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Abstract

We introduce a notion of Kripke model for classical logic fanich we constructively
prove soundness and cut-free completeness. We discus&#reng of the new notion
and its applications to call-by-name proof normalisation.
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1. Introduction

Kripke models have been introduced as means of giving seesdntmodal logics
and were later used to give semantics for intuitionistiddas well. [Kri59,[Kri63]

The purpose of the present paper is to show that Kripke madelsalso be used
as a semantics farlassicallogic. Of course, a Kripke semantics can be indirectly
assigned to classical logic by means of some appropriateleaegation translation.
Our purpose here is however to provide with a direct presentaf a notion of Kripke
semantics for classical logic. Concretely, and becauseravaelimately interested in
the computational contents of classical logic, we will UseltK,; sequent calculus of
[] to represent proofs. However, the conclusions ghene apply to any complete
formal system for classical logic.

This paper is organised as follows. Section 2 introducestt®mn of classical
Kripke model, based on two modifications to the traditionaion, and discusses the
relationship between the traditional and our notion. $ec8 introduces the sequent
calculus LK and gives a soundness theorem for it. Section 4 proves a etenplss
theorem for a universal model constructed from the dedoalystem itself. Section 5
discusses the implications to proof normalisation{@fi-term reduction) and antici-
pates that we actually get two notions of classical Kripkedals, one corresponding
to call-by-name and the other to call-by-value reducti@mfithe theory of functional
programming languages. Section 6 gives a summary of resudtsliscusses related
and future work. All statements and proofs are constructive
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2. Classical Kripke Models

Kripke models can be considered as the “most classical’ladhalsemantics for
intuitionistic logic, for two reasons: first, each of the §sible worlds’ that define a
Kripke model is a classical world in itself (where either aoma or its negation are
true); second, it is the single of the semantics for intaistic logic which has only
a classical proof of completeness, when disjunction anstexiial quantification are
considered.

In the last two decades, the Curry-Howard correspondenweeke intuitionistic
proof systems and typed lambda-calculi has been extenddddsical proof systems
[Gri9d, [Par9p} CHQO]. The motivation for introducing Krigknodels for classical logic
comes from their usefulness in providing normalisatiorelgluation for intuitionistic

proof systems[[Coqp§, Coq02]. To account for a classicadfmpstem we modify the

traditional notion of Kripke model in the following two ways

Not taking the forcing relation as primitiveWe take as primitive the notion of “strong
refutation”, and define forcing in terms ofﬂt.The forcing definition we get in this
way partially coincides with the traditional definition ajrting, as explained in sub-

section2p.

Allowing certain nodes to validate absurdityVe allow certain possible worlds to be
marked as “fallible”, or “exploding”. This approach has haaken for Kripke models
in [[el78], for Beth models by Friedmah [TvDB8] and seemsassary in order to have
a constructive proof of completeness, in the view of the rmeshematical results from
[Kre623,[McCo%[McCQR], which preclude constructive proofgompleteness in case
one wants to retain that absurdity must never be valid in aiptesworld. (extending
the class of Boolean models with inconsistent models istals&ey to the constructive
proof of the classical completeness theorenj in [{ri96])

Definition 1. A classical Kripke modes given by a posdK, <) of “possible worlds”,
together with a binary relation w X s of “strong refutation” between worlds w and
atomic formulae X (monotone with respect<tp a unary relation on worlds wi-,
labelling a world as “exploding”, and a domain of quantifiéah D(w) for each world
(monotone with respect tg). We also require that strong refutation be stable under
substitution i.e. if w A(X) s then for any te D(w), w : A(t) .

The strong refutation relation is extended from atomic tmposite formulae in-
ductively and by mutually defining the relationsfofcingand (non-strongjefutation

Definition 2. The relation(-) : (=) ks of strong refutation is extended to composite
formulag inductively, together with two new relations:

e A formula A isforcedin the world w (notation wi- A) if any world w > w,
which strongly refutes A, is exploding;

1an attempt to give a constructive proof has been madm‘yebm it makes use of the fan theorem
which is not universally recognised as constructive
put, see end of section 5 for another possibility



A formula A isrefutedin the world w (notation w. A ) if any world w > w,
which forces A, is exploding;

wW:AABKifw:Arorw: Bl

w:AVBKifw:Arandw: Bi;

e W:A— Bifw:-r Aandw: BIr;

w: YXA(X) s if w: A(t) - for some te D(w);

w: AXA(X) ks if w: A(t) i for all t € D(w);

1 is always strongly refuted;
e T is never strongly refuted.
2.1. Properties
We list some properties satisfied by the newly defined redatio
Lemma 3. In all worlds w and for all formulae A, if w A Is, then w: A I.
Proof. Immediate, from unfolding the definition of refutation. O

Lemma 4. Strong refutation, forcing and refutation are monotone iy alassical
Kripke model.

Proof. All three statements proved separately by induction ondhmdla in question.
O

2.2. Relation to Traditional Forcing

It is natural to ask which properties of traditional forciogrry over to our non-
primitive forcing.

Proposition 5. The following statements hold.

wirA—- B« forallw >w,w :r A=W I+ B Q)
w ik YX.A(X) & forallw’ >w and te D(W),w I A(t) (2)
Wik L & Wik, 3)

Wi T & true (4)
wWirAAB<— w:r Aandw:r B (5)
wirAvB<w:iAorw:i B (6)
wiIF AX.A(X) < for some te D(w), w :I- A(t) (7



Proof. (1)Supposev :r A — B,w >wandw :r A. To showw :I- Bwe letw” > w’
andw” : B I and have to show that”’ is exploding. Since thew” : A — B I holds
by monotonicity and LemmE 3, the claim follows from the defor of w ;- A — B.
For the other direction, suppose a wowt > w in which A — B is strongly refuted,
i.e.w - Aandw’ : B I, and we have to show’ is exploding. But, this is immediate,
sinceB is also forced by hypothesis (the right-hand side of thevedeince).

(2) By definition,w :I- YX.A(X) iff YW > w, (As€ D(W).W : A(S) F) = W I,
which is equivalent to the right-hand side of the equivagetianks to LemmE 3 and
refutation being defined in terms of forcing. (We used qudimtsymbols at meta-
level.)

(5) Assumew I+ A, w - B,w < w, andw’ : AA B . Therefore we have/ : A -
orw : BIr. Each case leads W -, sincew : A, W :I- B with monotonicity.

The rest of the cases follow from the definitions and the mamioities of “+" and
D(-). O

The previous propositions give us that our notion of forcaumstructively co-
incides with the traditional one only for implication, coniction, and the universal
quantifier. We can also say that, constructively, forcing.adind T behaves like ex-
pected with respect to exploding nodes [V&[76, KJi96]. Tamcidence of our classical
Kripke semantics with intuitionistic Kripke semantics dret> AY fragment can be
emphasised by showing that our notion of model explicitlgrelcterises the semantics
of classical logic obtained by interpretation into intaitistic Kripke semantics through
the following double-negation translation:

X* = =X
(A \Y B)* = —|(ﬂA A —IB)
AxAX)* = =(Yx-A(X)

where-Ais A — L and all other cases are compositional. Indeed, we have lbe/fo
ing characterisation:

Proposition 6. Any classical Kripke model ofK, <) with strong refutation on atoms
w : X I, exploding worlds wi-, and domain [w) is the image of an intuitionistic
Kripke model with exploding worlds which is defined on the sgmsetK, <), with
the same exploding worlds w,, the same domain @) and with forcing on atoms
defined by wv’ X iffw: =X . Indeed, for such an intuitionistic model we havaA
in the classical modeffiw  A* in the intuitionistic model.

Proof. Itis enough to observe that we have the following facts indlassical model:
e Wik Xiffw: =Xy
e WiFAVBIffw:I ﬂ(—|A/\ —|B)

o W AXA(X) iff wir =¥Vx.—A(X)

Remark 7. The following are false, even if reasoning classically.



TAr AA X0 ATrAA AXR)
ILAFA . I'rAA
INArFA @) I'r AA )
FrAA  TBrA I, AF BA
(—=0) ——an+ (&R
TASBrA TrA—BA
INArA INBr A '+ AA 1 I't+ BA 2
fTAvBra (W rraves R Traveas (VR
NAFA MBra F'-AA  TrBA
arBra M Tasrera M0 TrArBA W
[AX) + A x fresh @y I+ A®G)IA (3R
[AXAX) F A - I+ AXAX)|A R
TA®M) - A 1) '+ AX|A x fresh (VR)
TVXAX)FA - T+ YXAX)A R
s (0
Trma (TP
F'FAA  TIAFA
TrA (Cuy

Table 1: The sequent calculus LK

e W:rAVB=—w: Aorw:r B.

e W AX.A(X) = for some te D(w), w :I A(t).

The reason why they are in general false can be explainedliasvkr Below we are
going to prove cut-free completeness using the universigkiErmodel based on the
deduction system itself. In the universal Kripke mo@g|@) :+ A is equivalent to
I' + A. On the other hand; + B v C is in general not equivalentior BorI'+ C. A
similar argument can be done against the case with existegqaantification.

3. LK,z and Soundness

Because we are interested in the symmetry of classical,legéicchose to for-
malise classical logic using a Gentzen's LK-style sequaftdutus. Moreover, since
we are eventually interested in using our Kripke semantigetform proof normalisa-
tion, we decided to rely on Curien and Herbelin’s J;Kariant of LK for the sobriety




and expressivity of its underlying core calculus of proafrts (so-callediyi subsys-
tem [Her0¥)). LK, is presented on Tabfg 1. Itf#rs from LK in the following points:

e Sequents come with an explicitly distinguished formulal@right or on the left,
or no distinguished formula at all, resulting in three kimdsequents: F + A”,
“T|Ar A”and T + AJA”. Especially, the distinguished formula plays an “active”
roéle in the rules.

e Accordingly, the axiom rule splits into two variants (Axand (Axz) depending
on whether the left active formula or the right active foreid distinguished.
There are also two new ruleg)(@and (i), for making a formula active.

e There are no explicit contraction rules: contractions agvdble from a cut
against an axiom as follows:
— (AXR) ——— (Ax)
[LAFAA [LAAF A cu I+ AA A TAF A A cun
ILAFA 'rAA
e Consequently, the notion of normal proof is slightlyfdient from the notion of
cut-freeness in LK: a normal proof is a proof whose only cuésadi the form of a
cut between an axiom and an introduction rulg) @nd (7) are not introduction
rules)

The correspondence between LK and L Ks direct. If we present LK with weak-
ening rules attached to the axiom rudela Kleene'sGs, we obtain an LK proof from an
LK,z proof by erasing the bars serving to distinguish active idem, and by removing
the trivial inferences coming from the ruleg) @nd (7). In the other way round, every
introduction rule of LK can be derived in L)§ by applying the rulesy() and (i) on
the premises and a (possibly dummy) contraction (i.e. againat an axiom) on the
conclusion of the rule. Similarly for the axiom rule (for wehithere are two possible
derivations) and the cut rule. Especially, cut-free pradfsK maps to normal proofs
of LK,z and vice-versa.

Theorem 8(Soundness)In any classical Kripke model the following hold:

I'+ A= foranyw suchthatwr T'and w: A IF,w -,
I' - AA = for any w such that w T"and w: A I, w :I- A
INA+ A = foranyw such thatwT"andw: A F,w: A

Proof. One proves easily the three statements simultaneouslyndiyciion on the
derivations. O
4. Completeness

As usual when constructively proving completeness of Keipkmantics for a frag-
menf] of intuitionistic logic [Cog9B[HL], we define a special poge model, called the

3as previously remarked, there is no constructive proofdthirituitionistic predicate logic



universal modelbuilt from the deduction system itself. Once we show cornepless
for this special model, completeness for any model folIo@erlIary).

Definition 9. TheUniversal classical Kripke modéV is obtained by setting:
e K to the set of pairgI', A) of contexts of LI ;
e (ILA) < (I",A) iffbothT C T” andA C A’;
o (IA) : X Isiff the sequeri|X + A is provable in LK ;
e (I',A) i+, iff the sequerl + A is provable without a cut in LJ ;
e for any w, Ow) is the set of individuals of Ll (that is, (-) is constant)

To show thatl/ is indeed a model, we have to prove two things, monotonidity o
strong refutation on atoms and its stability under subt#biis. These are provided by
the following two lemmas, proved by induction on the delivas.

Lemma 10(Weakening) The following hold irLK ; :

't A= forall (I",A") > ([,A), I" + A
I'+ AA = forall (I",A") > (T, A), I F AN
TNA+ A = forall (T",A") > (T, A), T'|A+ A’

We emphasise that the proof of Lem@i 10 needs not introdyceem cuts in the
derivations generated on the right-hand side of the imfiina. This will be important
for the proof of cut-free completeness.

Lemma 11 (Substitutivity) The following hold irLK ,; , whenever x does not appear
in " nor A:

'+ AXIA = forallt,I" + A(t)|A
[NA(X) - A = for all t,TA(t)|A

To carry out the proof ofut-freecompleteness, we also need to say when a formula
is “neutral” with respect to all derivations that compreti@ncontextI, A).

Definition 12 (NT(-)). A formula A is said to baeutral with respect to provabiliin
the contextI’, A) (notationNT(A, T, A)), if for any extensiorfl”, A’) of the context we
have

I'A+tAN =T+ A
where the derivation on the right of the implication is creef.

Definition 13 (NE(-)). A formula A is said to baeutral with respect to refutabiliin
the contextI’, A) (notationNE(A, T, A)), if for any extensiorfl”, A’) of the context we
have

I'FAAN =T+ A

where the derivation on the right of the implication is creef.



Theorem 14(Cut-Free Completeness f@f). For any AT andA, the following hold
in U:

(ILA) - A= T+ AA Q)
NT(A,T,A) = ([,A) - A (2)
(ILA) : Ar =TJAFA 3)
NE(A,T,A) = (I,A) : A 4)

Moreover, the derivations on the right-hand side of (1) aBdare cut-free.

Proof. We proceed by simultaneously proving all four statementmbyction on the
formulaA.

Base case.In the base case we have forcing and refutation on atomicuia@which
by definition reduce to strong refutation on atomic formubabich by definition re-
duces just to statements about the deductions if; LK

(1) Suppose that for all{,A”) > (T, A),

'XFA =T FA ... *
Then:
TXF XA gx“
r-XA W
[+ XA
(2) The hypothesisis NK,I',A). Given (7,A’) > (I',A) such that”|X + A’, we
have:
X+ A
——  —  NT(XT.A)
' A

(3) We havel,A): X, i.e.,
VI, A) = (T,A), VI, A") = T, N),T"IX+ A" =T+ A"} =T A (%)

We can showl'|X + A by applying the £)-rule and (*), but we also have to show
the sub-statement in curly brackets of (*):

becauseX € (X,T) c T
(AxR)
Ik X|A” I”|X kA
I“// |_ A//
(4) Suppose NE(,T', A) and supposd(,A’) > (I, A) such that

(Cut)

VI, A") = (I, A),T"IXr A" =T" - A” (#)

Then:

(AxL)
(#)

()]
NE(X.T, A)

I XE XA
I X, A
I + X|A

'+ A



Induction case for implication.
(1) We can strengthen the hypothegisA) ;- A; — A, using the induction hypothe-
ses to obtain:
YT, A) = (I,A),NT(A;,T",A") = NE(A, T, A) = T" + A #)

Now we have:
#
()

(=r)

AL T+HALA
A, T+ AJA
' AL - AJA
And we have to show N, (A1, T), (A2, A)) and NE@,, (A1, T), (A2, A)), which
is easy using weakening because the neutral formulae gleggzbar in the con-
texts.
(2) Suppose NTA; — Ay, T, A) and supposd(,A’) > (T, A) such that[", A’) :- Aq
and (7,A’) : Ay . The induction hypotheses give us tiiat- Aj|A” andI”|A; +
A’. Now we have:
I+ A A F A
AL — Ay - A
I'e A
(3) We havel[,A): Ay —» A I+, e,

(=u)
NT(AL — A2, T, A)

Y(I',A') > (T, A), (YT, A”) > (I, A'),NT(A, T, A”) =

*
NE(AL, T, A) =T/ + A} > T+ A ©

T+ ALA fﬂ’) LA FA fﬂ’)
TFAlA TA F A
A = AgF A e
Due to the use of (*) we have to show the sub-expression ity tuackets. Let us

show only one case, the other is symmetric:

(Axp), since f1,A) C A

————,— NT(ALT. (A, 4))

l"II |_ A//
(4) LetNEAL — Ax,T,A)andlet {7, A”) > (I', A) be given such that:

VI, A") > T, A"),NT(A,T”,A”) = NE(A, T”,A") = T" + A”  (#)

We showl” + A':
Vo ®
Al, I"+ Ag, A “
Aq, I+ A2|A/ (o)
I'FA — AN
NE(A; — Ag, T, A)
' N

For the application of (#) we have to show the correspondifg¥y, (A1, I7), (A2, A'))
and NE@y, (A, T7), (A2, A)), but this is easy since the formulae are already inside
the corresponding contexts.



Induction case fow.

(1) Supposel(,A) I+ Ay V Az, which can be strengthened using the induction hy-
potheses to:

VI, A') 2 (T, A), NE(A, T, A') = NE(Ap, T, A) = T + A/ *)

Here is a derivation of + A; vV Aj|A:

*

't A, AlLALV Ap A

' AjJAL, ALV Ax A w ) (Ax0)
' A1V AALALY A A - INALV A FALALY Ao A cut
't AL ALV ALA W
'k AlJA1V A A (i
't ALtV AJALY Ao, A t INALVA ALV ALA
I'rALVALA W
I'rA1VvAIA

Itis only leftto prove that NE&s, T, (A2, Ar, A1VA,, A)) and NE@,, T, (Ag, Ag, A1V
Az, A)), but that is trivial because the neutral formulae areaalyein the context.

(2) LetNT(ALVv AT, A)andsuppose given &'(A’) > (T, A) such that (by induction
hypotheses) N3, I, A’) and NE@,, I, A).

— 5 (AxR) ———— (AxR)
I, A1 - AglA I, A - AplA
— 5 NE(A.I".4) — = NEA.I",A)
I AL F AN @ I', Ao+ A @
AL - A A F A v
ALV Ag kA }
— < NT(ALVALT,A)
'+ A

(3) Using the induction hypotheses we get frdmA) : A1 vV Az IF:

Y(I',A) = (T,A), (YT, A”) = (I", A'),NE(A, T, A”) = )
NEA, T, A)=>T" A} T A
We can have the following derivation
* *

F, Al FA @ F, A2 FA @
TIAL F A Az kA
ALV Ay + A -

but, we have to prove that the sub-statement in curly bradkem (*) holds for
both the contexA;,I" and the contexf,, I'. Here is one of them: (the other is
analogous)

(AXg), since A;,I) c T

"+ Add”
NE(A, I, 4")

10

(AxL)
(Cut)



(4) Suppose NEX1vV A, T, A), (I",A") > (T, A) and, using the induction hypothesis,
suppose:

YT, A") > (I, A),NEA, T, A”) = NE(A, T, A")=>T"+ A" (¥

@)

I+ Ag, Ag, A
—_rrea .,

I+ A2|A1, A
I+ ALV AylAL A
I+ AL AN
I+ AqlA
"k ALV AN
I+ A
This constitutes a derivation as required, given that iagyeo prove NEf;, T, (A, Ag, A'))
and NE@,, I, (A2, A1, A’)) which arise from the use of (*).

D

NE(A; V Ay, T, A)

()
D

NE(A; vV A2, T, A)

Induction case fon.

(1) Let
V(I[7,A") > ([, A), NE(A,T", A") or NE(A2,T",A") = T" v A *)

Here is the required derivation:

) )

'k AL A “ I'rAx, A “
'+ AllA '+ AyJA (R)
TF AL AAJA ?

Where it is easy to show thay andA; are neutral in the two cases arising from
the use of (*).

(2) Suppose NTA1 A Ap, T, A). To show [,A) i+ A A Ag, let (T, A) > (T, A)
and (NE@,T7,A”) or NE(A2,T7,A’)) be true. Without loss of generality, let
NE(A;,T7,A’) be true. Then:

(AXR)
NE(A1, I, A")
(@)

I, Ak A1|A/
I, A v A
AL F AN
I"MALAA A
I AN
(3) Supposel(,A) : A1 A Az I, which can be strengthened using the induction hy-
potheses to:

(D)

NT(AL A A, T, A)

V(I[",A) > (T, A), (Y[, A”) > (", A’),NE(A, I, A”) or )
NEAL T, A)Y=>T"r A"} =T A

Now we have:

*)

LALAA @

I'AL A A

11



But we have to show the hypothesis of (*). LEV'(A”) > ((A1 A Az, T), A) and
suppose, without loss of generality, that the left disjuisctrue, i.e., we have
NE(A.,I”,A”). Then:

(AXR)

NE(ALT”,A”)

(i)

I, A1+ AlJA”
F",Al - A//
AL+ A”
’7 4 (AXR) 17 7 (A%)
I+ AL A AgJA I"ALAAEA
(Cut)
1"// '_ A//
(4) Suppose NEg A A, T, A), (I”,A”) > (T, A) and, using the induction hypotheses,
suppose:

VI, A") = (I",A),NE(A1,T”,A”) or NE(A2,T”,A")=T"+ A" (¥

We have:
; @) ; 7 )
r I-A]_,A “ r |'A2,A “
I + AN I + Ay|A -
I+ AL A A|A

F' A' NE(AL A A, T, A)

'_

where NE&,T7, (A1, A)) and NE@y, T, (A2, A")) arising from the use of (#) are
easy to prove, because the formulae are already inside ttexts.

Induction case fok/. In the induction cases fof andd we leave out the membership
in the domain of individual®(-) since inU we have a constant domain and we use
the quantifier symbols also at the meta-level, to shortemdi&tion.

(1) Let (T, A) i+ YX.A(X). Using the induction hypotheses we get:
VI, A") > (I, A), @, NEA®Y), T, A) =T+ A *

Here follows the required derivation:

TrAM.A

'+ A(X)|A
I'F YXAX)IA
One easily shows that NE(X), I, (A(X), A)).
(2) Suppose NT(x.A(X),T,A), (I'”,A”) > (I', A) and we have such that, by induction
hypothesisI”|A(t) - A’. Here is a derivation df’ + A”:
T'IA(Y) F A
'YXAX) + A
I+ A
(3) Supposel(, A) : YX.A(X) . We strengthen this using the induction hypothesis to:

(VR), x-fresh

(V1)
NT(VXA(X),T, A)

Y(I',A") = (L, A) (YT, A7) = (T, A),

*
AL NEAQ®), T, A)=>T" A} T AN ®

This

12



ILYXAX) FA (~)
TVYXAX) F A @
is the derivation we need, in case we prove the sub-expressiourly brack-
ets of (*). Therefore, suppos€&’(,A”) > ((Yx.A(X),T),A) and suppose awith
NE(A(t), I, A”). We have to prové” + A”:
(AxR)
NE(A(t), T, A”)

7, A®) F AQ)IA”
7, A{) - A

I"|A(t) + A g
7 17 (AXR) ’7 4 (VL)
I+ YXAX)|A I VXAX) F A
(Cut)
l"// = A//
(4) Suppose NE(x.A(X),I',A). To show [, A) : YX.A(X) I, let (I",A”) > (T, A) and
let

YT, ,A") > (I, A), @, NEA®), T, A") =>T" + A *

Here is the required derivation:
*

I+ A(X), A w
I + A(X)|A
———— (¥R), x-fresh
I’ F YXA(X)|A
—— —  NE(VxAX),[,A)
' A

For the application of (*) one can easily show that RE(), I, (A(X), A")).

Induction case fod.

(1) Supposel(, A) :r AX.A(X), which using the induction hypothesis can be strength-

ened to:

Y(I',A) = (T,A), (Y6, NE(A®R), T, A) =T+ A *
The following is a good derivation
TraxAN).A
I+ AXAX)|A

if we manage to show the hypothesis from applying (*). Fot,tleat, I" 2 ', A’ 2
(Ax.A(X), A) be given such thdt’ + A(t)|A’.

I’ + A()|A @) )
' FIaxXAXA 0 TAXAXFA
(Cut)
' AN
(2) Let NT@Ax.A(X),I,A)and ’,A") > (T, A) be given and suppose

Yt TY|A®L) F A (#)

The required derivation is:

#

(AL), x-fresh
NT@ExAX), T, A)

I"A(X) - A
I AxAX) F A
Ik A
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(3) Supposel(, A) : AX.A(X)  which gives, thanks to the induction hypothesis:

Y(I',A) = (T,A), (YT, A”) = (I, A), )
(Yt NEAD, T, A") = T F A} = Tk A

The required derivation is
— O
LA FA
TIA(X) F A
[AXAX) - A
but we also have to show the statement in curly bracketsgrisom the use of
(*). Therefore, supposé&(', A”) > ((A(x),T'), A) and suppose, using the induction
hypothesis, thatt, I"’|A(t) + A”. We have to prové” + A”:

(AL), x-fresh

Ao AR e ()
I + A(X)|A IAX) F A cu

I“// '_ A//
(4) Suppose NEIxX.A(x),T,A) and let ", A’) > (T, A) such that[”, A’) - AX.A(X).
Using the induction hypothesis, this last thing strengsten

VI, A") > (I, A'), (Vt, NE(AQt), ", A”)) = T + A” *)

To showI” + A’, we immediately apply (*) and then have to show the hypothesi
lett, '3, Az be such thaf's + A(t)|As and (3, A3) > (I, A”). Then this is what
we are looking for:

Fg F A(t)lAS ()
T3k AXAXA;
—2 T Y NE@XAX),T,A)
I's+ A3

Induction case forr.

(1) Immediate, fromtg).

(2) Easy, using Propositid 5.

(3) Easy, using Propositidi 5.

(4) Easy, a (Cut) withr and then {Rr) and (Ax).

Induction case forL.

(1) Easy, using Propositidh 5.

(2) Easy, a (Cut) with. and then {) and (AxR).
(3) Immediate, from(,).

(4) Immediate, by applying the hypothesis.
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All the given derivations are cut-freeBy inspection of the proof trees and having in
mind that NT, NE, weakening and the derivations arising from explodinge® do not
introduce cuts, we convince ourselves that indeed the catenpbss theorem produces
only cut-free derivations. O

Corollary 15 (Completeness of Classical Logiclf in every Kripke model, at every
possible world, the formula A is forced whenever all the fdae ofl" are forced and
all the formulae ofA are refuted, then there exists a derivatioriiii,; of the sequent
'+ AA.

Proof. If the hypothesis holds for any Kripke model, so does it hald#@. To show
I + AA, by Theorenﬁl4, it is enough to show that 4) :+ B for all B € T and
(T,A) : C forall C € A, something that is immediate from the definitions of NT and
NE, after applying (2) and (4) of the preceeding theorem. O

5. Normalisation and the Call-by-Value Variant
A constructive cut-free completeness theorem can be usguidof normalisation.

Corollary 16 (Normalisation-by-Evaluation)For all contextd, A, if there is a deriva-
tionT + A, then there is a cut-free derivatidhtns A.

Proof. From the hypothesiB + A, the soundness theorem appliedifogives us that
there is indeed rp A, if we manage to show that the worlH, ) forces all formulae
of T and refutes all formulae ok. This is done as in the proof of the preceeding
corollary. O

The sequent calculus LK introduced in secti0|E|3 is in proofs-as-programs cor-
respondence with the calculugi of [] and has actually never been presented
separately from it. We chose to present only the “logicafesof the two in order to
decrease the level of details, because our main aim wasrtalirde the new notion of
model.

Therefore, the last corollary can be also seen as a resuit abmputation i.e. re-
duction to normal form ofiui-commands. Since ifwji-calculus there are two choices
for a reduction strategy, call-by-name and call-by-vathe,question is which one did
we obtain. Our experiments with using the Coq formalisaﬂtinhhe presented proofs,
as an algorithm, confirm that we have obtained a call-by-nevakiation strategy, as
was actually anticipated by the third author in the begigsiof this work.

More precisely, for theug critical pair{ua.c||ix.c’) the algorithm gives priority to
the (@) reduction rule and the reduction for connectivesA, v appears to work cor-
rectly. (see 5] for the reduction rules) In the forreation we did not implement
the connective¥, 1, L, T in particular due to the additional time required for formal
handling of binders.

4available allttp ://www.lix.polytechnique.fr/~danko/lbmmt_kripke. v|
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Call-by-Value Models.LK,; and Aufi enjoy a strong duality between call-by-name
and call-by-value. This gives us the right to conjecturd tha proofs presented in
this paper would work, essentially unmodified, for a callMajue notion of classical
Kripke model. In that notion we would have “strofagcing’ on atoms as primitive and
“refutation” and non-strong “forcing” defined through it lbythogonality, by analogy
to the call-by-name case.

6. Conclusion

Sambin has already remarked|in [Saln95] that having richeaséics, gives a sim-
pler completeness proof and that this applies in particidarassical logic as well.
While his semantics are based on phase spaces, or pregmmlthe notion of se-
mantics presented here does not fall into that category.cOupleteness proof might
be slightly more involved than Sambin’s, but it is certaimych less complex than a
traditional Godel-Henkin style proof, which is due to owewf a more “descriptive”
semantics than Boolean semantics.

In future we hope to be able to compare the computationabobof the presented
completeness theorem with the computational conterbostructiveGodel-Henkin
style proofs. [Kri9p[ BVOH]

We also plan to prove that the normalisation-by-evaluaditgorithm we got is
correct with respect to the reduction relationipfi. Note that CorollarﬂG only tells
us that we get a derivation in normal form, but it does not gatee that we get the
right normal form derivations — the ones matching the behawf Aui reduction.

We would like to verify if our conjectured call-by-value meld exist and, also, to
generalise the results to a version of J;Kvith generic treatment of connectives. In
order to get a more “regular” behaviour of disjunction, wé wonsider defining strong
refutation of it in terms oftrongrefutation and might also consider adopting fetient
attitude to constructive disjunction at the meta-level, ane not necessarily satisfying
the BHK-interpretation of logical constants.

Finally, we would like to understand better the new notiomafdel.
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