
HAL Id: inria-00369580
https://inria.hal.science/inria-00369580

Submitted on 20 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Circulant and Toeplitz Matrices in Compressed Sensing
Holger Rauhut

To cite this version:
Holger Rauhut. Circulant and Toeplitz Matrices in Compressed Sensing. SPARS’09 - Signal Processing
with Adaptive Sparse Structured Representations, Inria Rennes - Bretagne Atlantique, Apr 2009, Saint
Malo, France. �inria-00369580�

https://inria.hal.science/inria-00369580
https://hal.archives-ouvertes.fr


1

Circulant and Toeplitz Matrices in Compressed Sensing
Holger Rauhut

Hausdorff Center for Mathematics and Institute for Numerical Simulation

University of Bonn, Endenicher Allee 60, D-53115 Bonn

rauhut@hcm.uni-bonn.de

Abstract—Compressed sensing seeks to recover a sparse vector from

a small number of linear and non-adaptive measurements. While most

work so far focuses on Gaussian or Bernoulli random measurements we

investigate the use of partial random circulant and Toeplitz matrices in

connection with recovery by ℓ1-minization. In contrast to recent work

in this direction we allow the use of an arbitrary subset of rows of

a circulant and Toeplitz matrix. Our recovery result predicts that the

necessary number of measurements to ensure sparse reconstruction by

ℓ1-minimization with random partial circulant or Toeplitz matrices scales

linearly in the sparsity up to a log-factor in the ambient dimension. This

represents a significant improvement over previous recovery results for

such matrices. As a main tool for the proofs we use a new version of the

non-commutative Khintchine inequality.

I. INTRODUCTION

Compressed sensing is a recent concept in signal processing where

one seeks to reconstruct efficiently a sparse signal from a minimal

number of linear and non-adaptive measurements [1]. So far various

measurement matrices have been investigated, most of them random

matrices. Among these are Bernoulli and Gaussian matrices [2] (with

independent ±1 or standard normal entries) as well as partial Fourier

matrices [3], [4], [5]. Recently, Bajwa et al. [6] (see also [7]) studied

Toeplitz type and circulant matrices in the context of compressed

sensing where the entries of the vector generating the Toeplitz

or circulant matrix are chosen at random according to a suitable

probability distribution. Compared to Bernoulli or Gaussian matrices

random Toepliz and circulant matrices have the advantage that they

require a reduced number of random numbers to be generated. More

importantly, there are fast matrix-vector multiplication routines which

can be exploited in recovery algorithms. Furthermore, they arise

naturally in certain applications such as identifying a linear time-

invariant system [8].

Basis Pursuit (ℓ1-minimization) is one of the major approaches

to efficiently recover a sparse vector. This technique is quite well

understood by now. Modern optimization algorithms [9] such as

LARS [10] (sometimes called homotopy method) are reasonably fast.

Bajwa et al. [6], [8] estimated the so-called restricted isometry

constants of a random Toeplitz type or circulant matrix which then

allows to provide recovery guarantees for ℓ1-minimization. However,

their bound is very pessimistic compared to related estimates for

Bernoulli / Gaussian or partial Fourier matrices. More precisely, the

estimated number of measurements grows with the sparsity squared,

while one would rather expect a linear scaling. Indeed, this is also

suggested by numerical experiments. We close the theoretical gap by

providing recovery guarantees for ℓ1-minimization in connection with

circulant and Toeplitz type matrices where the necessary number of

measurements scales linearly with the sparsity. However, we do not

make use of the restricted isometry constants and a good estimate of

the latter is therefore still open.

II. SPARSE RECOVERY WITH CIRCULANT AND TOEPLITZ

MATRICES

For a vector x ∈ R
N

we let supp x = {j, xj 6= 0} denote its

support and ‖x‖0 = | supp x| the number of non-zero entries. It is

called s-sparse if ‖x‖0 ≤ s. We aim at recovering x from y = Ax ∈
R

n
where A is a suitable n × N measurement matrix and n < N .

A natural strategy is to consider ℓ0-minimization,

min
x

‖x‖0 subject to Ax = y. (1)

Unfortunately this combinatorial optimization problem is NP hard in

general [11]. Therefore, we solve instead the convex problem

min ‖x‖1 subject to Ax = y, (2)

where the ℓp-norm is defined as usual, ‖x‖p = (
PN

j=1 |xj |p)1/p. It

is by now well understood that the solutions of both minimization

problems often coincide and are equal to the original vector x, see

e.g. [12], [13], [1], [14], [15]. A by now popular result [12], [16], [17]

states that indeed (2) (stably) recovers all s-sparse x from y = Ax
provided the restricted isometry constant δ2s ≤ δ <

√
2 − 1. The

latter means that

(1 − δ)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ)‖x‖2
2

for all 2s-sparse vectors x. It is known [2] that random Gaussian or

Bernoulli matrices, i.e. n×N matrices with independent and normal

distributed or Bernoulli distributed entries, satisfy this condition with

probability at least 1−ǫ provided s ≤ C1n log(N/s)+C2 log(ǫ−1).

We consider the following types of measurement matrices. For

b = (b0, b1, . . . , bN−1) ∈ R
N

we let its associated circulant matrix

S = Sb ∈ R
N×N

with entries Si,j = bj−i mod N , where i, j =
1, . . . , N . Similarly, for a vector c = (c−N+1, c−N+2, . . . , cN−1)
its associated Toeplitz matrix T = T c ∈ R

N×N
has entries Ti,j =

cj−i, where i, j = 1, . . . , N . Now we choose an arbitrary subset

Ω ⊂ {1, . . . , N} of cardinality n < N and let the partial circulant

matrix SΩ = Sb
Ω ∈ R

n×N
be the submatrix of S consisting of the

rows indexed by Ω. The partial Toeplitz matrix TΩ = T c
Ω ∈ R

n×N

is defined similarly. In this paper the vectors b and c will always be

random vectors with independent Bernoulli ±1 entries.

Of particular interest is the case N = nK for some K ∈ N

and Ω = {K, 2K, . . . , nK}. Then the application of Sb
Ω and

T c
Ω corresponds to (periodic or non-periodic) convolution with the

sequence b (or c, respectively) followed by a downsampling by a

factor of K. This setting was studied numerically in [18] by Tropp

et al. (using orthogonal matching pursuit instead of ℓ1-minimization).

Also of interest is the case Ω = {1, 2, . . . , n} which was investigated

in [6], [8] by Bajwa et al., who showed that the restricted isometry

constant of T c
Ω satisfies δs ≤ δ with high probability (w.h.p.) provided

n ≥ Cδs
2 log(N/s). As a byproduct of the proof of our main result

we give an alternative proof that δs ≤ δ holds w.h.p. under the

condition n ≥ Cδ−2s2 log2(N). However, we strongly believe that

this bound is not optimal due to the quite pessimistic quadratic scaling

in s. Our main result shows that one can achieve recovery w.h.p. by

ℓ1-minimization, if n ≥ Cs log2(N).

In the following recovery theorem we use a random partial cir-

culant or Toeplitz matrix Ab
Ω or T c

Ω in the sense that the entries of

the vector b or c are independent Bernoulli ±1 random variables.

Furthermore, the signs of the non-zero entries of the s-sparse vector
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x are chosen at random according to a Bernoulli distribution as well.

In contrast to previous work [6], [18] Ω is allowed to be an arbitrary

subset of {1, . . . , N} of cardinality n.

Theorem 2.1: Let Ω ⊂ {1, 2, . . . , N} be an arbitrary (determinis-

tic) set of cardinality n. Let x ∈ R
N

be s-sparse such that the signs

of its non-zero entries are Bernoulli ±1 random variables. Choose

b ∈ R
N

to be a random vector whose entries are ±1 Bernoulli

variables. Let y = Sb
Ωx ∈ R

n
. There exists a constant C > 0 such

that

n ≥ Cs log3(N/ǫ)

implies that with probability at least 1 − ǫ the solution of the ℓ1-

minimization problem (2) coincides with x.

The same statement holds with T c
Ω in place of Sb

Ω where c ∈
R

2N−1
is a random vector with Bernoulli ±1 entries.

Ignoring the log-factor the necessary number of samples ensuring

recovery by ℓ1-minimization scales linearly with the sparsity s.

The power 3 at the log-term can very likely be improved to 1,

and moreover, it seems also possible to remove the randomness

assumption on the non-zero coefficients of x. We postpone such

improvements as well as an investigation of the restricted isometry

constants to possible future contributions. The remainder of the paper

is concerned with the proof of Theorem 2.1.

III. PROOF OF THEOREM 2.1

An essential ingredient of the proof is the following recovery

theorem for ℓ1-minimization due to Fuchs [19] and Tropp [20]. For

a matrix A we denote by aρ its columns and by AΛ the submatrix

consisting only of the columns index by Λ.

Theorem 3.1: Suppose that y = Ax for some x with supp x = Λ.

If

|〈A†
Λaρ, sgn(xΛ)〉| < 1 for all ρ /∈ Λ , (3)

then x is the unique solution of the Basis Pursuit problem (2). Here,

A†
Λ denotes the Moore-Penrose pseudo-inverse of AΛ.

A crucial step in applying this theorem is to show that the ℓ2-norm

of A†
Λaρ in (3) is small. To this end one expands

‖A†
Λaρ‖2 = ‖(A∗

ΛAΛ)−1A∗
Λaρ‖2 = ‖(A∗

ΛAΛ)−1‖2→2‖A∗
Λaρ‖2,

(4)

where ‖ · ‖2→2 denotes the operator norm on ℓ2. The second term

can be estimated in terms of the coherence of A, which is defined

to be the largest absolute inner product of different columns of A,

µ = maxρ 6=λ |〈aρ, aλ〉|. Indeed,

‖A∗
Λaλ‖2 =

 
X

λ∈Λ

|〈aλ, aρ〉|2
!1/2

≤
p

|Λ|µ.

The coherence of a random Toeplitz or circulant matrix can be

bounded as follows.

Proposition 3.2: Let µ be the coherence of the random partial

circulant matrix 1√
n
Sb

Ω ∈ R
n×N

or Toeplitz matrix 1√
n
T c

Ω ∈ R
n×N

where b and c are Rademacher series and Ω has cardinality n. Then

with probability at least 1 − ǫ the coherence satisfies

µ ≤ 4
log(2N2/ǫ)√

n
.

The proof is contained in Section V. This proposition easily implies

the following (probably non-optimal) estimate of the restricted isom-

etry constants of Sb
Ω or T c

Ω contained also in [8] with a different

proof.

Corollary 3.3: Let 1√
n
Sb

Ω, 1√
n
T c

Ω ∈ R
n×N

be the randomly

generated normalized partial circulant and Toeplitz matrix generated

from Rademacher series and δs be their restricted isometry constant.

Assume that

n ≥ 16δ−2s2 log2(2N2/ǫ).

Then with probability at least 1 − ǫ it holds δs ≤ δ.

Proof: Combine the bound δs ≤ (s−1)µ (which easily follows from

Gershgorin’s disk theorem) with the estimate above on the coherence

of A = 1√
n
Sb

Ω or A = 1√
n
T c

Ω.

As suggested by (4) we also need an estimate of the operator norm

of the inverse of A∗
ΛAΛ. To this end we bound the smallest and largest

eigenvalue of this matrix.

Theorem 3.4: Let Ω, Λ ⊂ {1, . . . , N} with |Ω| = n and |Λ| = s.

Let b ∈ R
N

and c ∈ R
2N−1

be Rademacher series. Denote either

A = 1√
n
Sb

Ω or A = 1√
n
T c

Ω. Assume

n ≥ C̃δ−2s log2(4s/ǫ), (5)

where C̃ = 4π2 ≈ 39.48. Then with probability at least 1 − ǫ the

minimal and maximal eigenvalues λmin and λmax of A∗
ΛAΛ satisfy

1 − δ ≤ λmin ≤ λmax ≤ 1 + δ.

Note that the above theorem holds for a fixed subset Λ and random

coefficients b or c. It does not imply that for given b or c the estimate

holds uniformly for all subsets Λ, which would be equivalent to

having an estimate for the restricted isometry constants of 1√
n
Sb

Ω

or 1√
n
T c

Ω. (Note that taking a union bound over all subsets Λ would

yield an estimate essentially worse than Corollary 3.3.)

Now we are ready to complete the proof of Theorem 2.1 on the

basis of Proposition 3.2 and Theorem 3.4. We proceed similarly as

in [21, Theorem 14]. Hoeffding’s inequality states that

P
`
|
X

j

ǫjaj | ≥ u‖a‖2

´
≤ 2e−u2/2. (6)

By our assumption on the random phases ǫλ = sgn(xλ), the scalar

product on the left hand side of (3) is precisely of the above form

with a = A†
Λaρ = (A∗

ΛAΛ)−1A∗
Λaρ. Theorem 3.4 implies that

the smallest eigenvalue of A∗
ΛAΛ is bounded from below by 1 − δ

with probability at least 1 − ǫ provided condition (5) holds; hence,

‖(A∗
ΛAΛ)−1‖2→2 ≤ 1

1−δ
. Plugging this into (4) yields

‖A†
Λaρ‖2 ≤ 1

1 − δ

√
sµ. (7)

Following Theorem 3.1 the probability that recovery fails can be

estimated by

P
`
|〈A†

Λaρ, RΛ sgn(x)〉| ≥ 1 for some ρ /∈ Λ
´

≤ P
`
|〈A†

Λaρ, RΛ sgn(x)〉| ≥ 1 for some ρ /∈ Λ
˛̨
µ ≤ α√

n

& λmin ≥ 1 − δ
´

+ P
`
µ >

α√
n

´
+ P

`
λmin < 1 − δ

´

≤
X

ρ/∈Λ

P
`
|〈A†

Λaρ, RΛ sgn(x)〉| ≥ 1
˛̨

µ ≤ α√
n

& λmin ≥ 1 − δ
´

+ P
`
µ >

α√
n

´
+ P

`
λmin < 1 − δ

´
.

Under the assumption µ ≤ α√
n

equation (7) implies that for u =
(1−δ)

√
n

α
√

s
we have u‖A†

Λaρ‖2 ≤ 1, so (6) gives

P
`
|〈A†

Λaρ, RΛ sgn(x)〉| ≥ 1
˛̨

µ ≤ α√
n

& λmin ≥ 1 − δ
´

≤ 2 exp

„
− (1 − δ)2

2α2

n

s

«
. (8)
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Setting α = 4 log(2N2/ǫ) Theorem 3.2 yields

P(µ ≥ α/
√

n) ≤ ǫ.

Now we choose δ = 1/2. Under condition (5), which reads

n ≥ 4C̃s log2(s/ǫ), (9)

we have P(λmin ≥ 1 − δ) ≤ ǫ. Hence, under the above conditions

we obtain

P
`
|〈A†

Λaρ, RΛ sgn(x)〉| ≥ 1 for some ρ /∈ Λ
´

≤ 2N exp

„
− 1

8 log2(2N2/ǫ)

n

s

«
+ 2ǫ. (10)

The first term is less than ǫ provided n ≥
8s log2(2N2/ǫ) log(2N/ǫ), or

n ≥ C1s log3(N/ǫ) (11)

for a suitable constant C1. Conditions (9) and (11) are both satisfied

if

n ≥ Cs log3(N/ǫ)

for a suitable constant C, in which case the probability that recovery

by ℓ1-minimization is less than 3ǫ. This completes the proof.

IV. NON-COMMUTATIVE KHINTCHINE INEQUALITIES

Both the proof of Proposition 3.2 as well as the proof of Theorem

3.4 are based on versions of the Khintchine inequality. Let us first

state the non-commutative Khintchine inequality due to Lust-Piquard

[22] and Buchholz [23], see also [21]. To this end we introduce

Schatten class norms on matrices. Denoting by σ(A) the vector of

singular values of a matrix A, the Sp-norm is defined as

‖A‖Sp
:= ‖σ(A)‖p,

where ‖ · ‖p is the usual ℓp-norm, 1 ≤ p ≤ ∞.

Theorem 4.1: Let (Ak) be a finite sequence of matrices of the

same dimension and let (gk) be a sequence of independent standard

Gaussian random variables. Then for m ∈ N,

2
4E

‚‚‚‚‚
X

k

gkAk

‚‚‚‚‚

2m

S2m

3
5

1/2m

≤ Bm max

8
<
:

‚‚‚‚‚‚

 
X

k

AkA∗
k

!1/2
‚‚‚‚‚‚

S2m

,

‚‚‚‚‚‚

 
X

k

A∗
kAk

!1/2
‚‚‚‚‚‚

S2m

9
=
; ,

with optimal constant

Bm =

„
(2m)!

2mm!

« 1

2m

Using the contraction principle for Bernoulli random variables, see

[24, eq. (4.8)], we obtain the non-commutative Khintchine inequality

for Bernoulli random variables [22].

Corollary 4.2: Let (Ak) be a finite sequence of matrices of the

same dimension and let (ǫk) be a sequence of independent Bernoulli

±1 random variables. Then for m ∈ N,

2
4E

‚‚‚‚‚
X

k

ǫkAk

‚‚‚‚‚

2m

S2m

3
5

1/2m

≤ Cm max

8
<
:

‚‚‚‚‚‚

 
X

k

AkA∗
k

!1/2
‚‚‚‚‚‚

S2m

,

‚‚‚‚‚‚

 
X

k

A∗
kAk

!1/2
‚‚‚‚‚‚

S2m

9
=
; ,

(12)

with constant

Cm =

r
π

2

„
(2m)!

2mm!

« 1

2m

.

In the scalar case the factor
p

π/2 can be removed. However, it is not

clear yet whether this is true also in the non-commutative situation.

The following theorem extends the non-commutative Khintchine

inequality to a second order chaos variable. Its proof uses decoupling

and Corollary 4.2.

Theorem 4.3: Let Aj,k ∈ C
r×t

, j, k = 1, . . . , N , be matrices

with Aj,j = 0, j = 1, . . . , N . Let ǫk, k = 1, . . . , N be independent

Bernoulli random variables. Then for m ∈ N it holds

2
4E

‚‚‚‚‚‚

NX

j,k=1

ǫjǫkAj,k

‚‚‚‚‚‚

2m

S2m

3
5

1/2m

≤ Dm max

8
><
>:

‚‚‚‚‚‚‚

0
@

NX

j,k=1

Aj,kA∗
j,k

1
A

1/2
‚‚‚‚‚‚‚

S2m

,

‚‚‚‚‚‚‚

0
@

NX

j,k=1

A∗
j,kAj,k

1
A

1/2
‚‚‚‚‚‚‚

S2m

, ‖F‖S2m

9
>=
>;

,

where F is the block matrix F = (Aj,k)N
j,k=1 and the constant

Dm = 21/2m2πC2
m = 21/2m2π

„
(2m)!

2mm!

«1/m

.

At present it is not clear whether the term ‖F‖S2m
can be omitted

above. At least, there is no a priori inequality between any of

the terms in the maximum. The proof of the theorem is based on

the following decoupling lemma, see [25, Proposition 1.9] or [26,

Theorem 3.1.1].

Lemma 4.4: Let ξj , j = 1, . . . , N , be a sequence of independent

random variables with Eξj = 0 for all j = 1, . . . , N . Let Aj,k,

j, k = 1, . . . , N , be a double sequence of elements in a Banach

space with norm ‖ · ‖, where Aj,j = 0 for all j = 1, . . . , N . Then

for 1 ≤ p < ∞

E

‚‚‚‚‚‚

NX

j,k=1

ξjξkAj,k

‚‚‚‚‚‚

p

≤ 4p
E

‚‚‚‚‚‚

NX

j,k=1

ξjξ
′
kAj,k

‚‚‚‚‚‚

p

,

where ξ′ denotes an independent copy of the sequence ξ = (ξj).

PROOF OF THEOREM 4.3. We apply Lemma 4.4 followed by the

non-commutative Khintchine inequality (12),

E := E

‚‚‚‚‚‚

NX

j,k=1

ǫjǫkAj,k

‚‚‚‚‚‚

2m

S2m

≤ 42m
EǫEǫ′

‚‚‚‚‚‚

NX

j,k=1

ǫjǫ
′
kAj,k

‚‚‚‚‚‚

2m

S2m

≤ 42mC2m
m Eǫ max

8
<
:

‚‚‚‚‚‚

 
NX

k=1

Bk(ǫ)∗Bk(ǫ)

!1/2
‚‚‚‚‚‚

2m

S2m

,

‚‚‚‚‚‚

 
NX

k=1

Bk(ǫ)Bk(ǫ)∗
!1/2

‚‚‚‚‚‚

2m

S2m

9
=
; , (13)

where Bk(ǫ) :=
PN

j=1 ǫjAj,k. We define

bAj,k = (0| . . . |0|Aj,k|0| . . . |0) ∈ C
r×tN
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where the non-zero block Aj,k is the k-th one, and similarly

eAj,k =
`
0| . . . |0|A∗

j,k|0| . . . |0
´∗ ∈ C

rN×t.

Then clearly

bAj,k
bA∗

j′,k′ =


0 if k 6= k′,

Aj,kA∗
j′,k if k = k′.

, (14)

eA∗
j,k
eAj′,k′ =


0 if k 6= k′,

A∗
j,kAj′,k if k = k′.

The Schatten class norm satisfies ‖A‖S2m
= ‖(AA∗)1/2‖S2m

. This

allows us to verify that

‚‚‚‚‚

NX

j=1

ǫj

NX

k=1

bAj,k

‚‚‚‚‚
S2m

=

‚‚‚‚‚‚‚

0
@X

j,j′

ǫjǫj′

X

k,k′

bAj,k
bA∗

j′,k′

1
A

1/2
‚‚‚‚‚‚‚

S2m

=

‚‚‚‚‚‚‚

0
@X

j,j′

ǫjǫj′

X

k

Aj,kA∗
j′,k

1
A

1/2
‚‚‚‚‚‚‚

S2m

=

‚‚‚‚‚‚

 
X

k

Bk(ǫ)Bk(ǫ)∗
!1/2

‚‚‚‚‚‚
S2m

.

Similarly, we also verify that
‚‚‚‚‚‚

 
X

k

Bk(ǫ)∗Bk(ǫ)

!1/2
‚‚‚‚‚‚

S2m

=

‚‚‚‚‚

NX

j=1

ǫj

NX

k=1

eAj,k

‚‚‚‚‚
S2m

.

Plugging the above expressions into (13) we can further estimate

E ≤ 42mC2m
2m

0
@E

‚‚‚‚‚

NX

j=1

ǫj

NX

k=1

bAj,k

‚‚‚‚‚

2m

S2m

+E

‚‚‚‚‚

NX

j=1

ǫj

NX

k=1

eAj,k

‚‚‚‚‚

2m

S2m

1
A .

Using Khintchine’s inequality (12) once more we obtain

E1 := E

‚‚‚‚‚

NX

j=1

ǫj

NX

k=1

bAj,k

‚‚‚‚‚

2m

S2m

≤ C2m
m max

8
<
:

‚‚‚‚‚‚

 
X

j

eBj
eB∗

j

!1/2
‚‚‚‚‚‚

2m

S2m

,

‚‚‚‚‚‚

 
X

j

eB∗
j
eBj

!1/2
‚‚‚‚‚‚

2m

S2m

9
=
; ,

where eBj =
PN

k=1
bAj,k. Using (14) we see that

X

j

eBj
eB∗

j =
X

k,j

Aj,kA∗
j,k.

Furthermore, with the block matrix

F =

0
BBBB@

eB1

eB2

...
eBN

1
CCCCA

=

0
BBB@

A1,1 A1,2 . . . A1,N

A2,1 A2,2 . . . A2,N

...
...

...
...

AN,1 AN,2 . . . AN,N

1
CCCA

we have

‖(
X

k

eB∗
k
eBk)1/2‖2m

S2m
= ‖(F ∗F )1/2‖2m

S2m
= ‖F‖2m

S2m
.

Hence,

E1 ≤ C2m
m max

8
<
:‖(

NX

j,k=1

Aj,kA∗
j,k)1/2‖2m

S2m
, ‖F‖2m

S2m

9
=
; .

As eAj,k differs from bAj,k only by interchanging Aj,k with A∗
j,k we

obtain similarly

E2 := E

‚‚‚‚‚

NX

j=1

ǫj

NX

k=1

eAj,k

‚‚‚‚‚

2m

S2m

≤ max

8
><
>:

‚‚‚‚‚‚‚

0
@

NX

j,k=1

A∗
j,kAj,k

1
A

1/2
‚‚‚‚‚‚‚

2m

S2m

, ‖F‖2m
S2m

9
>=
>;

.

Finally, we obtain

E ≤ 42mC2m
m (E1 + E2)

≤ 2 · 42mC4m
m max

8
><
>:

‚‚‚‚‚‚‚

0
@

NX

j,k=1

A∗
j,kAj,k

1
A

1/2
‚‚‚‚‚‚‚

2m

S2m

,

‚‚‚‚‚‚‚

0
@

NX

j,k=1

Aj,kA∗
j,k

1
A

1/2
‚‚‚‚‚‚‚

2m

S2m

, ‖F‖2m
S2m

9
>=
>;

.

This concludes the proof.

Repeating the above proof for the scalar case (which removes the

factor π/2 in the constant) and applying interpolation (see (16) and

(17) below) yields the following (compare also [27, Proposition 2.2]).

Corollary 4.5: Let aj,k ∈ C, j, k = 1, . . . , N be numbers with

aj,j = 0, j = 1, . . . , N . Let ǫk, k = 1, . . . , N be independent

Bernoulli ±1 random variables. Then for 2 ≤ p < ∞ it holds

2
4E

˛̨
˛̨
˛̨

NX

j,k=1

ǫjǫkaj,k

˛̨
˛̨
˛̨

p3
5

1/p

≤ dp

0
@

NX

j,k=1

|aj,k|2
1
A

1/2

,

where the constant

dp = 41/p(4/e)p.

V. PROOF OF THE COHERENCE ESTIMATE

Now we are equipped to provide the proof of Proposition 3.2. An

inner product of two columns si, sℓ of the normalized matrix 1√
n
Sb

Ω

has the form

〈si, sℓ〉 =
1

n

X

r∈Ω

bi−r mod Nbℓ−r mod N =
1

n

NX

j,k=1

bjbkai,ℓ
j,k,

where ai,ℓ
j,k = 1 if (j, k) = (i − r mod N, ℓ − r mod N) for

some r ∈ Ω and ai,ℓ
j,k = 0 otherwise. Similarly, the inner product

of the columns ti of the normalized matrix 1√
n
T c

Ω can be written

as 〈ti, tℓ〉 = n−1PN−1
j,k=−N+1 cjckãi,ℓ

j,k with ãi,ℓ
j,k = 1 if (j, k) =

(i−r, ℓ−r) ∈ {1, . . . , N}2 for some r ∈ Ω and 0 otherwise. Observe

that
P

j,k |aj,k|2 =
P

j,k |ãj,k|2 = |Ω| = n. Now let b ∈ R
N

and

c ∈ R
2N

be Rademacher series. Then Corollary 4.5 yields

n (E|〈si, sj〉|p)1/p =

0
@E|

X

j,k

bjbkai,ℓ
j,k|

p

1
A

1/p

≤ 41/p(4/e)p

0
@X

j,k

|aj,k|2
1
A

1/2

= 41/p(4/e)p
√

n
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for p ≥ 2, and the same estimate holds for E|〈ti, tj〉|p. In order

to complete the proof we use the following simple and well-known

probability estimate, see e.g. [24], [21].

Lemma 5.1: Suppose Z is a positive random variable satisfying

(EZp)1/p ≤ αβ1/pp1/γ for all p0 ≤ p < ∞ and some α, β, γ > 0.

Then for arbitrary κ > 0,

P(Z ≥ eκαu) ≤ βe−κuγ

for all u ≥ p0.

Proof: By Markov’s inequality we obtain

P(Z ≥ eκαu) ≤ EZp

(eκαu)p
≤ β

„
αp1/γ

eκαu

«p

.

Choosing p = uγ yields the statement.

Lemma 5.1 with the optimal choice κ = 1 yields

P(n|〈si, sℓ〉| ≥ 4
√

nu) ≤ 4e−u

for u ≥ 2. Taking the union bound over all possible pairs of different

columns si, sℓ we obtain

P(µ ≥ 4n−1/2u) ≤ 2N2e−u.

Set the right hand side to ǫ. Then the resulting u = log(2N2/ǫ) ≥ 2
since we may assume without loss of generality that N ≥ 2. We

obtain

P

„
µ ≥ 4

log(2N2/ǫ)√
n

«
≤ ǫ.

The same holds for the coherence of 1√
n
T c

Ω.

VI. PROOF OF THEOREM 3.4

We introduce the elementary shift operators on R
N

, (Sjx)ℓ =
xℓ−j mod N , j = 1, . . . , N , and

(Tjx)ℓ =


xℓ−j if 1 ≤ ℓ − j ≤ N,
0 otherwise,

for j = −N + 1, . . . , N − 1, ℓ = 1, . . . , N . Further, denote by

RΩ : R
N → R

Ω
the operator that restricts a vector to the indices in

Ω. Then we can write

Sb
Ω = RΩ

NX

j=1

ǫjSj and T c
Ω = RΩ

N−1X

j=−N+1

ǫjTj ,

where (ǫj) is a Rademacher sequence. Denote by A either 1√
n
Sb

Ω or
1√
n
T c

Ω. We need to prove a bound on the operator norm of XΛ :=

A∗
ΛAΛ − IΛ where IΛ denotes the identity on R

Λ
. We introduce

R∗
Λ : R

Λ → R
N

to be the extension operator that fills up a vector

in R
Λ

with zeros outside Λ. Further, we denote by Dj either Sj or

Tj . Observe that

A∗
ΛAΛ =

1

n

X

j

ǫjRΛD∗
j R∗

Ω

X

k

ǫkRΩDkR∗
Λ

=
1

n

X

j,k
j 6=k

ǫjǫkRΛD∗
j PΩDkR∗

Λ +
1

n
RΛ

 
X

j

D∗
j PΩDj

!
R∗

Λ,

where PΩ = R∗
ΩRΩ denotes the projection operator which cancels

all components of a vector outside Ω. Here and in the following the

sums range either over {1, . . . , N} or over {−N + 1, . . . , N − 1}
depending on whether we consider circulant or Toeplitz matrices. It

is straightforward to check that
X

j

D∗
j PΩDj = nIN , (15)

where IN is the identity on R
N

. Since RΛR∗
Λ = IΛ we obtain

XΛ =
1

n

X

j 6=k

ǫjǫiRΛD∗
j PΩDkR∗

Λ =
1

n

X

j 6=k

ǫjǫkAj,k

with Aj,k = RΛD∗
j PΩDkR∗

Λ. Our goal is to apply Corollary 4.3. To

this end we first observe that by (15)

X

j

A∗
j,kAj,ℓ = RΛD∗

kPΩ

 
X

j

DjPΛD∗
j

!
PΩDℓR

∗
Λ

= sRΛD∗
kPΩDℓR

∗
Λ.

Using (15) once more this yields

X

j,k

A∗
j,kAj,k = sRΛ

 
X

k

D∗
kPΩDk

!
R∗

Λ = snRΛR∗
Λ = snIΛ.

Since the entries of all matrices Aj,k are non-negative we get

‖(
X

j 6=k

A∗
j,kAj,k)1/2‖2m

S2m
= Tr

0
@X

j 6=k

A∗
j,kAj,k

1
A

m

≤ Tr

0
@X

j,k

A∗
j,kAj,k

1
A

m

= Tr (snIΛ)m = sm+1nm,

where Tr denotes the trace. Furthermore, since A∗
j,k = Ak,j we haveP

j 6=k A∗
j,kAj,k =

P
j 6=k Aj,kA∗

j,k. Let F denote the block matrix

F = (Ãj,k)j,k where Ãj,k = Aj,k if j 6= k and Ãj,j = 0. Using

once again that the entries of all matrices are non-negative we obtain

‖F‖2m
S2m

= Tr [(F ∗F )m]

= Tr

2
664

X

j1,j2,...,jm

k1,k2,...,km

Ã∗
j1,k1

Ãj1,k2
Ã∗

j2,k2
Ãj2,k3

· · · Ã∗
jm,km

Ãjm,k1

3
775

≤ Tr
X

k1,...,km

"
X

j1

A∗
j1,k1

Aj1,k2
· · ·
X

jm

A∗
jm,km

Ajm,k1

#

= sm Tr
X

k1,...,km

[RΛD∗
k1

PΩDk2
R∗

ΛRΛD∗
k2

PΩDk3
R∗

Λ · · ·

· · ·RΛD∗
km

PΩDk1
R∗

Λ] ,

where we applied also (15) once more. Using the cyclicity of the trace

and applying (15) another time, together with the fact that Tk = T ∗
−k

and Sk = S∗
N−k, gives

‖F‖2m
S2m

≤ sm Tr

2
4X

k1

Dk1
PΛD∗

k1
PΩ

X

k2

Dk2
PΛD∗

k2
PΩ · · ·

· · ·
X

kn

Dkn
PΛD∗

kn
PΩ

#
= s2m Tr[PΩ] = ns2m.

Since by assumption (5) s ≤ n it follows that

‖F‖2m
S2m

≤ ‖(
X

j 6=k

A∗
j,kAj,k)1/2‖2m

S2m

= ‖(
X

j 6=k

Aj,kA∗
j,k)1/2‖2m

S2m
≤ nmsm+1.

Using ‖XΛ‖ = ‖XΛ‖S∞
≤ ‖XΛ‖Sp

and applying the Khintchine

inequality in Theorem 4.3 we obtain for an integer m

E‖XΛ‖2m = E‖A∗
ΛAΛ − IΛ‖2m ≤ E‖A∗

ΛAΛ − IΛ‖2m
S2m

=
1

n2m
E‖
X

j 6=k

ǫjǫkAj,k‖2m
S2m

≤ 2(2π)2m

„
(2m)!

2mm!

«2
sm+1

nm
.
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Stirling’s formula gives

(2m)!

2mm!
=

√
2π2m(2m/e)2meλ2m

2m
√

2πm(m/e)meλm

≤
√

2 (2/e)mmm, (16)

where 1
12m+1

≤ λm ≤ 1
12m

. An application of Hölder’s inequality

yields for θ ∈ [0, 1] and an arbitrary random variable Z.

E|Z|2m+2θ = E[|Z|(1−θ)2m|Z|θ(2m+2)]

≤ (E|Z|2m)1−θ(E|Z|2m+2)θ. (17)

Combining our estimates above gives

E‖XΛ‖2m+2θ ≤ (E‖XΛ‖2m)1−θ(E‖XΛ‖2m+2)θ

≤ 4(2π)2m+2θ(2/e)2m+2θm2m(1−θ)(m + 1)2θ(m+1) sm+θ+1

nm+θ

≤ 4

„
4π

e

«2m+2θ

(m + θ)2m+2θ sm+θ+1

nm+θ
,

where we used the inequality between the geometric and arithmetic

mean in the third step. In other words, for p ≥ 2,

(E‖XΛ‖p)1/p ≤ 2π

e

r
s

n
(4s)1/pp.

An application of Lemma 5.1 with the optimal value κ = 1 yields

P

„
‖XΛ‖ ≥ 2π

r
s

n
u

«
≤ 4se−u

for all u ≥ 2. Setting the right hand side equal ǫ shows that ‖XΛ‖ ≤
δ with probability at least 1 − ǫ provided

n ≥ (2π)2δ−2s log2(4s/ǫ).

This completes the proof of Theorem 3.4.
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