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Abstract

We introduce a notion of Kripke model for classical logic forwhich we constructively
prove soundness and cut-free completeness. We discuss the meaning of the new notion
and its applications to call-by-name proof normalisation.
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1. Introduction

Kripke models have been introduced as means of giving semantics to modal logics
and were later used to give semantics for intuitionistic logic as well. [Kri59, Kri63]

The purpose of the present paper is to show that Kripke modelscan also be used
as a semantics forclassical logic. Of course, a Kripke semantics can be indirectly
assigned to classical logic by means of some appropriate double-negation translation.
Our purpose here is however to provide with a direct presentation of a notion of Kripke
semantics for classical logic. Concretely, and because we are ultimately interested in
the computational contents of classical logic, we will use the LKµµ̃ sequent calculus of
[CH00] to represent proofs. However, the conclusions givenhere apply to any complete
formal system for classical logic.

This paper is organised as follows. Section 2 introduces thenotion of classical
Kripke model, based on two modifications to the traditional notion, and discusses the
relationship between the traditional and our notion. Section 3 introduces the sequent
calculus LKµµ̃ and gives a soundness theorem for it. Section 4 proves a completeness
theorem for a universal model constructed from the deduction system itself. Section 5
discusses the implications to proof normalisation (orλ̄µµ̃-term reduction) and antici-
pates that we actually get two notions of classical Kripke models, one corresponding
to call-by-name and the other to call-by-value reduction from the theory of functional
programming languages. Section 6 gives a summary of resultsand discusses related
and future work. All statements and proofs are constructive.
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2. Classical Kripke Models

Kripke models can be considered as the “most classical” of all the semantics for
intuitionistic logic, for two reasons: first, each of the ‘possible worlds’ that define a
Kripke model is a classical world in itself (where either an atom or its negation are
true); second, it is the single of the semantics for intuitionistic logic which has only
a classical proof of completeness, when disjunction and existential quantification are
considered.1

In the last two decades, the Curry-Howard correspondence between intuitionistic
proof systems and typed lambda-calculi has been extended toclassical proof systems
[Gri90, Par92, CH00]. The motivation for introducing Kripke models for classical logic
comes from their usefulness in providing normalisation-by-evaluation for intuitionistic
proof systems [Coq93, Coq02]. To account for a classical proof system we modify the
traditional notion of Kripke model in the following two ways.

Not taking the forcing relation as primitive.We take as primitive the notion of “strong
refutation”, and define forcing in terms of it.2 The forcing definition we get in this
way partially coincides with the traditional definition of forcing, as explained in sub-
section 2.2.

Allowing certain nodes to validate absurdity.We allow certain possible worlds to be
marked as “fallible”, or “exploding”. This approach has been taken for Kripke models
in [Vel76], for Beth models by Friedman [TvD88] and seems necessary in order to have
a constructive proof of completeness, in the view of the meta-mathematical results from
[Kre62, McC94, McC02], which preclude constructive proofsof completeness in case
one wants to retain that absurdity must never be valid in a possible world. (extending
the class of Boolean models with inconsistent models is alsothe key to the constructive
proof of the classical completeness theorem in [Kri96])

Definition 1. A classical Kripke modelis given by a poset(K,≤) of “possible worlds”,
together with a binary relation w: X 
s of “strong refutation” between worlds w and
atomic formulae X (monotone with respect to≤), a unary relation on worlds w:
⊥
labelling a world as “exploding”, and a domain of quantification D(w) for each world
(monotone with respect to≤). We also require that strong refutation be stable under
substitution i.e. if w: A(x) 
s then for any t∈ D(w),w : A(t) 
s.

The strong refutation relation is extended from atomic to composite formulae in-
ductively and by mutually defining the relations offorcingand (non-strong)refutation.

Definition 2. The relation(−) : (−) 
s of strong refutation is extended to composite
formulae, inductively, together with two new relations:

• A formula A isforced in the world w (notation w:
 A) if any world w′ ≥ w,
which strongly refutes A, is exploding;

1an attempt to give a constructive proof has been made in [Vel76], but it makes use of the fan theorem
which is not universally recognised as constructive

2but, see end of section 5 for another possibility
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• A formula A isrefutedin the world w (notation w: A 
) if any world w′ ≥ w,
which forces A, is exploding;

• w : A∧ B 
s if w : A 
 or w : B 
;

• w : A∨ B 
s if w : A 
 and w: B 
;

• w : A→ B 
s if w :
 A and w: B 
;

• w : ∀x.A(x) 
s if w : A(t) 
 for some t∈ D(w);

• w : ∃x.A(x) 
s if w : A(t) 
 for all t ∈ D(w);

• ⊥ is always strongly refuted;

• ⊤ is never strongly refuted.

2.1. Properties

We list some properties satisfied by the newly defined relations.

Lemma 3. In all worlds w and for all formulae A, if w: A 
s, then w: A 
.

Proof. Immediate, from unfolding the definition of refutation.

Lemma 4. Strong refutation, forcing and refutation are monotone in any classical
Kripke model.

Proof. All three statements proved separately by induction on the formula in question.

2.2. Relation to Traditional Forcing

It is natural to ask which properties of traditional forcingcarry over to our non-
primitive forcing.

Proposition 5. The following statements hold.

w :
 A→ B⇐⇒ for all w′ ≥ w,w′ :
 A⇒ w′ :
 B (1)

w :
 ∀x.A(x)⇐⇒ for all w′ ≥ w and t∈ D(w′),w′ :
 A(t) (2)

w :
 ⊥ ⇐⇒ w :
⊥ (3)

w :
 ⊤ ⇐⇒ true (4)

w :
 A∧ B⇐⇒ w :
 A and w:
 B (5)

w :
 A∨ B⇐= w :
 A or w :
 B (6)

w :
 ∃x.A(x)⇐= for some t∈ D(w),w :
 A(t) (7)
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Proof. (1)Supposew :
 A→ B,w′ ≥ w andw′ :
 A. To showw′ :
 B we letw′′ ≥ w′

andw′′ : B 
s and have to show thatw′′ is exploding. Since thenw′′ : A→ B 
s holds
by monotonicity and Lemma 3, the claim follows from the definition of w :
 A→ B.
For the other direction, suppose a worldw′ ≥ w in which A → B is strongly refuted,
i.e. w′ :
 A andw′ : B 
, and we have to showw′ is exploding. But, this is immediate,
sinceB is also forced by hypothesis (the right-hand side of the equivalence).

(2) By definition,w :
 ∀x.A(x) iff ∀w′ ≥ w, (∃s ∈ D(w′).w′ : A(s) 
) ⇒ w′ :
⊥,
which is equivalent to the right-hand side of the equivalence thanks to Lemma 3 and
refutation being defined in terms of forcing. (We used quantifier symbols at meta-
level.)

(5) Assumew :
 A, w :
 B, w ≤ w′, andw′ : A∧ B 
s. Therefore we havew′ : A 

or w′ : B 
. Each case leads tow′ :
⊥ sincew′ :
 A, w′ :
 B with monotonicity.

The rest of the cases follow from the definitions and the monotonicities of “
” and
D(−).

The previous propositions give us that our notion of forcingconstructively co-
incides with the traditional one only for implication, conjunction, and the universal
quantifier. We can also say that, constructively, forcing of⊥ and⊤ behaves like ex-
pected with respect to exploding nodes [Vel76, Kri96]. The coincidence of our classical
Kripke semantics with intuitionistic Kripke semantics on the→ ∧∀ fragment can be
emphasised by showing that our notion of model explicitly characterises the semantics
of classical logic obtained by interpretation into intuitionistic Kripke semantics through
the following double-negation translation:

X∗ = ¬X
(A∨ B)∗ = ¬(¬A∧ ¬B)
(∃x.A(x))∗ = ¬(∀x.¬A(x))

where¬A is A→ ⊥ and all other cases are compositional. Indeed, we have the follow-
ing characterisation:

Proposition 6. Any classical Kripke model on(K,≤) with strong refutation on atoms
w : X 
s, exploding worlds w
⊥ and domain D(w) is the image of an intuitionistic
Kripke model with exploding worlds which is defined on the same poset(K,≤), with
the same exploding worlds w
⊥, the same domain D(w) and with forcing on atoms
defined by w
′ X iffw : ¬X 
s. Indeed, for such an intuitionistic model we have w:
 A
in the classical model iff w 
 A∗ in the intuitionistic model.

Proof. It is enough to observe that we have the following facts in theclassical model:

• w :
 X iff w : ¬X 
s

• w :
 A∨ B iff w :
 ¬(¬A∧ ¬B)

• w :
 ∃x.A(x) iff w :
 ¬∀x.¬A(x)

Remark 7. The following are false, even if reasoning classically.
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(AxL)
Γ|A ⊢ A,∆

(AxR)
A, Γ ⊢ A|∆

Γ,A ⊢ ∆
(µ̃)

Γ|A ⊢ ∆
Γ ⊢ A,∆

(µ)
Γ ⊢ A|∆

Γ ⊢ A|∆ Γ|B ⊢ ∆
(→L)

Γ|A→ B ⊢ ∆
Γ,A ⊢ B|∆

(→R)
Γ ⊢ A→ B|∆

Γ|A ⊢ ∆ Γ|B ⊢ ∆
(∨L)

Γ|A∨ B ⊢ ∆
Γ ⊢ A|∆

(∨1
R)

Γ ⊢ A∨ B|∆
Γ ⊢ B|∆

(∨2
R)

Γ ⊢ A∨ B|∆

Γ|A ⊢ ∆
(∧1

L)
Γ|A∧ B ⊢ ∆

Γ|B ⊢ ∆
(∧2

L)
Γ|A∧ B ⊢ ∆

Γ ⊢ A|∆ Γ ⊢ B|∆
(∧R)

Γ ⊢ A∧ B|∆

Γ|A(x) ⊢ ∆ x fresh
(∃L)

Γ|∃xA(x) ⊢ ∆
Γ ⊢ A(t)|∆

(∃R)
Γ ⊢ ∃x.A(x)|∆

Γ|A(t) ⊢ ∆
(∀L)

Γ|∀x.A(x) ⊢ ∆
Γ ⊢ A(x)|∆ x fresh

(∀R)
Γ ⊢ ∀xA(x)|∆

(⊥L)
Γ|⊥ ⊢ ∆

(⊤R)
Γ ⊢ ⊤|∆

Γ ⊢ A|∆ Γ|A ⊢ ∆
(Cut)

Γ ⊢ ∆

Table 1: The sequent calculus LKµµ̃

• w :
 A∨ B =⇒ w :
 A or w :
 B.

• w :
 ∃x.A(x) =⇒ for some t∈ D(w),w :
 A(t).

The reason why they are in general false can be explained as follows. Below we are
going to prove cut-free completeness using the universal Kripke model based on the
deduction system itself. In the universal Kripke model,(Γ, ∅) :
 A is equivalent to
Γ ⊢ A. On the other hand,Γ ⊢ B∨C is in general not equivalent toΓ ⊢ B or Γ ⊢ C. A
similar argument can be done against the case with existential quantification.

3. LK µµ̃ and Soundness

Because we are interested in the symmetry of classical logic, we chose to for-
malise classical logic using a Gentzen’s LK-style sequent calculus. Moreover, since
we are eventually interested in using our Kripke semantics to perform proof normalisa-
tion, we decided to rely on Curien and Herbelin’s LKµµ̃ variant of LK for the sobriety
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and expressivity of its underlying core calculus of proof-terms (so-calledµµ̃ subsys-
tem [Her05]). LKµµ̃ is presented on Table 1. It differs from LK in the following points:

• Sequents come with an explicitly distinguished formula on the right or on the left,
or no distinguished formula at all, resulting in three kindsof sequents: “Γ ⊢ ∆”,
“Γ|A ⊢ ∆” and ”Γ ⊢ A|∆”. Especially, the distinguished formula plays an “active”
rôle in the rules.

• Accordingly, the axiom rule splits into two variants (AxL) and (AxR) depending
on whether the left active formula or the right active formula is distinguished.
There are also two new rules, (µ) and (µ̃), for making a formula active.

• There are no explicit contraction rules: contractions are derivable from a cut
against an axiom as follows:

(AxR)
Γ,A ⊢ A|∆ Γ,A|A ⊢ ∆

(Cut)
Γ,A ⊢ ∆

Γ ⊢ A|A,∆
(AxL)

Γ|A ⊢ A,∆
(Cut)

Γ ⊢ A,∆

• Consequently, the notion of normal proof is slightly different from the notion of
cut-freeness in LK: a normal proof is a proof whose only cuts are of the form of a
cut between an axiom and an introduction rule. ((µ) and (µ̃) are not introduction
rules)

The correspondence between LK and LKµµ̃ is direct. If we present LK with weak-
ening rules attached to the axiom rulesà la Kleene’sG3, we obtain an LK proof from an
LKµµ̃ proof by erasing the bars serving to distinguish active formulae, and by removing
the trivial inferences coming from the rules (µ) and (µ̃). In the other way round, every
introduction rule of LK can be derived in LKµµ̃ by applying the rules (µ) and (µ̃) on
the premises and a (possibly dummy) contraction (i.e. a cut against an axiom) on the
conclusion of the rule. Similarly for the axiom rule (for which there are two possible
derivations) and the cut rule. Especially, cut-free proofsof LK maps to normal proofs
of LKµµ̃ and vice-versa.

Theorem 8(Soundness). In any classical Kripke model the following hold:

Γ ⊢ ∆ =⇒ for any w such that w:
 Γ and w: ∆ 
,w :
⊥
Γ ⊢ A|∆ =⇒ for any w such that w:
 Γ and w: ∆ 
,w :
 A

Γ|A ⊢ ∆ =⇒ for any w such that w:
 Γ and w: ∆ 
,w : A 


Proof. One proves easily the three statements simultaneously, by induction on the
derivations.

4. Completeness

As usual when constructively proving completeness of Kripke semantics for a frag-
ment3 of intuitionistic logic [Coq93, HL], we define a special purpose model, called the

3as previously remarked, there is no constructive proof for full intuitionistic predicate logic
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universal model, built from the deduction system itself. Once we show completeness
for this special model, completeness for any model follows (Corollary 15).

Definition 9. TheUniversal classical Kripke modelU is obtained by setting:

• K to the set of pairs(Γ,∆) of contexts of LKµµ̃ ;

• (Γ,∆) ≤ (Γ′,∆′) iff bothΓ ⊆ Γ′ and∆ ⊆ ∆′;

• (Γ,∆) : X 
s iff the sequentΓ|X ⊢ ∆ is provable in LKµµ̃ ;

• (Γ,∆) :
⊥ iff the sequentΓ ⊢ ∆ is provable without a cut in LKµµ̃ ;

• for any w, D(w) is the set of individuals of LKµµ̃ (that is, D(−) is constant)

To show thatU is indeed a model, we have to prove two things, monotonicity of
strong refutation on atoms and its stability under substitutions. These are provided by
the following two lemmas, proved by induction on the derivations.

Lemma 10(Weakening). The following hold inLKµµ̃ :

Γ ⊢ ∆ =⇒ for all (Γ′,∆′) ≥ (Γ,∆), Γ′ ⊢ ∆′

Γ ⊢ A|∆ =⇒ for all (Γ′,∆′) ≥ (Γ,∆), Γ′ ⊢ A|∆′

Γ|A ⊢ ∆ =⇒ for all (Γ′,∆′) ≥ (Γ,∆), Γ′|A ⊢ ∆′

We emphasise that the proof of Lemma 10 needs not introduce any new cuts in the
derivations generated on the right-hand side of the implications. This will be important
for the proof of cut-free completeness.

Lemma 11(Substitutivity). The following hold inLKµµ̃ , whenever x does not appear
in Γ nor∆:

Γ ⊢ A(x)|∆ =⇒ for all t, Γ ⊢ A(t)|∆

Γ|A(x) ⊢ ∆ =⇒ for all t, Γ|A(t)|∆

To carry out the proof ofcut-freecompleteness, we also need to say when a formula
is “neutral” with respect to all derivations that comprehend a context (Γ,∆).

Definition 12 (NT(−)). A formula A is said to beneutral with respect to provabilityin
the context(Γ,∆) (notationNT(A, Γ,∆)), if for any extension(Γ′,∆′) of the context we
have

Γ
′|A ⊢ ∆′ =⇒ Γ′ ⊢ ∆′

where the derivation on the right of the implication is cut-free.

Definition 13 (NE(−)). A formula A is said to beneutral with respect to refutabilityin
the context(Γ,∆) (notationNE(A, Γ,∆)), if for any extension(Γ′,∆′) of the context we
have

Γ
′ ⊢ A|∆′ =⇒ Γ′ ⊢ ∆′

where the derivation on the right of the implication is cut-free.
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Theorem 14(Cut-Free Completeness forU). For any A, Γ and∆, the following hold
inU:

(Γ,∆) :
 A =⇒ Γ ⊢ A|∆ (1)

NT(A, Γ,∆) =⇒ (Γ,∆) :
 A (2)

(Γ,∆) : A 
 =⇒ Γ|A ⊢ ∆ (3)

NE(A, Γ,∆) =⇒ (Γ,∆) : A 
 (4)

Moreover, the derivations on the right-hand side of (1) and (3) are cut-free.

Proof. We proceed by simultaneously proving all four statements byinduction on the
formulaA.

Base case.In the base case we have forcing and refutation on atomic formulae, which
by definition reduce to strong refutation on atomic formulae, which by definition re-
duces just to statements about the deductions in LKµµ̃

(1) Suppose that for all (Γ′,∆′) ≥ (Γ,∆),

Γ
′|X ⊢ ∆′ ⇒ Γ′ ⊢ ∆′ . . . (*)

Then:
(AxL)

Γ|X ⊢ X,∆
(*)

Γ ⊢ X,∆
(µ)

Γ ⊢ X|∆

(2) The hypothesis is NT(X, Γ,∆). Given (Γ′,∆′) ≥ (Γ,∆) such thatΓ′|X ⊢ ∆′, we
have:

Γ
′|X ⊢ ∆′

NT(X, Γ,∆)
Γ
′ ⊢ ∆′

(3) We have (Γ,∆) : X 
, i.e.,

∀(Γ′,∆′) ≥ (Γ,∆),
{

∀(Γ′′,∆′′) ≥ (Γ′,∆′), Γ′′|X ⊢ ∆′′ ⇒ Γ′′ ⊢ ∆′′
}

⇒ Γ′ ⊢ ∆′ (*)

We can showΓ|X ⊢ ∆ by applying the (˜µ)-rule and (*), but we also have to show
the sub-statement in curly brackets of (*):

becauseX ∈ (X, Γ) ⊆ Γ′′
(AxR)

Γ
′′ ⊢ X|∆′′ Γ

′′|X ⊢ ∆′′
(Cut)

Γ
′′ ⊢ ∆′′

(4) Suppose NE(X, Γ,∆) and suppose (Γ′,∆′) ≥ (Γ,∆) such that

∀(Γ′′,∆′′) ≥ (Γ′,∆′), Γ′′|X ⊢ ∆′′ ⇒ Γ′′ ⊢ ∆′′ (#)

Then:
(AxL)

Γ
′|X ⊢ X,∆′

(#)
Γ
′ ⊢ X,∆′

(µ)
Γ
′ ⊢ X|∆′

NE(X, Γ,∆)
Γ
′ ⊢ ∆′
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Induction case for implication.

(1) We can strengthen the hypothesis (Γ,∆) :
 A1 → A2 using the induction hypothe-
ses to obtain:

∀(Γ′,∆′) ≥ (Γ,∆),NT(A1, Γ
′,∆′)⇒ NE(A2, Γ

′,∆′)⇒ Γ′ ⊢ ∆′ (#)

Now we have:
(#)

A1, Γ ⊢ A2,∆
(µ)

A1, Γ ⊢ A2|∆
(→R)

Γ ⊢ A1 → A2|∆

And we have to show NT(A1, (A1, Γ), (A2,∆)) and NE(A2, (A1, Γ), (A2,∆)), which
is easy using weakening because the neutral formulae already appear in the con-
texts.

(2) Suppose NT(A1→ A2, Γ,∆) and suppose (Γ′,∆′) ≥ (Γ,∆) such that (Γ′,∆′) :
 A1

and (Γ′,∆′) : A2 
. The induction hypotheses give us thatΓ′ ⊢ A1|∆
′ andΓ′|A2 ⊢

∆
′. Now we have:

Γ
′ ⊢ A1|∆

′
Γ
′|A2 ⊢ ∆

′

(→L)
Γ
′|A1→ A2 ⊢ ∆

′

NT(A1 → A2, Γ,∆)
Γ
′ ⊢ ∆′

(3) We have (Γ,∆) : A1→ A2 
, i.e.,

∀(Γ′,∆′) ≥ (Γ,∆), {∀(Γ′′,∆′′) ≥ (Γ′,∆′),NT(A1, Γ
′′,∆′′)⇒

NE(A2, Γ
′′,∆′′)⇒ Γ′′ ⊢ ∆′′} ⇒ Γ′ ⊢ ∆′

(*)

(*)
Γ ⊢ A1,∆ (µ)
Γ ⊢ A1|∆

(*)
Γ,A2 ⊢ ∆ (µ̃)
Γ|A2 ⊢ ∆

(→L)
Γ|A1→ A2 ⊢ ∆

Due to the use of (*) we have to show the sub-expression in curly brackets. Let us
show only one case, the other is symmetric:

(AxL), since (A1,∆) ⊆ ∆′′

Γ
′′|A1 ⊢ ∆

′′

NT(A1,Γ, (A1,∆))
Γ
′′ ⊢ ∆′′

(4) Let NE(A1→ A2, Γ,∆) and let (Γ′,∆′) ≥ (Γ,∆) be given such that:

∀(Γ′′,∆′′) ≥ (Γ′,∆′),NT(A1, Γ
′′,∆′′)⇒ NE(A2, Γ

′′,∆′′)⇒ Γ′′ ⊢ ∆′′ (#)

We showΓ′ ⊢ ∆′:
(#)

A1, Γ
′ ⊢ A2,∆

′

(µ)
A1, Γ

′ ⊢ A2|∆
′

(→R)
Γ
′ ⊢ A1 → A2|∆

′

NE(A1 → A2,Γ,∆)
Γ
′ ⊢ ∆′

For the application of (#) we have to show the corresponding NT(A1, (A1, Γ
′), (A2,∆

′))
and NE(A2, (A1, Γ

′), (A2,∆
′)), but this is easy since the formulae are already inside

the corresponding contexts.
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Induction case for∨.

(1) Suppose (Γ,∆) :
 A1 ∨ A2, which can be strengthened using the induction hy-
potheses to:

∀(Γ′,∆′) ≥ (Γ,∆),NE(A1, Γ
′,∆′)⇒ NE(A2, Γ

′,∆′)⇒ Γ′ ⊢ ∆′ (*)

Here is a derivation ofΓ ⊢ A1 ∨ A2|∆:

(*)
Γ ⊢ A2,A1,A1 ∨ A2,∆

(µ)
Γ ⊢ A2|A1,A1 ∨ A2,∆

(∨2
L)

Γ ⊢ A1 ∨ A2|A1,A1 ∨ A2,∆
(AxL)

Γ|A1 ∨ A2 ⊢ A1,A1 ∨ A2,∆
(Cut)

Γ ⊢ A1,A1 ∨ A2,∆ (µ)
Γ ⊢ A1|A1 ∨ A2,∆

(∨1
L)

Γ ⊢ A1 ∨ A2|A1 ∨ A2,∆
(AxL)

Γ|A1 ∨ A2 ⊢ A1 ∨ A2,∆
(Cut)

Γ ⊢ A1 ∨ A2,∆ (µ)
Γ ⊢ A1 ∨ A2|∆

It is only left to prove that NE(A1, Γ, (A2,A1,A1∨A2,∆)) and NE(A2, Γ, (A2,A1,A1∨

A2,∆)), but that is trivial because the neutral formulae are already in the context.
(2) Let NT(A1∨A2, Γ,∆) and suppose given a (Γ′,∆′) ≥ (Γ,∆) such that (by induction

hypotheses) NE(A1, Γ
′,∆′) and NE(A2, Γ

′,∆′).

(AxR)
Γ
′,A1 ⊢ A1|∆

′

NE(A1,Γ
′ ,∆′)

Γ
′,A1 ⊢ ∆

′

(µ̃)
Γ
′|A1 ⊢ ∆

′

(AxR)
Γ
′,A2 ⊢ A2|∆

′

NE(A2,Γ
′ ,∆′)

Γ
′,A2 ⊢ ∆

′

(µ̃)
Γ
′|A2 ⊢ ∆

′

(∨L)
Γ
′|A1 ∨ A2 ⊢ ∆

′

NT(A1 ∨ A2, Γ,∆)
Γ
′ ⊢ ∆′

(3) Using the induction hypotheses we get from (Γ,∆) : A1 ∨ A2 
:

∀(Γ′,∆′) ≥ (Γ,∆), {∀(Γ′′,∆′′) ≥ (Γ′,∆′),NE(A1, Γ
′′,∆′′)⇒

NE(A2, Γ
′′,∆′′)⇒ Γ′′ ⊢ ∆′′} ⇒ Γ′ ⊢ ∆′

(*)

We can have the following derivation

(*)
Γ,A1 ⊢ ∆ (µ̃)
Γ|A1 ⊢ ∆

(*)
Γ,A2 ⊢ ∆ (µ̃)
Γ|A2 ⊢ ∆

(∨L)
Γ|A1 ∨ A2 ⊢ ∆

but, we have to prove that the sub-statement in curly brackets from (*) holds for
both the contextA1, Γ and the contextA2, Γ. Here is one of them: (the other is
analogous)

(AxR), since (A1,Γ) ⊆ Γ′′
Γ
′′ ⊢ A1|∆

′′

NE(A1,Γ
′′ ,∆′′)

Γ
′′ ⊢ ∆′′

10



(4) Suppose NE(A1∨ A2, Γ,∆), (Γ′,∆′) ≥ (Γ,∆) and, using the induction hypothesis,
suppose:

∀(Γ′′,∆′′) ≥ (Γ′,∆′),NE(A1, Γ
′′,∆′′)⇒ NE(A2, Γ

′′,∆′′)⇒ Γ′′ ⊢ ∆′′ (*)

(*)
Γ
′ ⊢ A2,A1,∆

′

(µ)
Γ
′ ⊢ A2|A1,∆

′

(∨2
L)

Γ
′ ⊢ A1 ∨ A2|A1,∆

′

NE(A1 ∨ A2, Γ,∆)
Γ
′ ⊢ A1,∆

′

(µ)
Γ
′ ⊢ A1|∆

′

(∨1
L)

Γ
′ ⊢ A1 ∨ A2|∆

′

NE(A1 ∨ A2,Γ,∆)
Γ
′ ⊢ ∆′

This constitutes a derivation as required, given that it is easy to prove NE(A1, Γ
′, (A2,A1,∆

′))
and NE(A2, Γ

′, (A2,A1,∆
′)) which arise from the use of (*).

Induction case for∧.

(1) Let
∀(Γ′,∆′) ≥ (Γ,∆),NE(A1, Γ

′,∆′) or NE(A2, Γ
′,∆′)⇒ Γ′ ⊢ ∆′ (*)

Here is the required derivation:

(*)
Γ ⊢ A1,∆

(µ)
Γ ⊢ A1|∆

(*)
Γ ⊢ A2,∆

(µ)
Γ ⊢ A2|∆

(∧R)
Γ ⊢ A1 ∧ A2|∆

Where it is easy to show thatA1 andA2 are neutral in the two cases arising from
the use of (*).

(2) Suppose NT(A1 ∧ A2, Γ,∆). To show (Γ,∆) :
 A1 ∧ A2, let (Γ′,∆′) ≥ (Γ,∆)
and (NE(A1, Γ

′,∆′) or NE(A2, Γ
′,∆′)) be true. Without loss of generality, let

NE(A1, Γ
′,∆′) be true. Then:

(AxR)
Γ
′,A1 ⊢ A1|∆

′

NE(A1,Γ
′ ,∆′)

Γ
′,A1 ⊢ ∆

′

(µ̃)
Γ
′|A1 ⊢ ∆

′

(∧1
L)

Γ
′|A1 ∧ A2 ⊢ ∆

′

NT(A1 ∧ A2,Γ
′ ,∆′)

Γ
′ ⊢ ∆′

(3) Suppose (Γ,∆) : A1 ∧ A2 
, which can be strengthened using the induction hy-
potheses to:

∀(Γ′,∆′) ≥ (Γ,∆), {∀(Γ′′,∆′′) ≥ (Γ′,∆′),NE(A1, Γ
′′,∆′′) or

NE(A2, Γ
′′,∆′′)⇒ Γ′′ ⊢ ∆′′} ⇒ Γ′ ⊢ ∆′

(*)

Now we have:

(*)
Γ,A1 ∧ A2 (µ̃)
Γ|A1 ∧ A2

11



But we have to show the hypothesis of (*). Let (Γ′′,∆′′) ≥ ((A1 ∧ A2, Γ),∆) and
suppose, without loss of generality, that the left disjunctis true, i.e., we have
NE(A1, Γ

′′,∆′′). Then:

(AxR)
Γ
′′ ⊢ A1 ∧ A2|∆

′′

(AxR)
Γ
′′,A1 ⊢ A1|∆

′′

NE(A1,Γ
′′ ,∆′′)

Γ
′′,A1 ⊢ ∆

′′

(µ̃)
Γ
′′|A1 ⊢ ∆

′′

(∧1
L)

Γ
′′|A1 ∧ A2 ⊢ ∆

′′

(Cut)
Γ
′′ ⊢ ∆′′

(4) Suppose NE(A1 ∧ A2, Γ,∆), (Γ′,∆′) ≥ (Γ,∆) and, using the induction hypotheses,
suppose:

∀(Γ′′,∆′′) ≥ (Γ′,∆′),NE(A1, Γ
′′,∆′′) or NE(A2, Γ

′′,∆′′)⇒ Γ′′ ⊢ ∆′′ (*)

We have:
(#)

Γ
′ ⊢ A1,∆

′

(µ)
Γ
′ ⊢ A1|∆

′

(#)
Γ
′ ⊢ A2,∆

′

(µ)
Γ
′ ⊢ A2|∆

′

(∧R)
Γ
′ ⊢ A1 ∧ A2|∆

′

NE(A1 ∧ A2,Γ,∆)
Γ
′ ⊢ ∆′

where NE(A1, Γ
′, (A1,∆

′)) and NE(A2, Γ
′, (A2,∆

′)) arising from the use of (#) are
easy to prove, because the formulae are already inside the contexts.

Induction case for∀. In the induction cases for∀ and∃ we leave out the membership
in the domain of individualsD(−) since inU we have a constant domain and we use
the quantifier symbols also at the meta-level, to shorten thenotation.

(1) Let (Γ,∆) :
 ∀x.A(x). Using the induction hypotheses we get:

∀(Γ′,∆′) ≥ (Γ,∆), (∃t,NE(A(t), Γ′,∆′))⇒ Γ′ ⊢ ∆′ (*)

Here follows the required derivation:

(*)
Γ ⊢ A(x),∆

(µ)
Γ ⊢ A(x)|∆

(∀R), x-fresh
Γ ⊢ ∀x.A(x)|∆

One easily shows that NE(A(x), Γ, (A(x),∆)).
(2) Suppose NT(∀x.A(x), Γ,∆), (Γ′,∆′) ≥ (Γ,∆) and we havet such that, by induction

hypothesis,Γ′|A(t) ⊢ ∆′. Here is a derivation ofΓ′ ⊢ ∆′:

Γ
′|A(t) ⊢ ∆′

(∀L)
Γ
′|∀x.A(x) ⊢ ∆′

NT(∀x.A(x), Γ,∆)
Γ
′ ⊢ ∆′

(3) Suppose (Γ,∆) : ∀x.A(x) 
. We strengthen this using the induction hypothesis to:

∀(Γ′,∆′) ≥ (Γ,∆), {∀(Γ′′,∆′′) ≥ (Γ′,∆′),

(∃t,NE(A(t), Γ′′,∆′′))⇒ Γ′′ ⊢ ∆′′} ⇒ Γ′ ⊢ ∆′
(*)

This

12



(*)
Γ,∀x.A(x) ⊢ ∆

(µ̃)
Γ|∀x.A(x) ⊢ ∆

is the derivation we need, in case we prove the sub-expression in curly brack-
ets of (*). Therefore, suppose (Γ′′,∆′′) ≥ ((∀x.A(x), Γ),∆) and suppose at with
NE(A(t), Γ′′,∆′′). We have to proveΓ′′ ⊢ ∆′′:

(AxR)
Γ
′′ ⊢ ∀x.A(x)|∆′′

(AxR)
Γ
′′,A(t) ⊢ A(t)|∆′′

NE(A(t), Γ′′ ,∆′′)
Γ
′′,A(t) ⊢ ∆′′

(µ̃)
Γ
′′|A(t) ⊢ ∆′′

(∀L)
Γ
′′|∀x.A(x) ⊢ ∆′′

(Cut)
Γ
′′ ⊢ ∆′′

(4) Suppose NE(∀x.A(x), Γ,∆). To show (Γ,∆) : ∀x.A(x) 
, let (Γ′,∆′) ≥ (Γ,∆) and
let

∀(Γ′′,∆′′) ≥ (Γ′,∆′),
(

∃t,NE(A(t), Γ′′,∆′′)
)

⇒ Γ′′ ⊢ ∆′′ (*)

Here is the required derivation:

(*)
Γ
′ ⊢ A(x),∆′

(µ)
Γ
′ ⊢ A(x)|∆′

(∀R), x-fresh
Γ
′ ⊢ ∀x.A(x)|∆′

NE(∀x.A(x), Γ,∆)
Γ
′ ⊢ ∆′

For the application of (*) one can easily show that NE(A(x), Γ′, (A(x),∆′)).

Induction case for∃.

(1) Suppose (Γ,∆) :
 ∃x.A(x), which using the induction hypothesis can be strength-
ened to:

∀(Γ′,∆′) ≥ (Γ,∆), (∀t,NE(A(t), Γ′,∆′))⇒ Γ′ ⊢ ∆′ (*)

The following is a good derivation

(*)
Γ ⊢ ∃x.A(x),∆

(µ)
Γ ⊢ ∃x.A(x)|∆

if we manage to show the hypothesis from applying (*). For that, let t, Γ′ ⊇ Γ,∆′ ⊇
(∃x.A(x),∆) be given such thatΓ′ ⊢ A(t)|∆′.

Γ
′ ⊢ A(t)|∆′

(∃R)
Γ
′ ⊢ ∃x.A(x)|∆′

(AxL)
Γ
′|∃x.A(x) ⊢ ∆′

(Cut)
Γ
′ ⊢ ∆′

(2) Let NT(∃x.A(x), Γ,∆) and (Γ′,∆′) ≥ (Γ,∆) be given and suppose

∀t, Γ′|A(t) ⊢ ∆′ (#)

The required derivation is:

(#)
Γ
′|A(x) ⊢ ∆′

(∃L), x-fresh
Γ
′|∃x.A(x) ⊢ ∆′

NT(∃x.A(x), Γ,∆)
Γ
′ ⊢ ∆′
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(3) Suppose (Γ,∆) : ∃x.A(x) 
 which gives, thanks to the induction hypothesis:

∀(Γ′,∆′) ≥ (Γ,∆), {∀(Γ′′,∆′′) ≥ (Γ′,∆′),

(∀t,NE(A(t), Γ′′,∆′′))⇒ Γ′′ ⊢ ∆′′} ⇒ Γ′ ⊢ ∆′
(*)

The required derivation is

(*)
Γ,A(x) ⊢ ∆

(µ̃)
Γ|A(x) ⊢ ∆

(∃L), x-fresh
Γ|∃x.A(x) ⊢ ∆

but we also have to show the statement in curly brackets arising from the use of
(*). Therefore, suppose (Γ′′,∆′′) ≥ ((A(x), Γ),∆) and suppose, using the induction
hypothesis, that∀t, Γ′′|A(t) ⊢ ∆′′. We have to proveΓ′′ ⊢ ∆′′:

(AxR)
Γ
′′ ⊢ A(x)|∆′′

(#)
Γ
′′|A(x) ⊢ ∆′′

(Cut)
Γ
′′ ⊢ ∆′′

(4) Suppose NE(∃x.A(x), Γ,∆) and let (Γ′,∆′) ≥ (Γ,∆) such that (Γ′,∆′) :
 ∃x.A(x).
Using the induction hypothesis, this last thing strengthens to:

∀(Γ′′,∆′′) ≥ (Γ′,∆′), (∀t,NE(A(t), Γ′′,∆′′))⇒ Γ′′ ⊢ ∆′′ (*)

To showΓ′ ⊢ ∆′, we immediately apply (*) and then have to show the hypothesis:
let t, Γ3,∆3 be such thatΓ3 ⊢ A(t)|∆3 and (Γ3,∆3) ≥ (Γ′′,∆′′). Then this is what
we are looking for:

Γ3 ⊢ A(t)|∆3
(∃R)

Γ3 ⊢ ∃x.A(x)|∆3
NE(∃x.A(x), Γ,∆)

Γ3 ⊢ ∆3

Induction case for⊤.

(1) Immediate, from (⊤R).
(2) Easy, using Proposition 5.
(3) Easy, using Proposition 5.
(4) Easy, a (Cut) with⊤ and then (⊤R) and (AxL).

Induction case for⊥.

(1) Easy, using Proposition 5.
(2) Easy, a (Cut) with⊥ and then (⊥L) and (AxR).
(3) Immediate, from (⊥L).
(4) Immediate, by applying the hypothesis.
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All the given derivations are cut-free.By inspection of the proof trees and having in
mind that NT,NE, weakening and the derivations arising from exploding nodes, do not
introduce cuts, we convince ourselves that indeed the completeness theorem produces
only cut-free derivations.

Corollary 15 (Completeness of Classical Logic). If in every Kripke model, at every
possible world, the formula A is forced whenever all the formulae ofΓ are forced and
all the formulae of∆ are refuted, then there exists a derivation inLKµµ̃ of the sequent
Γ ⊢ A|∆.

Proof. If the hypothesis holds for any Kripke model, so does it hold forU. To show
Γ ⊢ A|∆, by Theorem 14, it is enough to show that (Γ,∆) :
 B for all B ∈ Γ and
(Γ,∆) : C 
 for all C ∈ ∆, something that is immediate from the definitions of NT and
NE, after applying (2) and (4) of the preceeding theorem.

5. Normalisation and the Call-by-Value Variant

A constructive cut-free completeness theorem can be used for proof normalisation.

Corollary 16 (Normalisation-by-Evaluation). For all contextsΓ,∆, if there is a deriva-
tion Γ ⊢ ∆, then there is a cut-free derivationΓ ⊢nf ∆.

Proof. From the hypothesisΓ ⊢ ∆, the soundness theorem applied toU gives us that
there is indeedΓ ⊢nf ∆, if we manage to show that the world (Γ,∆) forces all formulae
of Γ and refutes all formulae of∆. This is done as in the proof of the preceeding
corollary.

The sequent calculus LKµµ̃ introduced in section 3 is in proofs-as-programs cor-
respondence with the calculus̄λµµ̃ of [CH00] and has actually never been presented
separately from it. We chose to present only the “logical” side of the two in order to
decrease the level of details, because our main aim was to introduce the new notion of
model.

Therefore, the last corollary can be also seen as a result about computation i.e. re-
duction to normal form of̄λµµ̃-commands. Since in̄λµµ̃-calculus there are two choices
for a reduction strategy, call-by-name and call-by-value,the question is which one did
we obtain. Our experiments with using the Coq formalisation4 of the presented proofs,
as an algorithm, confirm that we have obtained a call-by-nameevaluation strategy, as
was actually anticipated by the third author in the beginnings of this work.

More precisely, for thēλµµ̃ critical pair〈µα.c‖µ̃x.c′〉 the algorithm gives priority to
the (µ̃) reduction rule and the reduction for connectives→,∧,∨ appears to work cor-
rectly. (see [Her05] for the reduction rules) In the formalisation we did not implement
the connectives∀,∃,⊥,⊤ in particular due to the additional time required for formal
handling of binders.

4available athttp://www.lix.polytechnique.fr/∼danko/lbmmt kripke.v

15

http://www.lix.polytechnique.fr/~danko/lbmmt_kripke.v


Call-by-Value Models.LKµµ̃ and λ̄µµ̃ enjoy a strong duality between call-by-name
and call-by-value. This gives us the right to conjecture that the proofs presented in
this paper would work, essentially unmodified, for a call-by-value notion of classical
Kripke model. In that notion we would have “strongforcing” on atoms as primitive and
“refutation” and non-strong “forcing” defined through it byorthogonality, by analogy
to the call-by-name case.

6. Conclusion

Sambin has already remarked in [Sam95] that having richer semantics, gives a sim-
pler completeness proof and that this applies in particularto classical logic as well.
While his semantics are based on phase spaces, or pre-topologies, the notion of se-
mantics presented here does not fall into that category. Ourcompleteness proof might
be slightly more involved than Sambin’s, but it is certainlymuch less complex than a
traditional Gödel-Henkin style proof, which is due to our use of a more “descriptive”
semantics than Boolean semantics.

In future we hope to be able to compare the computational content of the presented
completeness theorem with the computational content ofconstructiveGödel-Henkin
style proofs. [Kri96, BV04]

We also plan to prove that the normalisation-by-evaluationalgorithm we got is
correct with respect to the reduction relation ofλ̄µµ̃. Note that Corollary 16 only tells
us that we get a derivation in normal form, but it does not guarantee that we get the
right normal form derivations – the ones matching the behaviour of λ̄µµ̃ reduction.

We would like to verify if our conjectured call-by-value models exist and, also, to
generalise the results to a version of LKµµ̃ with generic treatment of connectives. In
order to get a more “regular” behaviour of disjunction, we will consider defining strong
refutation of it in terms ofstrongrefutation and might also consider adopting a different
attitude to constructive disjunction at the meta-level, i.e. one not necessarily satisfying
the BHK-interpretation of logical constants.

Finally, we would like to understand better the new notion ofmodel.
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complétude de la logique classique.Bulletin of Symbolic Logic, 2(4):405–
421, 1996.

[McC94] David Charles McCarty. On Theorems of Gödel and Kreisel: Completeness
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