist rate sampling at very low bi-

trates. However, Nyquist rate sampling still performs better when the

sparse approximation of the image does not represent a sufficiently

large fraction of the total energy.
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