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Abstract—Compressed Sensing (CS) provides a new framework for

signal sampling, exploiting redundancy and sparsity in incoherent bases.

For images with homogeneous objects and background, CS provides an

optimal reconstruction framework from a set of random projections in

the Fourier domain, while constraining bounded variations in the spatial

domain. In this paper, we propose a CS-based method to simultaneously
acquire and denoise data based on statistical properties of the CS

optimality, signal modeling and characteristics of noise reconstruction.
Our approach has several advantages over traditional denoising methods,
since it can under-sample, recover and denoise images simultaneously.

We demonstrate with simulated and practical experiments on fluorescence

images that we obtain images with similar or increased SNR even with
reduced exposure times. Such results open the gate to new mathematical

imaging protocols, offering the opportunity to reduce exposure time along
with photo-toxicity and photo-bleaching and assist biological applications

relying on fluorescence microscopy.

I. INTRODUCTION

In microscopy, observation of fluorescent molecules is challenged

by the photo-bleaching and photo-toxicity, as these molecules are

slowly destroyed by the light exposure necessary to stimulate them

into fluorescence. Unfortunately, reducing exposure time drastically

deteriorates the signal to noise ratio (SNR) and hence, the image

quality. To improve the SNR, many denoising methods are available

such as Non-Local Means (NL-means) [1], Total Variation (TV) [2],

non-linear isotropic and anisotropic diffusion [3]. Other methods

exploit the decomposition of the data into the wavelets, ridglets,

curvelets bases and perform denoising by shrinking the transform

coefficients [4]. Recently, efficient denoising methods were also

developed based on sparsity and redundant representations over

learned dictionaries, where the image is denoised and a dictionary

is trained simultaneously (e.g. the K-SVD [5]).

In this paper we propose an application of Compressed Sensing

on fluorescence microscopy images, enabling the acquisition of

high SNR images under reduced exposure times. Instead of post-

acquisition denoising methods, here we are interested in denoising

as much as CS advantages. Our framework is based on the property

of CS to efficiently reconstruct sparse signals with under-sampled

acquisition rates, significantly below the Shannon/Nyquist theoretical

bound. Similarly to recent experiments for MRI CS-based reconstruc-

tion [6], the acquisition protocol consists in measuring the image

signal onto a random set of Fourier vectors [7] and constraining Total

Variation (TV), which is incoherent to the Fourier domain. Indeed, the

CS framework introduced by Candès [8] provides theoretical results

and shows that if a signal is sparse (i.e. has a small number of non-

zero coefficients) in some basis, then with high probability, uniform

random projections of this signal onto an unstructured domain, where

the signal is not sparse, contains enough information to optimally

reconstruct this signal. The incoherence property between the sparsity
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basis Ψ and the sampling basis Φ ensures that signals having sparse

representations in Ψ must have a large support in the measurement

domain described by Φ. Random selections of basis functions in

Φ are typically suitable since random vectors are, with very high

probability, incoherent with any sparsity-encoding basis functions

from Ψ, defining orthogonal domains [9].

Considering that a noisy signal x has a sparse representation in

some basis Ψ, we want to recover the signal x ∈ R
N from noisy

measurements y = Φ(x + n) | y ∈ R
M , the sampling matrix being

defined by M vectors in Φ, with M ≪ N . The presence of noise

in the acquired signal might alter its sparsity in the domain Ψ. By

optimally reconstructing a signal with explicit sparsity constraints,

CS offers a theoretical framework to remove non-sparse random noise

components from a corrupted signal. Indeed, removing noise from x+
n will rely on the efficacy of Ψ on representing the signal x sparsely

and the inefficacy on representing the noise n [10]. We propose to

use the CS sampling and reconstruction framework to denoise and

improve the SNR of microscopy fluorescence images acquired using

shorter exposure times.

II. BACKGROUND

A. Sparsity and incoherence

A discrete signal is considered sparse when it has a large number

of zero coefficients on some basis functions. We define a S-sparse

signal if S elements are non-zero. Natural signals measuring discrete

events or natural images with smooth and homogeneous objects can

be considered approximately sparse in some basis and be accurately

approximated with a small set of coefficients [7], [11]. In the general

case, a signal has a S-sparse representation in the set of basis

functions Ψ = {Ψi}
N
i=1 if:

x =
X

i

ciΨi with ‖ c ‖
ℓ1

≈ S (1)

Here Ψi is a basis function and the ℓ1 norm well approximates the

number of nonzero coefficients of c.

In our framework, for biological images, we choose the global

Total Variation as sparsifying transform [12], [13]. This measure

is well-known in image processing and very popular in variational

segmentation problems for its ability to limit high frequencies and

to provide regularized segmented regions. This measure is also well

suited for denoising where the goal is to restore an image with smooth

objects and background. Minimization of the TV norm, introduced

in [14], [2] for signal denoising, corresponds to a constraint on the

number of discontinuities in an image, and the homogeneity of the

objects. TV sparsity constraints in CS were introduced by Candès

in [8], expressed as:

TV (x) = ‖ ∇(x) ‖
ℓ1

(2)

TV (x) =
X

i,j

q

{x(i+1,j) − x(i,j)}2 + {x(i,j+1) − x(i,j)}2 (3)
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Fig. 1. Image sparsity illustrated in a two-dimensional spatial domain. Top
left: original image. Top right: nearly sparse representation domain (using the
gradient of the signal). Bottom: line profiles from corresponding blue lines in
the spatial and gradient domains.

It is interesting to note here, as pointed out in [8], that the transform

which produces the TV coefficients corresponds to the ℓ2 norm

of a particular operation on the image, based on the computation

of horizontal ∇x and vertical ∇y gradients and combination of

these operators into a complex-valued image: ∇x + i∇y . The TV
coefficients are then the ℓ2 norm of this transformed image (computed

locally for each pixel) and the CS framework minimizes the global ℓ1
norm of these TV coefficients over the whole image. Such transform

corresponds to the decomposition of the image onto Heavisides basis

functions, which support is adaptive (similarly to the Basis Pursuit

framework for decompositions on dictionaries [11]) and defined by

the localization of high-gradient values in the image (i.e. edge maps).

TV constraint is well suited for biological images, where structures

and background provide small gradient values while a finite set of

edges provides high gradient values as illustrated in Figure 1 for

drosophila ovocytes.

The design of the sampling matrix Φ must enforce incoherence

between the acquisition and the sparsity domain. This constraint has

been formulated though several criteria, based on mutual coherence

measures [12], [10], or matrix properties such as the Restricted Isom-

etry Property (RIP) conditions described in [7]. Random acquisition

in the Fourier domain, encoded by a matrix with 1s and 0s at random

frequency locations verifies this incoherence property when combined

with TV spatial constraints.

III. METHOD

A. Reconstruction from noisy measurements

In the context of noisy measurements y = Φ(x + n), which is

the case for microscopy images corrupted with acquisition noise, we

wish to recover only the signal component x ∈ R
N . If we make the

assumptions that the noise energy is bounded by a known constant

‖ n ‖
ℓ2

≤ ǫ, the transformed signal Ψx is sparse, and Φ ∈ R
MN is

a random matrix sampling x in the Fourier domain, the true signal

component x can be recovered nearly exactly using the following

convex optimization:

x̂ = arg min
x∈RN

‖ Ψx ‖
ℓ1

s.t. ‖ y − Φx ‖
ℓ2

≤ δ (4)

for some small δ ≥ ǫ. In [15] it was shown that the solution x̂ is

guaranteed to be within Cδ of the original signal x.

‖ x̂ − x ‖
ℓ2

≤ Cδ with C > 0 (5)

We note here that this CS-based estimation framework, with

noisy observations and TV spatial constraints, guarantees that no

false component of x + n with significant energy is created as

it minimizes its ℓ1 norm, which is particularly high for additive

random noise components. More specifically, the TV -based spatial

sparsity constraint, will lead to smooth edges and removal of noise

components, resulting in an error:

‖ x̂ − x ‖
ℓ2

≤ α + β (6)

where α reflects the desired error (responsible for noise removal)

from the relaxation of the constrain δ in (4) and β reflects the

undesired error from smooth edges of signal. If TV represents x
efficiently and n inefficiently, the term β vanishes and α → Cδ.

B. The recovery algorithm

As an alternative to acquisition problems we focus on utilizing

dual sparse and redundant representations in the CS framework for

fluorescence microscopy image denoising via two separate schemes.

A first strategy consists in acquiring K images xi + ni (with

Φi matrices) exposed T/K ms, restoring each one independently

(equation 7) and combining the K restoration results into a single

denoised image. This scheme exploits the fact that fluorescence signal

Φixi should be strongly correlated in all acquisitions, while noisy

components Φini should not be.

x̂i = arg min
x∈RN

‖ Ψxi ‖ℓ1
s.t. ‖ yi − Φixi ‖ℓ2

≤ δ (7)

where yi = Φi(xi + ni) for i = 1...K.

A second CS denoising scheme is proposed, which consists in

determining the exposure time X necessary to obtain, with a set of

combined CS restorations, a target SNR level, corresponding to the

SNR measured on the image exposed T ms. This scheme provides

the potential advantage of requiring a single shorter acquisition time,

limiting degradation of the biological material through photo-toxicity

and photo-bleaching.

Combining CS reconstructions implies a sequence of CS recon-

structions of a single noisy image acquisition x + n, using different

sampling matrices Φi, as described below:

x̂i = arg min
x∈RN

‖ Ψx ‖
ℓ1

s.t. ‖ yi − Φix ‖
ℓ2

≤ δ (8)

for i = 1...K. The last step of both algorithms involves the

combination of x̂i by averaging to generate a final denoised image

x̂.

C. CS and scalability

The degrees of freedom in this series of CS experiments are

in the design of the sampling matrix Φ: the number of random

measurements M and their location in the Fourier domain. The

CS theoretical framework states that the more measurements are

used in the Φ domain, the closer is the reconstructed signal to the

original measured signal. In the context of denoising (rather than

estimation) we have a dual constraint on the estimation of true signal

component and the risk to reconstruct noisy components. Indeed,

for a single CS experiment, the fluorescence signal will generate,

from a set of random measures of structured Fourier values, a

restored image with high values depicting a good estimation of the

true signal. At the same time, purely random noisy component will



Fig. 3. Left: Pure noise image extracted from a microscopy image back-
ground. Right: Result obtained averaging 20 images recovered with different
sets of measurements Φi for (i = 1...20).

be interpreted, from a set of undifferentiated Fourier values, as a

structured combination of oscillating components, extrapolated over

the spatial domain into patches, under the regularizing TV effect.

Noise patches and fluorescence spatial localization will be directly

related to M , the number of CS measurements acquired by Φ. We

illustrate in Figure 2 how this number of measurements can be

naturally viewed as a scale parameter where small scales enable more

noise reconstruction.

In the experiment on Figure 2, we observe that noise component

is more uncorrelated than signal across scales while the signal

component spatial resolution decreases.

We can make a connection here to the family of multi-scale

transforms [16]. These transforms were theoretically defined as linear

transforms with a scale parameter controlling the ability of the

transform to simplify the signal. We know from the sparsity TV
constraint that strong signal recovered by the CS framework will

correspond to strong underlying true signal components. Therefore,

CS does not introduce false signal components and fits well in

the framework of multi-scale transforms, as illustrated in Figure 2.

Indeed it appears that such multi-scale CS approach verify scale space

properties such as simplifications, homogeneity, isotropy as well as

rotational and shift invariance.

If results from CS recovery of a purely noise signal are combined,

the mean intensity results in a nearly homogeneous signal, as illus-

trated in Figure 3. This observation clearly justifies the averaging

operator introduced in Section III-B to remove noise from images.

IV. EXPERIMENTAL RESULTS

A. Noise removal and recovered images

Results from the first scheme of denoising are ilustrated in Figure

4 are detailed in table I and results from the second scheme of

denoising are ilustrated in Figure 5 and are detailed in table II. In all

experiments, important improvements of the SNR or the exposure

time were achieved.

For experiments on drosophila cells image (Figure 4 and 5), the

SNR was highly improved and details were very well preserved.

The algorithm shows its efficacy and importance on microscopy

applications, where photons detected are limited and image quality is

normally degraded. The improvement can be provided in two different

ways, fixing the desired SNR and reducing the exposure time, or

fixing the exposure time and improving the SNR, as the denoised

images in Figure 5 (middle) illustrate.

We have performed a comparison of our method with exclusive

Total Variation denoising methods. The algorithm used for this

comparison is the one presented by Gilboa et al. in [17]. This

algorithm minimizes TV in two schemes 1. with global variance

Exposure Time CNR SNR

100 ms 30.00 6.42
10 ms 5.17 3.61
10 · 10 ms + 10 · CS 96.60 13.31

TABLE I
RESULTS FROM CS-BASED DENOISING OF THE IMAGE ON FIGURE 4 BY

THE METHOD DESCRIBED ON SECTION III-B.

Exposure Time CNR SNR

100 ms 30.00 6.42
100 ms + 1 · CS 36.50 7.24
100 ms + 10 · CS 90.23 11.02

TABLE II
RESULTS FROM CS-BASED DENOISING OF THE IMAGE ON FIGURE 5 BY

THE METHOD DESCRIBED ON SECTION III-B.

constraints (scalar fidelity term) and 2. in order to preserve texture

and small scale details, using an adaptive variational scheme that

controls the level of denoising by local variance constraints (adaptive

fidelity term). Residuals and SNR results in Figure 6 shows that CS

is able to discriminate noise from signal more than exclusive TV
minimization methods. This is justified by the reason that CS has

both TV minimization constraint, and uncorrelated noise recovery.

Differences on each set of under-sampled random projections estab-

lish strongest constraint for signal-measures fidelity than for noise-

measures fidelity.

V. CONCLUSION

We introduce a Compressed Sensing-based image acquisition and

denoising method exploiting multiple reconstructions with random

Fourier projections. Our approach presents several advantages over

traditional denoising methods, joining image acquisition, CS advan-

tages and denoising in one framework. In the context of biological

imaging, experiments demonstrated improvements of SNR values up

to a factor of 2 on microscopy images acquired with limited exposure

times. These results also open the gate to new microscopy acquisition

schemes, enabling for instance better control on cells photo-toxicity

and photo-bleaching of fluorescent targets.
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Fig. 5. Left: Noisy image x of drosophila cells imaged by fluorescent
microscopy, SNR = 6.42 and exposure time t = 100ms. Middle: Denoised
image x̂, composed from 10 images recovered with different measurements,
as the second scheme proposed on Section III-B, SNR = 11.02. Right:
Residual ‖ x̂ − x ‖l2.



Fig. 2. Average image recovered with six different numbers of measurements (i.e. 6 scales). Scales varies from a compression ratio exponentially increasing
from M = 30% to M = 0.3%.

Fig. 4. Left: One noisy image xi of drosophila cells imaged by fluorescent microscopy, SNR = 3.61 and exposure time t = 10ms. Middle left: Image
acquired with exposure time equal to t = 100ms and SNR = 6.42. Middle right: Denoised image x̂, composed from 10 images recovered from 10 images
with exposure time t = 10ms, as the first scheme proposed on Section III-B, SNR = 13.31. Right: Residual ‖ x̂ − I100ms ‖l2.

Fig. 6. Top: Noisy original image x of lymphocytes imaged by fluorescent
microscopy, SNR = 8.14. Middle left: Denoised image by scalar TV ,
SNR = 11.2. Middle: Denoised image by adaptive TV , SNR = 12.5.
Middle right: Denoised image x̂ with CS, composed from 10 images recovered
with different sets of measurements, SNR = 14.28. Bottom: Images from
residuals of all respective methods ‖ x̂ − x ‖ℓ2

.
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