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Basis Identification from Random Sparse Samples
Rémi Gribonval, Karin Schnass

Abstract—This article treats the problem of learning a dictio-
nary providing sparse representations for a given signal class,
via ℓ1-minimisation. The problem is to identify a dictionary Φ

from a set of training samples Y knowing that Y = ΦX for
some coefficient matrixX. Using a characterisation of coefficient
matrices X that allow to recover any basis as a local minimum
of an ℓ1-minimisation problem, it is shown that certain types of
sparse random coefficient matrices will ensure local identifiability
of the basis with high probability. The typically sufficient number
of training samples grows up to a logarithmic factor linearly with
the signal dimension.

Keywords: basis identification,ℓ1-minimisation, sparse sam-
ples

I. I NTRODUCTION

Sparse signals are useful. They are easy to store and to
compute with and, as has become apparent through the theory
of compressed sensing, they are also easy to capture. However,
finding sparse representations is far from easy and by now
there exists a quite comprehensive literature on algorithms and
solutions strategies, for a starting point see e.g. [16], [6], [4],
[17]. In any of these publications one will more likely than
not find a statement starting with ’given a dictionaryΦ and a
signal having anS-sparse approximation/representation . . . ’,
which points exactly to the remaining problem. If one has a
class of signals and would like to find sparse approximations
someone still has to provide the right dictionary. For many
signal classes, good dictionaries like time-frequency or time-
scale dictionaries are known and from theoretical study of the
signal class it might be possible to identify one that will fit
well. However, if one runs into a new class of signals, chances
that the best fit will already be known are quite slim and it
can be a time consuming overkill to develop a deep theory like
that of wavelets every time. An attractive alternative approach
is dictionary learning, where one tries to infer the dictionary
that will provide good sparse representations for the whole
signal class from a small portion of training signals.
Considering the extensive literature available for the sparse
decomposition problem, surprisingly little work has been
dedicated to theoretical dictionary learning so far. Thereexist
several dictionary learning algorithms [5], [12], [1], [11], but
only recently people have started to consider also the theoret-
ical aspects of the problem. Dictionary learning finds its roots
in the field of Independent Component Analysis (ICA) [3],
where many identifiability results are available, which however
rely on asymptotic statistical properties under independence
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assumptions. Georgiev, Theis and Cichocki [7] as well as
Aharon, Elad and Bruckstein [2] describe more geometric
identifiability conditions on the (sparse) coefficients of training
data in an ideal (overcomplete) dictionary. Both approaches
to the identifiability problem rely on rather strong sparsity
assumptions, and require a huge amount of training samples.
In addition to a theoretical study of dictionary identifiability,
both cited papers provide algorithms to perform the desired
identification. Unfortunately the naive implementation ofthese
provably good dictionary recovery algorithms seems combi-
natorial, which limits their applicability to low dimensional
data analysis problems and renders them fragile to outliers,
i.e. training signals without a sparse enough representation.
In this article we will study the question when a basis can
be learned viaℓ1-minimisation [18], [15], and thus by a
non-combinatorial algorithm. More precisely, assuming that
our training signals are generated from an ’ideal’ basis with
random sparse components we will analyse how many of
these training signals are typically necessary to recover the
basis with high probability. The special case when the basis
is orthogonal has already been treated in [8] but the proba-
bilistic methods used there were not strong enough to provide
analogue results for general bases. In this article we take an
new approach to the problem leading to stronger probabilistic
estimates.
In the next sections we will shortly describe dictionary
learning viaℓ1-minimisation and state an algebraic recovery
condition. In Section IV we introduce the random coefficient
model and state our main theorem about the necessary number
of training signals. We then sketch the main ideas of the proof
going into detail as space allows. The last section is dedicated
to the discussion of future work.

II. D ICTIONARY LEARNING VIA ℓ1-M INIMISATION

The first idea when trying to find a dictionary providing
sparse representations of all signals from a class is to find the
dictionary allowing representations with the most zero coef-
ficients, i.e. givenN training signalsyn ∈ Rd, 1 ≤ n ≤ N ,
and a candidate dictionaryΦ consisting ofK atoms, one can
measure the global sparsity as

N∑

n=1

min
xn

‖xn‖0, such thatΦxn = yn, ∀n.

Collecting all signalsyn (considered as column vectors) in the
d×N matrix Y and all coefficientsxn (considered as column
vectors inRK) in the K × N matrix X , the fit between a
dictionaryΦ and the training signalsY can be measured by
the cost function

C0(Φ, Y ) := min
X | ΦX=Y

‖X‖0,
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where‖X‖0 :=
∑

n ‖xn‖0 counts the total number of nonzero
entries in theK×N matrix X . Thus to get the dictionary pro-
viding the most zero coefficients out of a prescribed collection
D of admissible dictionaries, we should consider the criterion

min
Φ∈D

C0(Φ, Y ). (1)

The problem is that already finding the representation
with minimal non-zero coefficients for one signal in a given
dictionary is NP-hard, which makes trying to solve (1) indeed
a daunting task. Fortunately, the problem above is not only
daunting but also rather uninteresting, since it is not stable
with respect to noise or suited to handle signals that are only
compressible. Thus the idea of learning a dictionary viaℓ1-
minimisation is motivated on the one hand by the goal to have
a criterion that is taking into account that the signals might be
noisy or only compressible and on the other by the success
of the Basis Pursuit principle for finding sparse representation,
[6], [4]. There theℓ0 quasi-norm is replaced with theℓ1-norm,
which also promotes sparsity but is convex and continuous.
The same strategy can be applied to the dictionary learning
problem and theℓ0-cost function can be replaced with the
ℓ1-cost function

C1(Φ, Y ) := min
X | ΦX=Y

‖X‖1, (2)

where‖X‖1 :=
∑

n ‖xn‖1. Several authors [18], [14], [13]
have proposed to consider the corresponding minimisation
problem

min
Φ∈D

C1(Φ, Y ). (3)

Unlike for the sparse representation problem, where this
change meant a convex relaxation, the dictionary learning
problem (3) is still not convexand cannot be immediately
addressed with generic convex programming algorithms. How-
ever, it seems better behaved than the original problem (1)
because of the continuity of the criterion with respect to
increasing amounts of noise, which makes it more amenable
to numerical implementation.
Looking at the problem above, we see that in order to solve
it we still need to defineD, the set of admissible dictionaries.
Several families of dictionaries can be considered such as
discrete libraries of orthonormal bases, like wavelet packets
or cosine packets. Here we focus on the ’non parametric’
learning problem where the fulld × K matrix Φ has to be
learned. Since the value of the criterion (3) can always be
decreased by jointly replacingΦ and X with αΦ and X/α,
0 < α < 1, a scaling constraint is necessary and a common
approach is to only search for the optimum of (3) within a
bounded domainD. Here we choose

D := {Φ, ∀k, ‖ϕk‖2 = 1}. (4)

For a discussion of alternative constraint manifolds see for
instance [10].
The special aspect of dictionary learning treated here is how
a coefficient matrixX has to be structured such that for any
”reasonable” basisΦ the pair(Φ, X) will constitute a global
minimum of (3) with inputY = ΦX . In other words when
can a dictionary be uniquely identified fromN sparse training

signalsyn by ℓ1-minimisation. However, since the minimisers
of (3) are only unique up to matching column (resp. row)
permutation and sign change ofΦ (resp.X), and also because
it is generally hard to find global minima, we will reduce our
ambition to finding conditions such that(Φ, X) constitutes
a local minimum, which we will call local identifiability
conditions. They guarantee that algorithms which decrease the
ℓ1-norm must converge to the true dictionary when started
from a sufficiently close initial condition.

III. L OCAL IDENTIFIABILITY CONDITIONS FORBASIS

LEARNING

To formulate the local identifiability condition, which is
the starting point for our analysis, we introduce the following
block decomposition of the matrixX (see Figure 1):

• xk is thek-th row of X ;
• Λk is the set indexing the nonzero entries ofxk andΛk

the set indexing its zero entries;
• sk is the row vectorsign(xk)Λk

;
• Xk (resp.X̄k) is the matrix obtained by removing the

k-th row of X and keeping only the columns indexed by
Λk (resp.Λk) .

We also defineM := Φ
⋆
Φ−I. Thek-th column ofM will be

denoted bymk and the same column without the zero entry
corresponding to the diagonal bȳmk := (〈ϕℓ, ϕk〉)1≤ℓ≤K,ℓ 6=k.

Fig. 1. Block decomposition of the matrixX0 with respect to a given row
xk. Without loss of generality, the columns ofX0 have been permuted so
that the first|Λk| columns hold the nonzero entries ofxk while the last|Λk|
hold its zero entries.

Theorem 3.1:Consider aK × N matrix X . If for every k
there exists a vectordk with maxk ‖dk‖∞ < 1 such that

X̄kdk = Xk(sk)⋆ − diag(‖xj‖1)j 6=km̄k. (5)

then (Φ, X) constitutes a strict local minimum of theℓ1-
criterion.

The proof can be found in the forthcoming paper [10] or,
for orthonormal bases, in [9].

IV. PROBABILISTIC ANALYSIS

In this section we will derive how many training signals
are typically needed to ensure that a basis constitutes a local
minimum of the ℓ1-criterion, given that the coefficients of
these signals are generated by a random process.
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A. The Model

We assume that the entriesxkn of the K × N coefficient
matrix X are i.i.d. with xkn = εkngkn, where theεkn are
indicator variables taking the value one with probabilityp
and zero with probability1 − p, i.e. ε ∼ pδ1 + (1 − p)δ0.
The variablesgnk follow a standard Gaussian distribution, i.e.
centered with unit variance.
The important role of the indicator variables is to guarantee a
strictly positive probability that the entryxkn is exactly zero.
The assumption that thegnk are centered Gaussians with unit
variance is mainly for simplicity reasons as it allows to do all
proofs using only elementary probability theory. However,we
believe that the same results hold for many other distributions
as long as they show a certain amount of concentration, as
for instance Bernoulli±1 with equal probability or any other
subgaussian distribution.
Let us start with a geometric interpretation of the necessary
recovery conditions.

B. Geometric Inspiration

We want to show that with high probability for each index
k there exists a vectordk with ‖dk‖∞ < 1 such that
X̄kdk = Xk(sk)⋆ − diag(‖xj‖1)j 6=km̄k. From a geometric
point of view, we need to verify that the image of the unit
cubeQ|Λ̄k| = [−1, 1]|Λ̄k| by the linear operator̄Xk contains
the vectoruk := Xk(sk)⋆ − diag(‖xj‖1)j 6=km̄k. One way to
ensure this to be true is to ask that:

• the vectoruk belongs to the Euclidean ballBK−1
2 (α) of

radiusα, i.e., ‖uk‖2 ≤ α;
• the image of the unit cubeQ|Λ̄k| := [−1, 1]|Λ̄k| by X̄k

containsBK−1
2 (α).

We can see that the probability of satisfying both conditions
will largely depend on the number of non zero coefficients
in each row. The more zeros, the shorter the vectorssk and
xk, thus the more likely that‖uk‖2 is small, and the higher
the dimension of the unit cube, thus more chances its image
covers a big ball. So we get a higher probability to recover
a basis, the sparser the signals are and the more incoherent
the basis is, i.e. the smaller‖m̄k‖2 = ‖mk‖2. The following
theorem gives concrete estimates, derived by working out the
details of the geometric sketch above.

C. Main Theorem

Theorem 4.1:Denote the event ’the original basis is not a
local minimum of theℓ1-criterion’ shortly by ’/’. If for a
basisΦ we havemaxk ‖mk‖2 < 1−2p

20 and the number of
randomly generated training signals exceedsN > 600(K−1)

(1−2p)2

wherep < 1/2, the probability of ’/’ decays as

P(/) ≤ 2K
[

exp
(

(K − 1) log(61
√

K−1
p

) − (1−2p)pN

13

)

+ exp
(

−(1−2p)2pN

800

)

+ (K − 1) exp
(

−pN
4

)

+ exp
(
−2p2N

)]

(6)

The crucial probabilities in the bound above are the first
because of the termO(K log K) and the second because of

the small constant1/800. The third is dominated by the first,
and forp > 1/1603 the last is dominated by the second. Thus
in this case we can get the cruder but more readable bound.

P(/) ≤4K exp

(

K log(61
√

K
p

) − (1 − 2p)pN

13

)

+ 4K exp

(

− (1 − 2p)2pN

800

)

.

The general behaviour, as predicted by the bound above, is that
to have a good chance of recovering the dictionary we need
the number of training signalsN to grow faster thanK log K
or d log d (for a basis the number of atoms equals the signal
dimension). This is only a log-factor larger than the absolute
minimum of theK +1 training signals necessary for learning
a dictionary ofK elements.1 So, as a practical example, for
learning a basis for images of sized = 256 × 256 pixels, we
would need aroundN = 727000 images. While this is a huge
number for the more common approach of learning a basis of
patches of sized = 100 × 100 we would only need around
N = 93000 patches, which is still reasonable.
To state the theorem in a concrete form, we had to crudely
bound some intermediate probabilities. The next subsection
gives a skeleton of the proof, indicating where these bounds
are, so in case all parameters are precisely known, it is easy
to retrace the steps and get the optimal bounds. In the course
of that we will also prove the following simple but totally
abstract theorem.

Theorem 4.2:If for a basisΦ we havemaxk ‖mk‖2 < (1−
p) then there exist constantsb > 0 anda, c < ∞, depending
only on p, such that forN > c · d we have

P(/) ≤ exp(a · d log d − b · N). (7)

D. Skeleton of the Proof - Probability Split

To estimate the overall probability that the original basisis
not a local minimum of theℓ1-criterion, we have a look at all
aspects of the sufficient condition in (5) that could possibly
go wrong and bound their probabilities individually. First, we
can take the union bound over every row indexk,

P(/) ≤ P(∃k, s.t. ∄dk, s.t. ‖dk‖∞ < 1 andX̄kdk = uk)

≤
K∑

k=1

P(∄dk, s.t. ‖dk‖∞ < 1 andX̄kdk = uk)
︸ ︷︷ ︸

:=P(/k)

.

We further split by conditioning on the number of zero
coefficients in each row.

P(/k) =

N∑

M=0

P(/k| |Λ̄k| = M) · P(|Λ̄k| = M)

≤ max
Ml≤M≤Mu

P(/k| |Λ̄k| = M) + P(|Λ̄k| /∈ [Ml, Mu]).

To bound the probability of the first term in the expression
above, we use the geometric inspiration from Subsection IV-B.

P(∄dk, s.t. ‖dk‖∞ < 1 andX̄kdk = uk | |Λ̄k| = M)

≤ P(X̄k(QM ) + BK−1
2 (αM )) + P(‖uk‖2 > αM | |Λ̄k| = M).

1Given onlyK training signals the dictionary giving the sparsest represen-
tation is the set of training signals itself.
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Retracing our steps we can thus bound the overall probability
of failure as

P(/) ≤
K∑

k=1

max
Ml≤M≤Mu

[
P(X̄k(QM ) + BK−1

2 (αM ))

+ P
(
‖uk‖2 > αM )

]

+
K∑

k=1

P(|Λ̄k| /∈ [Ml, Mu]). (8)

From (8) it becomes clear how important it is to carefully
choose the parametersMl, Mu and αM to keep the sum of
all probabilities small. However, to make this choice we first
need to estimate the magnitude of the probabilities involved.

E. Estimating the Individual Probabilities

All estimates are based on concentration of measure results
to bound the probability that a random variable deviates a lot
from its expected value. For conciseness we will skip most
proofs which can be found in [10].
The easiest estimate, the probability of the number of zero
coefficients in each row being belowMl or aboveMu, is a
consequence of Hoeffding’s inequality.

Theorem 4.3:Let Y1 . . . YN be independent, almost surely
bounded random variables, i.e.P(Yn ∈ [an, bn]) = 1. Then,
for the sumS = Y1 + . . . + YN and t > 0 we have

P(S − E(S) ≥ Nt) ≤ exp(− 2N2t2
∑N

n=1(bn − an)2
).

Applying this for Yn = εkn with t = (1 − p)εΛ we get

P(|Λ̄k| ≤ N(1 − p)(1 − εΛ)) ≤ exp(−2N(1 − p)2ε2
Λ).

We get a converse inequality with(1+εΛ) instead of(1−εΛ)
usingYn = 1 − εkn. ChoosingMl = N(1 − p)(1 − εΛ) and
Mu = N(1 − p)(1 + εΛ) leads to

P
(
|Λ̄k| /∈ [Ml, Mu]

)
≤ 2 exp(−2N(1 − p)2ε2

Λ).

Next we will estimate the typical size of the largest ball we
can inscribe into the image of the unit cubeQ|Λ̄k| by X̄k when
|Λ̄k| = M . We start with some geometrical observations.

Lemma 4.4:Let A be a matrix of sized × M . The image
of the unit cubeQM by A contains a Euclidean ball of sizeα
if and only if for all x with ‖x‖2 = 1 there exists av ∈ QM ,
i.e. ‖v‖∞ ≤ 1 such that|〈Av, x〉| ≥ α.

Lemma 4.5:If there exists anεN -netN for the unit sphere
in Rd such that for allxi ∈ N we have avi ∈ QM such that
|〈Avi, xi〉| ≥ α and

∑

i ‖Ai‖2 ≤ β then A(QM ) ⊇ Bd
2(α −

βεN ).
This leads to the following probabilistic estimate.

Corollary 4.6: Choose anεN -netN for the unit sphere in
Rd with |N | ≤ ( 6

εN
)d. For a ’random’d × M matrix A =

(A1 . . . AM ) we can bound the probability thatA(QM ) covers
a ball of radiusα − βεN as

P
(
A(QM ) ⊇ Bd

2(α − βεN
)

≥ 1 −
∑

xi∈N
P
(
‖A⋆xi‖1 ≤ α

)
− P

(∑

i

‖Ai‖2 ≥ β
)
.

To finally get a quantitative estimate, we need the following
two concentration of measure inequalities.

Theorem 4.7:Let A = (A1 . . . AM ) be a d × M matrix,
with entries as described in Subsection IV-A,Aij = εijgij ,
i = 1 . . . d, j = 1 . . .M , andx ∈ Rd be a unit vector. Then

a) P
(
‖A⋆x‖1 ≤ Mp(

√
2
π
− εα)

)
≤ 2 exp

(
−ε2

αMp

2+
√

2εα

)

,

b) P
(

M∑

j=1

‖Aj‖2 ≥ M
√

pd(1 + εβ)
)
≤ 2 exp

( −ε2

βM
√

p

2
√

p+
√

2εβ

)

.

The first equation tells us that we needα <
√

2
π
Mp. Indeed,

since also the converse bound exists, the probability of finding
a unit vector violating the condition in Lemma 4.4 rapidly
approaches 1, meaning that the radius of the maximal ball

cannot exceed
√

2
π
Mp.

Choosingεα =
√

2/π−1/3, εβ = 1/3 andεN = 10−1
√

p/d
and taking into account thatp ≤ 1

2 , we get using Corollary 4.6
and some simplifications that

P
(
A(QM ) + Bd

2 (
Mp

5
)
)
≤ 2 exp

(

d log(61

√

d

p
) − Mp

13

)

.

To estimate the probability that the vectoruk = Xk(sk)⋆ −
diag(‖xj‖1)j 6=km̄k is not contained in the Euclidean ball of
radiusα = Mp/5, we will split it into its two components
and use a union bound for the second term, i.e.

P(‖uk‖2 > α) ≤ P(‖Xk(sk)⋆‖2 > qα)

+
∑

k 6=j

P(‖xj‖1 · ‖mk‖2 > (1 − q)α),

for any q ∈ [0, 1]. The optimal choice for the parameterq
depends on the magnitude of‖mk‖2 measuring the coherence
of the basis. So in case the basis is orthogonal we have
‖mk‖2 = 0 and can setq = 1. For further bounds we need
another two concentration of measure results.

Theorem 4.8:a) Let B be a matrix of sized × L, whose
entries follow the distribution described in Subsection IV-A,
Bij = εijgij , i = 1 . . . d, j = 1 . . . L, and s be a vector of
lengthL with entriessj = ±1, j = 1 . . . L. Then forεs > 0

P
(
‖Bs‖2

2 ≥ dLp(1 + εs)
)
≤ 2 exp

( −dpε2
s

6 + 2εs

)

. (9)

b) Let x be a vector of lengthN , whose entries follow
the distribution described in Subsection IV-A,xi = εigi,
i = 1 . . .N . Then forεm > 0

P
(
‖x‖1 ≥ L(

√
2
π

+ εm)
)
≤ 2 exp

( −pNε2
m

2 + εm/
√

2

)

. (10)

We apply the theorem to the matrixXk, the vectorsk and the
vector xk. Write shortlyd = K − 1 and setεs = (qα)2

dLp
− 1

andεm = (1−q)α
pN‖mk‖2

−
√

2
π

to get

P(‖uk‖2 > α) ≤ 2 exp
(

−(qα)2

2L
cs

)

+ 2d exp
(

−(1−q)α
√

2
‖mk‖ cm

)

with cs =
(1 − dLp

(qα)2 )2

1 + 2 dLp
(qα)2

, cm =
(1 −

√
2
π

pN‖mk‖
(1−q)α )2

1 + pN‖mk‖
(1−q)α (2

√
2 −

√
2
π
)
.
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Let us investigate the conditions thatcs, cm > 0 in more detail.
Inserting the expected values forα, M, L = N − M shows
that cs > 0 will always be satisfied as soon as the number of
signalsN is large enough.
The condition oncm is more interesting as in the worst case
for M it is equivalent to‖mk‖2 <

√
π
2

(1−p)
5 . Looking back

at the estimate of the radius of the maximal ball we see
that α necessarily has to be smaller than

√
2
π
Mp, leading to

‖mk‖2 < 1− p. This means that as soon as‖mk‖2 ≥ (1− p)
the size of the vectoruk grows faster than the size of the
maximal ball, and recovery can no longer be guaranteed.
However, let’s assume that‖mk‖2 < M

20N
and chooseq =

1/
√

3. If M2 > 300dL/p a long calculation shows that we
have

P
(
‖uk‖2 >

Mp

5

)
≤ 2 exp

(

−M2p2

400L

)

+ 2d exp

(

−Np

4

)

.

To get the statement of the main theorem we need to combine
all the estimates and insert the worst case values forM, L
with εΛ = p/(1 − p).

V. D ISCUSSION

We have shown that for coefficient matrices generated from
a random sparse model the resulting basis coefficient pair
suffices these conditions with high probability as long as
the number of training signals grows liked log d. These are
exciting new results but since dictionary learning is a relatively
young field they lead to more open questions. For the special
case when the dictionary is assumed to be a basis it would be
desirable to show the converse direction, i.e. if the coherence
of the basis is too high and the training signals are generated
by the same random sparse model, the basis coefficient pair
will not be a local minimum. Ideally this breakdown coherence
maxk ‖mk‖2 would be the same or close to(1− p). Another
helpful result would be to prove that under the random model
there exists only one local minimum, which then has to
be the global one, and could be found with simple descent
algorithms. Numerical experiments in two dimensions support
this hypothesis. Figure 2 is a plot of theℓ1-cost ‖Φ−1Y ‖1

for all possible two-dimensional bases, where both atoms are
parametrised by their angleθi to the x-axis,θi ∈ [0, π]. The
N = 500 training signalsY = ΦX were generated using
the random sparse model withp = 0.5. As can be seen the
only two local minima are at the original dictionaryΦ and
at the dictionary corresponding toΦ with permuted columns
(the sign ambiguity is avoided by restricting the angles to the
interval [0, π]).
Finally much harder research will have to be invested to

extend the current results to the overcomplete and the noisy
case. In the overcomplete case the null space has to be taken
into account which prevents a straightforward generalisation
from the intrinsic conditions to the explicit ones, see [10]for
more information. In the noisy case already the formulation
of the problem has to be changed as we cannot expect the
best dictionary for the noise contaminated training data tobe
exactly the same as the original dictionary but only close to
it.

Fig. 2. ℓ1-cost as a function of all two-dimensional bases
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