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Abstract—Audio signals are represented via the sinusoidal model as
a summation of a small number of sinusoids. This approach introduces
sparsity to the audio signals in the frequency domain, whichis exploited
in this paper by applying Compressed Sensing (CS) to this sparse
representation. CS allows sampling of signals at a much lower rate
than the Nyquist rate if they are sparse in some basis. In thismanner,
a novel sinusoidal audio coding approach is proposed, whichdiffers
in philosophy from current state-of-the-art methods which encode the
sinusoidal parameters (amplitude, frequency, phase) directly. It is shown
here that encouraging results can be obtained by this approach, although
inferior at this point compared to state-of-the-art. Several practical
implementation issues are discussed, such as quantizationof the CS
samples, frequency resolution vs. coding gain, error checking, etc., and
directions for future research in this framework are proposed.

I. I NTRODUCTION

The growing demand for audio content far outpaces the corre-
sponding growth in users’ storage space or bandwidth. Thus there
is a constant incentive to further improve the compression of audio
signals. This can be accomplished either by applying compression
algorithms to the actual samples of a digital audio signal, or initially
using a signal model and then encoding the model parameters as a
second step. In this paper, we explore a novel method for encoding
the parameters of the sinusoidal model [1].

The sinusoidal model represents an audio signal using a small
number of time-varying sinusoids. The remainder error signal—
often termed the residual signal—can also be modelled to further
improve the resulting subjective quality of the sinusoidalmodel [2].
The sinusoidal model allows for a compact representation ofthe
original signal and for efficient encoding and quantization. State-
of-the-art methods of encoding and compressing the parameters of
the sinusoidal model (amplitudes, frequencies, phases) are based on
directly encoding these parameters [3]–[6]. In this paper,we propose
using the emerging compressed sensing (CS) [7], [8] methodology
to encode and compress the sinusoidally-modelled audio signals.

Compressed sensing seeks to represent a signal using a number of
linear, non-adaptive measurements. Usually the number of measure-
ments is much lower than the number of samples needed if the signal
is sampled at the Nyquist rate. CS requires that the signal isvery
sparse in some basis—in the sense that it is a linear combination of
a small number of basis functions—in order to correctly reconstruct
the original signal. Clearly, the sinusoidally-modelled part of an audio
signal is a sparse signal, and it is thus natural to wonder howCS
might be used to encode such a signal.

Our method encodes the time-domain signal instead of the sinu-
soidal model parameters as state-of-art methods propose [3]–[6]. The
advantage is that the encoding operation is simplified into randomly
sampling the time-domain sinusoidal signal, which is obtained after
applying a psychoacoustic sinusoidal model to a monophonicaudio
signal. The random samples can be further encoded (here scalar

quantization is suggested, but other methods could be used to im-
prove performance). Additional advantages are that CS has inherent
encryption and robustness to channel errors, and scales well to multi-
channel cases. An issue that arises here is that as the encoding is
performed in the time-domain—rather than the Fourier domain—the
quantization error is not localized in frequency, and it is therefore
more complicated to predict the audio quality of the reconstructed
signal. At this point, it is noted that the paper deals only with
encoding the sinusoidal part of the model. This is to our knowledge
the first attempt to exploit the sparse representation of thesinusoidal
model for audio signals using compressed sensing, and it is shown
here that several interesting questions arise in this context.

II. SINUSOIDAL MODEL

The sinusoidal model was initially applied in the analysis/synthesis
of speech [1]. A harmonic signals(t) is represented as the sum of
a small numberK of sinusoids with time-varying amplitudes and
frequencies. This can be written as

s(t) =

K
∑

k=1

αk(t) cos(βk(t)) (1)

whereαk(t) and βk(t) are the instantaneous amplitude and phase,
respectively. To estimate the parameters of the model, one needs to
segment the signal into a number of short-time frames and compute a
short-time frequency representation for each frame. Consequently, the
prominent spectral peaks are identified using a peak detection algo-
rithm (possibly enhanced by perceptual-based criteria). Interpolation
methods can be used to increase the accuracy of the algorithm[2].
Each peak at thel-th frame is represented as a triad of the form
{αl,k, fl,k, θl,k} (amplitude, frequency, phase), corresponding to the
K-th sinewave. A peak continuation algorithm is usually employed in
order to assign each peak to a frequency trajectory using interpolation
methods. A more accurate representation of audio signals isachieved
when a model for the sinusoidal error signal is included as well.
Practically, after the sinusoidal parameters are estimated, the noise
component is computed by subtracting the harmonic component from
the original signal. It is noted that in this paper we are onlyinterested
in encoding the sinusoidal part, and the error part is considered as
available in our listening tests (as in [4]).

III. C OMPRESSEDSENSING

In the compressed sensing methodology, a signal which is sparse
in some basis can be represented using much fewer samples than the
Nyquist rate would suggest. Given that a sinusoidally-modelled audio
signal is clearly sparse in the frequency domain, our motivation has
been to encode such signal using a small part of its actual samples,
thus avoiding encoding a large degree of unnecessary information. In
the following, we briefly review the CS methodology.
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Fig. 1. A block diagram of the proposed system. In the encoder, the sinusoidal part of the monophonic audio signal is encoded by randomly sampling its
time-domain representation, and then quantizing the random sample using scalar quantization.

A. Measurements

Let xl be the N samples of the harmonic component in the
sinusoidal model in thelth frame. It is clear thatxl is a K-sparse
signal in the frequency domain. To facilitate our compressed sensing
reconstruction, we require that the frequenciesfl,k are selected from a
discrete set, the most natural set being that formed by the frequencies
used in theN -point fast Fourier transform (FFT). Thusxl can be
written asxl = ΨX l, whereΨ is an N × N inverse FFT matrix,
andX l is the FFT ofxl. As xl is a real signal,X l will contain 2K
non-zerocomplex entries representing the real and imaginary parts—
or in an equivalent description, the amplitudes and phases—of the
component sinusoids.

In the encoder, we takeM non-adaptive linear measurements
of xl, where M � N , resulting in theM × 1 vector yl. This
measurement process can be written asyl = Φlxl = ΦlΨX l where
Φl is anM × N matrix representing the measurement process. For
the CS reconstruction to work,Φl and Ψ must beincoherent. In
order to provide incoherence that is independent of the basis used
for reconstruction, a matrix with elements chosen in some random
manner is generally used. As our signal of interest is sparsein
the frequency domain, we can simply take random samples in the
time domain to satisfy the incoherence condition, see [9] for further
discussion of random sampling (RS). Note that in this case,Φl is
formed by randomly-selected rows of theN × N identity matrix.

B. Reconstruction

Onceyl has been measured, it must be quantized and sent to a
decoder, where it is reconstructed. Reconstruction of a compressed
sensed signal involves trying to recover the sparse vectorX l. It has
been shown [7] [8] that

X̂ l = arg min ‖X l‖p s.t. yl = ΦlΨX l, (2)

with p = 1 will recoverX l with high probability if enough measure-

ments are taken. Thèp norm is defined as‖a‖p =
(
∑

i
|ai|

p
) 1

p .
It has recently been shown in [10], [11] thatp < 1 can outperform
the p = 1 case. It is these methods that we use for reconstruction in
this paper. Further discussion of the algorithms used is presented in
Section IV-D

A feature of CS reconstruction is that perfect reconstruction cannot
be guaranteed, and thus only aprobability of “perfect” reconstruction

can be guaranteed, where “perfect” defines some acceptability crite-
ria, typically a signal-to-distortion ratio. This probability is dependent
on M , N , K andQ, the number of bits used for quantization.

Another important feature of the reconstruction is that when it
fails, it can fail catastrophically for the whole frame. Notonly will
the amplitudes and phases of the sinusoids in the frame be wrong,
but the sinusoids selected—or equivalently, their frequencies—will
also be wrong. In the audio environment, this is significant as the ear
is sensitive to such discontinuities. Thus it is essential to minimize
the probability of frame reconstruction errors (FREs), andif possible
eliminate them.

Let F l be the positive FFT frequency indices inxl, whose
componentsFl,k are related to the frequencies in thexl by fl,k =
2πFl,k/N . As F l is known in the encoder, we can use a simple
forward error correction to detect whether an FRE has occurred. We
found that an 8-bit cyclic redundancy check (CRC) onF l detected
all the errors that occurred in our simulations.

Once we detect an FRE, we can either re-encode and retransmitthe
frame in error or use some interpolation between the correctframes
before and after the errored frame to estimate it. For the rest of
this work, we assume that any frames with error can be corrected
by retransmission. Given that with a wise choice of parameters the
probability of FRE (PFRE) can remain quite small (e.g. below10−2),
the additional bitrate burden due to retransmission will benegligible.

IV. SYSTEM DESIGN

A block diagram of our proposed system is depicted in Fig. 1.
The audio signal is first passed through a psychoacoustic sinusoidal
modelling block to obtain the sinusoidal parameters{F l, αl, θl} for
the current frame. These then go through what can be thought of as a
“pre-conditioning” phase where the amplitudes are whitened—as dis-
cussed in Section IV-A—and the frequencies remapped, as discussed
in Section IV-B. The modified sinusoidal parameters{F ′

l, α
′

l, θl}
are then reconstructed into a time domain signal, from whichM
samples are randomly selected. These random samples are then
quantized toQ bits by a uniform scalar quantizer, and sent over
the transmission channel along with the side information from the
spectral whitening, frequency mapping and cyclic redundancy check
(CRC) blocks.

In the decoder, the bit stream representing the random samples
is returned to sample values in the dequantizer block, and passed
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Fig. 2. Probability of frame reconstruction errorvs the number of random
samples per frame for three cases: no quantization and no spectral whitening,
Q = 4 bits quantization and no spectral whitening, andQ = 4 bits
quantization and 3 bits for spectral whitening.

to the compressed sensing reconstruction algorithm, whichoutputs
an estimate of the modified sinusoidal parameters,{F̂

′

l, α̂
′

l, θ̂l}.
If the CRC detector determines that the block has been correctly
reconstructed, the effects of the spectral whitening and frequency
mapping are removed to obtain an estimate of the original sinusoid
parameters,{F̂ l, α̂l, θ̂l}, which are passed to the sinusoidal model
resynthesis block. If the block has not been correctly reconstructed,
then the current frame is either retransmitted or interpolated, as
previously discussed.

In the tests employed in this paper, we investigated the performance
of the proposed system usingK = 10 sinusoid components per frame
and anN = 256-point FFT. All the audio signals were sampled at
22 kHz with a 10 ms window and 50% overlapping between frames.
The data used for the results this section are around 10,000 frames
of the audio data used in the listening tests of Section V.

A. Spectral Whitening

Once we quantize theM samples that we send, we find thatPFRE

increases significantly. Equivalently, theM required to achieve the
samePFRE increases. Fig. 2 illustrates this dramatically; the “Q = 4,
no SW” curve in Fig. 2 shows that our system becomes unusable for
the 4-bit quantization with no spectral whitening case.

As our quantization is performed in the time domain, it has an
effect similar to adding noise to all of the frequencies in the recovered
frame x̂l. We must then select theK largest components of̂xl

and zero the remaining components. This is illustrated in Fig. 3.
The top plot shows the reconstruction without quantization, and the
desired components are theK largest values in the reconstruction.
The middle plot shows the effect of 4-bit quantization, where some
of the undesired components are now larger than the desired ones
and an FRE will occur.

To alleviate this problem we implemented spectral whitening in
the encoder. We first tried to employ envelope estimation of the
sinusoidal amplitudes based on [12], but we could not get acceptable
performance without incurring too large an overhead. Our final choice
was to simply divide each amplitude by a 3-bit quantized version of
itself, and send this whitening information along with the quantized
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Reconstruction with quantization and spectral whitening
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Fig. 3. Reconstructed frames showing the effects of 4-bit quantization and
spectral whitening.

measurements. The result is seen the bottom plot in Fig. 3, where
the desired components are clearly theK largest values and thus no
FRE will occur. This whitening incurs an overhead of approximately
3K bits, but the savings in reducedM andQ allow us to achieve a
lower overall bitrate for a given probability of FRE.

In the case of 4-bit quantization and 3-bit spectral whitening, our
system again becomes feasible as illustrated in Fig. 2. In fact, this
case only requires 10 more random samples than the case with no
quantization.

B. Frequency Mapping

The number of random samples,M , that must be encoded in-
creases withN , the number of bins used in the FFT. In other words,
there is a trade-off between the amount of encoded information and
the frequency resolution of the sinusoidal model (which affects the
resulting quality of the modelled audio signal). This effect can be
partly alleviated byfrequency mapping, which reduces the effective
number of bins in the model by a factor ofCFM, which we term the
frequency mapping factor. Thus the number of bins after frequency
mapping is given byNFM = N/CFM.

We chooseCFM to be a power of two so that the resultingNFM will
also be a power of two, suitable for use in an FFT. We then create
F ′

l, a mapped version ofF l, whose components are calculated as

F ′

l,k =
⌊

Fl,k

CFM

⌋

, (3)

whereb·c denotes the floor function. We also need to calculate and
sendḞ l with componentsḞl,k given by

Ḟl,k = Fl,k mod CFM. (4)

We sendḞ l—which amounts toK log
2
CFM bits—along with our

M measurements, and once we have performed the reconstruction
and obtainedF ′

l, we can calculate the elements ofF l as

Fl,k = CFMF ′

l,k + Ḟl,k. (5)

It is important to note that not all frames can be mapped by the
same value ofCFM, it is very dependent on each frame’s particular
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Fig. 4. Probability of frame reconstruction errorvs the number of random
samples per frame for various values of frequency mapping, with 4-bit
quantization of the random samples, and 3 bits for spectral whitening.

distribution ofF l. Essentially, eachFl,k must map to a distinctF ′

l,k.
However, this can easily be checked in the encoder so that thevalue
of CFM chosen is the highest value for which (3) produces distinct
values ofF ′

l,k, k = 1, . . . , K. For the signals used in this paper, over
85% of the frames could be mapped by anCFM equal to 4, giving
an NFM = 64.

The clear decrease in the requiredM for a given probability of FRE
for various values ofNFM is illustrated in Fig. 4. The final bitrates
achieved in all of the above cases are discussed in Section IV-E.

C. Quantization and entropy coding of random samples

We employed a uniform scalar quantizer to quantize the random
samples. To further reduce the number of bits required for each
quantization value, an entropy coding scheme [13] may be used
after the quantizer. Entropy coding is a lossless data compression
scheme, which maps the more probable codewords (quantization
indices) into shorter bit sequences and less likely codewords into
longer bit sequences. In our implementation Huffman codingis used
as an entropy encoding technique. Thus it is expected that the average
codeword length will be reduced after the Huffman coding. The
average codeword length is defined as

l̄ =

2
b

∑

i=1

pili, (6)

wherepi is the probability of occurrence for thei-th codeword,li is
the length of each codeword and2b is the total number of codewords,
as b is the number of bits assigned to each codeword before the
Huffman encoding.

Table I presents the percentages of compression that can be
achieved through Huffman encoding for each audio signal forQ =
3, 4, and 5 bits of quantization. The possible compression clearly
decreases asQ increases, but for our chosen case ofQ = 4, a
compression of about 8% is clearly achievable. It must be noted
though that this requires significant training—something we prefer
to avoid—so this is presented as an optional enhancement.

TABLE I
COMPRESSION ACHIEVED AFTER ENTROPY CODING. (Q: CODEWORD

LENGTH IN BITS, Q̄: AVERAGE CODEWORDLENGTH IN BITS AFTER

ENTROPYCODING, PC: PERCENTAGE OFCOMPRESSIONACHIEVED)

Signal Q Q̄ PC Q Q̄ PC Q Q̄ PC

Violin 3 2.64 11.9% 4 3.70 7.5% 5 4.73 5.4%

Harpsichord 3 2.62 12.7% 4 3.67 8.2% 5 4.70 6.1%

Trumpet 3 2.60 13.6% 4 3.63 9.3% 5 4.66 6.8%

Soprano 3 2.59 13.7% 4 3.62 9.4% 5 4.65 7.0%

Chorus 3 2.64 12.2% 4 3.68 8.0% 5 4.71 5.9%

Female speech 3 2.60 13.2% 4 3.64 9.0% 5 4.68 6.5%

Male speech 3 2.60 13.4% 4 3.63 9.2% 5 4.66 6.8%

Overall 3 2.61 12.9% 4 3.65 8.7% 5 4.68 6.3%
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Fig. 5. Probability of frame reconstruction errorvs the number of random
samples per frame for different reconstruction algorithms, with 4-bit quanti-
zation of the random samples, 3 bits for spectral whitening,andNFM = 64.

D. Reconstruction Algorithms

In order to ensure we obtained the lowest-possible bitrate,we
analyzed the performance of a variety of reconstruction algorithms.
The ones we found to perform best for our system were the`p norm
with p = 1/2 and the smoothed̀0 norm, described in [10] and [11],
respectively. Fig. 5 presents the results of simulations with our finally-
chosen parameters. We have included the results obtained using
orthogonal matching pursuit (OMP) [14] for reference. The smoothed
`0 norm is the best choice of algorithm as it is least complex—being
the same order of complexity as OMP—and performs almost as well
as the`1/2 norm. The`1/2 norm is about 1000 times as complex as
the other two algorithms, although the authors do state that[10] is a
relatively naı̈ve implementation.

The final curve in Fig. 5—labelled “Hybrid”—is new reconstruc-
tion algorithm that we are proposing. In a sense, it can be considered
as a “super” algorithm as it makes use of all the other algorithms.
As we can tell whether or not a particular algorithm has successfully
reconstructed a frame—by checking the CRC to see if an FRE has
occurred—we can then try a different algorithm and check whether
that succeeds. This is only possible as different algorithms fail for
different frames. Thus for the hybrid algorithm to fail,all three of
the other algorithms must fail. This clearly provides the best possible
performance, but incurs additional complexity due to the fact that



TABLE II
PARAMETERS TO ACHIEVE A PROBABILITY OFFREOF APPROXIMATELY

10−3 , FORN = 256, NFM = 128, K = 10

raw overhead final per
NFM Q M bitrate CRC FM SW bitrate sinusoid

128 5 60 300 8 11 50 369 36.9

128 4 60 240 8 11 50 319 31.9

128 3 70 210 8 11 50 279 27.9

TABLE III
PARAMETERS THAT ACHIEVE A PROBABILITY OF FREOF

APPROXIMATELY 10
−2 WITH N = 256 AND K = 10

raw overhead final per
NFM Q M bitrate CRC FM SW bitrate sinusoid

256 4 68 272 8 0 30 310 31.0

128 4 55 220 8 11 30 269 26.9

64 4 43 172 8 23 30 233 23.3

multiple algorithms may need to be run.
In practice, this effect could be minimised by running the smoothed

`0 norm—the least-complex algorithm—and only running the others
if this fails. It is clear from Fig. 5 that using the hybrid algorithm
would save about 2 random samples, and withQ = 4, andK = 10,
this equates to almost 1 bit per sinusoid. Nevertheless, we chose not
to use this algorithm in the majority of our simulations due to the
increased complexity.

E. Bitrates

In Table II, three sets ofM and Q are given (per audio frame)
that achieve a probability of FRE of approximately10−3, for the
N = 256, NFM = 128, andK = 10 case with differing values of
Q. The overhead consists of the extra bits required for the CRC,
the frequency mapping and the spectral whitening. These arethe
parameters that were used for the listening tests of SectionV. Note
that at this point in the research we were aiming for a probability of
FRE of approximately10−3 rather than10−2 and were using 5 bits
for spectral whitening instead of 3 bits.

After the results of the first set of listening tests, we movedto
focus onQ = 4, and Table III presents the bitrates achievable for
a probability of FRE of approximately10−2 corresponding to the
curves in Fig. 4. It is clear that the overhead incurred from spectral
whitening and frequency mapping is more than accounted for by
significant reductions inM , resulting in overall lower bitrates.

In Fig. 6 we present thePFRE vs M for the individual signals
used in our simulations and listening tests with for the casewith
NFM = 64, Q = 4, 3-bit spectral whitening and the smoothed`0
norm reconstruction algorithm. It is clear that for aPFRE of 10−2

the M does not vary much, say from 43 to 44. Equivalently, with a
fixed M of 43, thePFRE only varies from about0.008 to 0.018. This
supports our claim that our system does not require any training, as
this is a wide variety of signals that perform similarly. SeeSection V
for more details on the signals used.

It should also be noted that the lowest bitrate for theNFM = 64
case can be reduced to under 21 bits per sinusoid if entropy coding
and the hybrid reconstruction algorithm are used, althoughthis will
require training and an increase in complexity in the decoder.

V. L ISTENING TESTS

In this section, we examine the performance of our proposed
system, with respect to the resulting audio quality. Two types of
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Fig. 6. Probability of frame reconstruction errorvs the number of random
samples for individual signals, with 4-bit quantization ofthe random samples,
3 bits for spectral whitening, andNFM = 64.

monophonic listening tests were performed, where volunteers were
presented with audio files using high-quality headphones ina quiet
office room. The first test was based on the ITU-R BS.1116 [15]
methodology, thus the coded signals were compared against the
originally recorded signals using a 5-scale grading system(from 1-
“very annoying” audio quality compared to the original, to 5-“not
perceived” difference in quality). No anchor signals were used. The
following seven signals were used (Signals 1-7): harpsichord, violin,
trumpet, soprano, chorus, female speech, male speech. Signals 1-4
were obtained from the EBU SQAM disc, Signal 5 was provided by
Prof. Kyriakakis of the University of Southern California (a recording
of the chorus of a classical music performance), while Signals 6-7
were obtained from the VOICES corpus [16] of OGI’s CSLU. The
audio signals used in the tests can all be found at our website1. It
is noted that for all listening tests the sinusoidal error signal was
obtained and added to the sinusoidal part, so that audio quality is
judged without placing emphasis on the stochastic component, and
this is similar to other tests in this area [4], [6]. The signals were
downsampled to 22 kHz, so that the stochastic component doesnot
affect the resulting quality to a large degree. This is because the
stochastic component is particularly dominant in higher frequencies,
thus its effect would be more evident in the 44.1 kHz than the 22 kHz
sampling rate, while the focus of the paper is on the sinusoidal rather
than the stochastic component. The second type of test employed
was a preference test (forced choice), where listeners indicated their
preference among a pair of audio signals at each time, in terms of
quality. The sinusoidal analysis/synthesis window was 10 ms long,
with 50% overlapping.

One quality and one preference test were conducted to evaluate
the quality of the audio signals when modelled byN = 256-point
FFT andK = 10 sinusoids per frame (no psychoacoustic model
employed). The goal was to evaluate the resulting quality inthis
case, regarding the effect of the number of bits of quantization and
number of random samples in the resulting audio quality. Eleven
volunteers participated in this pair of listening tests. The results of
the quality test are shown in Fig. 7, where the vertical lines indicate

1http://www.ics.forth.gr/̃ mouchtar/cs4sm/
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the 95% confidence limits. Three different cases of encodingwere
used. The resulting bitrates per audio frame for these threecases
are given in Table II. It is clear from Fig. 7 that the quality for the
Q = 5, M = 60 andQ = 4, M = 60 cases remains well above 4.0
grade (perceived, not annoying), even for the more complex chorus
signals, while for theQ = 3, M = 70 case—which represents the
lowest bitrate of the three cases—the quality deteriorates. Thus we
can conclude that with a bitrate of 300 bits per audio frame wecan
achieve very good quality (above 4.0). It is not claimed herethat the
proposed approach can result in lower bitrates than currentstate-of-
the-art methods. Rather it shown that is possible to achievesimilar
performance, with a system which is based on a novel approachand
can possibly be improved in terms of bitrate, while introducing the
advantages due to the CS methodology, as stated in Section I.

It is also interesting to investigate whether for a fixed bitrate, more
bits should be put into the number of bits/sampleQ or the number
of (random) samplesM . A preference listening test was conducted
for this purpose, with audio signals encoded withQ = 4, M = 60
and Q = 3, M = 80. It is clear from Fig. 8 thatQ = 4, M = 60
was a preferred distribution of available bits, although this was more
significant for some signals over others. We can conclude from this
test that using more bits/sample is more important than increasing the
number of samples (for a constant bitrate), especially at low bitrates
where the effect of quantization is more evident.

VI. CONCLUSIONS

In this paper, an initial investigation was performed into whether
the Compressed Sensing framework can be employed to encode the
harmonic part of audio signals which are modelled by the sinusoidal
model. This was proposed based on the fact that CS results in
fewer measurements than the Nyquist rate for sparse signals, and
the harmonic part of audio signals is sparse by definition in the
Fourier domain. The results obtained are encouraging, and at the same
time raise many issues for further investigation such as quantization
of the samples, addressing incorrectly reconstructed audio frames,
the tradeoff between frequency resolution and number of samples
needed, improving the spectral whitening, and reducing thedecoder
complexity.
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