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Problem Statement
Continuous Domain Search/Optimization

The problem
Minimize a objective function (fitness function, loss function) in
continuous domain

f : S ⊆ Rn → R,
in the Black Box scenario (direct search)

f(x)x

Hypotheses
domain specific knowledge only used within the black box
gradients are not available
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Problem Statement
Continuous Domain Search/Optimization

The problem
Minimize a objective function (fitness function, loss function) in
continuous domain

f : S ⊆ Rn → R,
in the Black Box scenario (direct search)

f(x)x

Typical Examples
shape optimization (e.g. using CFD) curve fitting, airfoils

model calibration biological, physical

parameter identification controller, plants, images
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The practitionner’s point of view
Issues

How to choose the best algorithm?
I For a given objective function set of functions
I Without theoretical support

Empirical comparisons on extensive test suites
I what performance measures?
I what test functions? representative of real-world

Some proposals
Expected Running Time + Empirical Cumulative Distributions
An artificial testbed, with controlled typical difficulties
A (partial) case study, involving 2 deterministic and 3 bio-inspired
algorithms
in back-box scenario without specific intensive parameter tuning
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1 Performance Measures and Experimental Comparisons
How to empirically compare algorithms?

2 Problem difficulties and algorithm invariances

3 Derivative-Free Optimization Algorithms

4 Experiments and Results

5 Conclusion
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Context
Optimization goal(s)

Find best possible objective value 6= get close to the global optimum

At minimal cost ≈ number of function evaluations

Available data

Objective value vs Computational cost Minimization

What to record/analyze/summarize?
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Context
Optimization goal(s)

Find best possible objective value 6= get close to the global optimum

At minimal cost ≈ number of function evaluations

Two points of view

Vertical: Value reached for a given effort
Horizontal: Effort required to reach a given objective value
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Both Views: Empirical Cumulative Distributions Fns
Horizontal Vertical
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Discussion

Vertical vs horizontal
Vertical: Value reached for a given effort

I Fixed budget scenario
I Qualitative comparisons Algo. A reaches better value than Algo. B

Horizontal: Effort required to reach a given objective value
I Baseline requirement e.g. beat the opponent!
I Absolute comparisons: Algo. A is X times faster than Algo. B
I Monotonous-invariant criterion

Statistics
Difficult to summarize multiple viewpoints into a single measure
. . . and to find a sound estimator for it

compute its variance, perform statistical tests, . . .
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Performance measures

ECDFs
Require arbitrary

I maximal target precision,
I maximal run length

Can be used for sets of benchmark functions previous slide

Need to be sub-sampled for comparisons

Horizontal performance measures
Fix a target objective value,
compute Expected Running Times Distribution,
measure average effort to success
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from Empirical Cumulative Distribution Functions

Horizontal Vertical
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from Empirical Cumulative Distribution Functions
to Expected Running Time

Runtime ECDF Estimated Runtime Distribution

using resampling technique
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Expected Running Time
Experiments and notations

Fixed number of runs
Arbitrary target objective value ftarget

Arbitrary bound on # evaluations
psucc: proportion of successful runs that reached ftarget

R̂Tsucc (resp. R̂T fail): empirical average number of evaluations of
successful (resp. unsuccessful) runs

Expected Running Time Measures

SP1(ftarget) =
R̂Tsucc

psucc
SP2(ftarget) =

psuccR̂Tsucc + (1− psucc)R̂T fail

psucc
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Expected Running Time (2)
Discussion

Both measures
I reflect some average effort to reach ftarget
I are equivalent in case of 100% success
I are unreliable estimators in case of small psucc
I can be used to easily compare algorithms on sets of functions

by normalizing w.r.t. best algorithm on each function

SP1 insensitive to the running length of unsuccessful runs
SP2 very sensitive to the stopping criterion and the restart
strategy, that are part of the algorithm fine tuning . . .

History
CEC’05 Challenge on Continuous Optimization used SP1
GECCO’09 Workshop on Black-Box Optimization Benchmarking
uses SP2
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1 Performance Measures and Experimental Comparisons

2 Problem difficulties and algorithm invariances
What makes a continuous optimization problem hard?

3 Derivative-Free Optimization Algorithms

4 Experiments and Results

5 Conclusion
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Problem Difficulties and Algorithm Invariances
What makes a problem hard?

Non-convexity
invalidates most of deterministic theory

I Ruggedness
non-smooth, discontinuous, noisy

I Multimodality presence of local optima
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Dimensionality line search is ’trivial’
The magnifiscence of high dimensionality . . .

Ill-conditioning Very different scalings along different directions

Non-separability Correlated variables

The benefits of invariance
Some difficulties become harmless
More robust parameter setting
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Ruggedness and Monotonous Invariance

Monotonous transformations of the objective function

∑
x2

i

√√∑
x2

i

(∑
x2

i
)2

Monotonous Invariance
Invariance w.r.t. monotonous transformations
A guarantee against ill-scaled objective functions
Comparison-based algorithms are monotonous-invariant
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Multimodality

Presence of multiple local optima

Restart strategies
For local optimizers, starting point is crucial on multimodal
functions
Multiple restarts are mandatory

I from uniformly distributed points global restart
I from the final point of some previous run local restart

after some parameter reset

Also efficient with any optimization algorithm

M. Schoenauer (INRIA Orsay) Comparisons of DFO algorithms SEA’09 – 4/6/09 15 / 58



Performance Problem Difficulties Continuous Optimization Experiments and Results Conclusion

Ill-Conditionning

The Condition Number (CN) of a positive-definite matrix H is the ratio of its
largest and smallest eigenvalues

If f is quadratic, f (x) = xTHx), the CN of f is that of its Hessian H

More generally, the CN of f is that of its Hessian wherever it is defined.

Graphically, ill-conditioned means “squeezed” lines of equal function value
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Issue: The gradient does not point toward the minimum . . .
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Separability

Definition (Separable Problem)
A function f is separable if

arg min
(x1,...,xn)

f (x1, . . . , xn) =
(

arg min
x1

f (x1, . . .), . . . , arg min
xn

f (. . . , xn)
)

solve n independent 1D optimization problems

Example: Additively
decomposable functions

f (x1, . . . , xn) =
n∑

i=1

fi(xi)

e.g. Rastrigin function
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Designing Non-Separable Problems

Rotating the coordinate system
f : x 7→ f (x) separable
f : x 7→ f (Rx) non-separable R rotation matrix

Hansen, Ostermeier, & Gawelczyk, 95; Salomon, 96
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1 Performance Measures and Experimental Comparisons

2 Problem difficulties and algorithm invariances

3 Derivative-Free Optimization Algorithms
Deterministic and Bio-Inspired Algorithms

4 Experiments and Results

5 Conclusion
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Optimization techniques

Numerical methods
Applied Mathematicians Long history

Classical methods based on First Principles gradient-based
require regularity numerical gradient amenable to numerical pitfalls

Recent DFO methods quadratic interpolation of the objective function

Bio-inspired algorithms
Computer Scientists mostly from AI field

Many recent (and trendy) methods

but
Computationally heavy
No convergence proof almost . . .
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BFGS Broyden, Fletcher, Goldfarb, & Shanno, 1970

Gradient-based methods{
xt+1 = xt − ρtdt

ρt = Argminρ{F(xt − ρdt)} Line search

Choice of dt, the descent direction?

BFGS: a Quasi-Newton method
Maintain an approximation Ĥt of the Hessian of f

Solve for dt

Ĥtdt = ∇f (xt)

Compute xt+1 and update Ĥt → Ĥt+1

Converges if quadratic approximation of F holds
around the optimum

Reliable and robust on quadratic functions!
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BFGS: A priori Discussion

Properties
Gradient-based algorithms are

I local optimizers
I not monotonous invariant
I independent of the coordinate system

But numerical gradient is not rotational invariant
and can suffer from ill-conditionning

Implementation
Matlab built-in fminunc widely blindly used

using numerical gradient
Function improvement threshold set to 10−25

Multiple restarts mandatory local or global
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NEWUOA
Powell, 2006

A Derivative-Free Optimization Algorithm
Builds a quadratic interpolation of the objective function
Maintains a trust region size ρ where interpolation is accurate
Alternates

I trust region iterations:
one conjugate gradient step on the surrogate model

I alternative iterations:
new trust region and surrogate model

Parameters
Number of interpolation points
from n + 6 to n(n+1)

2 2n + 1 recommended

Initial (ρinit) and final (ρend) sizes of trust region
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NEWUOA: A priori Discussion

Properties
a global optimizer (re)start with large trust region size

not monotonous invariant
Full model (n(n+1)

2 points) is independent of coordinate system
Most efficient model (2n + 1) is not

Implementation
Matthieu Guibert’s implementation
http://www.inrialpes.fr/bipop/people/guilbert/
newuoa/newuoa.html

ρinit = 100 and ρend = 10−15 after some preliminary experiments

Local restarts by resetting ρ to ρinit
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Stochastic Search
A unified point of view

A black box search template to minimize f : Rn → R
Initialize distribution parameters θ, set sample size λ ∈ N
While not terminate

1 Sample distribution P (x|θ)→ x1, . . . , xλ ∈ Rn

2 Evaluate x1, . . . , xλ on f
3 Update parameters θ ← Fθ(θ, x1, . . . , xλ, f (x1), . . . , f (xλ))

Covers
Deterministic algorithms including BFGS and NEWUOA

Evolutionary Algorithms, PSO, DE
P implicitly defined by the variation operators (crossover/mutation)

Estimation of Distribution Algorithms
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Particle Swarm Optimization (PSO)
Eberhart & Kennedy, 1995

The basic algorithm
Let x1, . . . , xλ ∈ Rn be a set of particles

1 Sample new positions

xj
i(t + 1) = xj

i(t) + w
`
xj

i(t)− xj
i(t − 1)

´| {z }
aka velocity

+ c1 U j
i (0, 1)(pj

i − xj
i(t))| {z }

approach the "previous" best

+ c2 Ũ j
i (0, 1)(gj

i − xj
i(t))| {z }

approach the "global" best

2 Evaluate x1(t + 1), . . . , xλ(t + 1)

3 Update distribution parameters

pi = xi(t + 1) if f (xi(t + 1)) < f (pi)
gi = x∗(t + 1) where f(x∗(t + 1)) = min {f(xk(t + 1)), k ∈ neighbor(i)}
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PSO: A priori Discussion

Properties
Comparison-based Monotonous invariance

not rotational invariant sampled distribution is an hyperrectangle

Implementation
Standard PSO 2006, C code,

6= Matlab code! from PSO Central at
http://www.particleswarm.info/

Default settings:
I inertia weight w ≈ 0.7,
I c1 = c2 ≈ 1.2

Swarm size = λ = 10 + floor(2
√

n)
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Differential Evolution (DE)
Rainer & Storn, 1995

Basic algorithm
Generate NP individuals uniformly in bounds

Until stopping criterion
I For each individual x in the population

F Perturbation using an intra-population difference vector

x̂ = xα + F(xβ − xγ)

F (Uniform) crossover with probability 1− CR Keep x̂ if CR = 1

yi = x̂i if U(0, 1) < CR
xi otherwise

F Keep best from x and y
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DE: A priori Discussion

Properties
Comparison-based Monotonous invariance

Crossover is not rotational invariant exchange coordinates

Implementation
C code from DE home page
No default setting!
Extensive DOE: On 10-D ellipsoid function

I Strategy 2
I F = 0.8,
I CR = 1.0 Rotational invariance

Population size: NP = 10 ∗ n
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The (µ, λ)−CMA–Evolution Strategy
Minimize f : Rn → R
Initialize distribution parameters θ, set population size λ ∈ N
While not terminate

1 Sample distribution P (x|θ)→ x1, . . . , xλ ∈ Rn

2 Evaluate offspring x1, . . . , xλ on f
3 Update parameters θ ← Fθ(θ, x1, . . . , xλ, f (x1), . . . , f (xλ))

P is a multi-variate normal distribution

N
(
m, σ2C

)
∼ m + σN (0,C)

θ = {m,C, σ} ∈ (Rn × Rn×n × R+)
Fθ(θ, x1:λ, . . . , xµ:λ) only depends on the µ ≤ λ best offspring
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Cumulative Step-Size Adaptation (CSA)
xi = m + σ zi

m ← m + σ〈z〉sel

Measure the length of the evolution path
the pathway of the mean vector m in the generation sequence

↓
decrease σ

↓
increase σ

loosely speaking steps are

perpendicular under random selection (in expectation)

perpendicular in the desired situation (to be most efficient)
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Covariance Matrix Adaptation
Rank-One Update

m ← m + σ〈z〉sel, 〈z〉sel =
∑µ

i=1 wi zi:λ, zi ∼ Ni(0,C)

initial distribution, C = I

new distribution: C← 0.8× C + 0.2× 〈z〉sel〈z〉Tsel

ruling principle: the adaptation increases the probability of
successful steps, 〈z〉sel, to appear again
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Covariance Matrix Adaptation
Rank-One Update

m ← m + σ〈z〉sel, 〈z〉sel =
∑µ

i=1 wi zi:λ, zi ∼ Ni(0,C)

〈z〉sel, movement of the population mean m (disregarding σ)

new distribution: C← 0.8× C + 0.2× 〈z〉sel〈z〉Tsel

ruling principle: the adaptation increases the probability of
successful steps, 〈z〉sel, to appear again
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Covariance Matrix Adaptation
Rank-One Update

m ← m + σ〈z〉sel, 〈z〉sel =
∑µ

i=1 wi zi:λ, zi ∼ Ni(0,C)

mixture of C and step 〈z〉sel, C← 0.8× C + 0.2× 〈z〉sel〈z〉Tsel

new distribution: C← 0.8× C + 0.2× 〈z〉sel〈z〉Tsel

ruling principle: the adaptation increases the probability of
successful steps, 〈z〉sel, to appear again
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Covariance Matrix Adaptation
Rank-One Update

m ← m + σ〈z〉sel, 〈z〉sel =
∑µ

i=1 wi zi:λ, zi ∼ Ni(0,C)

new distribution (disregarding σ)

new distribution: C← 0.8× C + 0.2× 〈z〉sel〈z〉Tsel

ruling principle: the adaptation increases the probability of
successful steps, 〈z〉sel, to appear again
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Covariance Matrix Adaptation
Rank-One Update

m ← m + σ〈z〉sel, 〈z〉sel =
∑µ

i=1 wi zi:λ, zi ∼ Ni(0,C)

movement of the population mean m

new distribution: C← 0.8× C + 0.2× 〈z〉sel〈z〉Tsel

ruling principle: the adaptation increases the probability of
successful steps, 〈z〉sel, to appear again
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Covariance Matrix Adaptation
Rank-One Update

m ← m + σ〈z〉sel, 〈z〉sel =
∑µ

i=1 wi zi:λ, zi ∼ Ni(0,C)

mixture of C and step 〈z〉sel, C← 0.8× C + 0.2× 〈z〉sel〈z〉Tsel

new distribution: C← 0.8× C + 0.2× 〈z〉sel〈z〉Tsel

ruling principle: the adaptation increases the probability of
successful steps, 〈z〉sel, to appear again
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Covariance Matrix Adaptation
Rank-One Update

m ← m + σ〈z〉sel, 〈z〉sel =
∑µ

i=1 wi zi:λ, zi ∼ Ni(0,C)

new distribution: C← 0.8× C + 0.2× 〈z〉sel〈z〉Tsel

ruling principle: the adaptation increases the probability of
successful steps, 〈z〉sel, to appear again
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CMA-ES: A priori Discussion

Properties
Comparison-based Monotonous invariance

Rotational invariant Adapts the coordinate system

Implementation
CMA-ES: Matlab code from author’s home page
http://www.bionik.tu-berlin.de/user/niko/
Using rank-µ update faster adaptation Hansen et al., 2003

Default settings
Population size: λ = 4 + floor(3 ln n)
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1 Performance Measures and Experimental Comparisons

2 Problem difficulties and algorithm invariances

3 Derivative-Free Optimization Algorithms

4 Experiments and Results
Empirical Comparisons

5 Conclusion
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The parameters
Common Parameters

Default parameters except for DE

Upper bound on run-time = 107 evaluations
ftarget = 10−9

Domain: [−20, 80]d Optimum not at the center

21 runs in each case except BFGS when little success

Population size

Standard values: for n = 10, 20, 40

PSO: 10 + floor(2
√

n) 16, 18, 22

CMA-ES: 4 + floor(3 ln n) 10, 12, 15

DE: 10 ∗ n 100, 200, 400
To be increased for multi-modal functions e.g. Rastrigin
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Ellipsoid

felli(x) =
∑n

i=1 10α
i−1
n−1 x2

i = xTHellix

Helli =

0B@ 1 0 · · ·
. . .

· · · 0 10α

1CA
convex, separable
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f rot
elli(x) = felli(Rx) = xTHrot

ellix
R random rotation

Hrot
elli = RT HelliR

convex, non-separable
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cond(Helli) = cond(Hrot
elli) = 10α

α = 1, . . . , 10
α = 6 ≡ axis ratio of 103, typical for real-world problem
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Separable Ellipsoid function
PSO, DE2, CMA-ES, NEWUOA, and BFGS - Dimension 10
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Separable Ellipsoid function
PSO, DE2, CMA-ES, NEWUOA, and BFGS - Dimension 20
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Separable Ellipsoid function
PSO, DE2, CMA-ES, NEWUOA, and BFGS - Dimension 40
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Rotated Ellipsoid function
PSO, DE2, CMA-ES, NEWUOA, and BFGS - Dimension 10
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Rotated Ellipsoid function
PSO, DE2, CMA-ES, NEWUOA, and BFGS - Dimension 20
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Rotated Ellipsoid function
PSO, DE2, CMA-ES, NEWUOA, and BFGS - Dimension 40
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Separable Ellipsoid function
PSO, DE2, CMA-ES, NEWUOA, and BFGS - Dimension 40
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Ellipsoid: Discussion

Bio-inspired algorithms
Separable case: PSO and DE insensitive to conditionning
. . . but PSO rapidly fails to solve the rotated version
. . . while CMA-ES and DE (CR = 1) are rotation invariant
DE scales poorly with dimension
d2.5 compared to d1.5 for PSO and CMA-ES and BFGS

. . . vs deterministic
BFGS fails to solve ill-conditionned cases Matlab “Roundoff error”

CMA-ES only 7 times slower on pure quadratic functions!

NEWUOA 70 times better than CMA-ES on separable cases

performs worse for very high conditionning and rotated cases
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Away from “quadraticity“

Monotonous invariance
Comparison-based algorithms are insensitive to monotonous
transformations True for DE, PSO and all ESs

BFGS and NEWUOA are not theory behind BFGS depends on
convexity

Another test function
Simple transformation of ellispoid

fSSE(x) =
√√

felli(x)
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Separable Ellipsoid function
PSO, DE2, CMA-ES, NEWUOA, and BFGS - Dimension 20
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Separable Ellipsoid
1
4 function

PSO, DE2, CMA-ES, NEWUOA, and BFGS - Dimension 20
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Rotated Ellipsoid function
PSO, DE2, CMA-ES, NEWUOA, and BFGS - Dimension 20
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Rotated Ellipsoid
1
4 function

PSO, DE2, CMA-ES, NEWUOA, and BFGS - Dimension 20
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Non-quadratic: Discussion

Bio-inspired algorithms
Invariant as expected!

NEWUOA and BFGS

Worse on
√√

Ellipsoid than on Ellispoid

Premature numerical convergence for high CN for BFGS . . .
fixed by the ’local restart’ strategy
NEWUOA suffers from conjonction of rotation, high CN and
non-quadraticity
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Rosenbrock function (Banana)

frosen(x) =
∑n−1

i=1

[
(1− xi)

2 + β(xi+1 − x2
i )

2
]

Non-separable, but . . .
also ran rotated version

β = 100, classical Rosenbrock
function

β = 1, . . . , 108

Multi-modal for dimension > 3
−3 −2 −1 0 1 2 3

−5

0

5

10
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Rosenbrock functions
PSO, DE2, CMA-ES, NEWUOA, and BFGS - Dimension 10
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Rosenbrock functions
PSO, DE2, CMA-ES, NEWUOA, and BFGS - Dimension 20

0

10
2

10
4

10
6

10
8

10
10

10

3

10

4

10

5

10

6

10

7

10

Rosenbrock dimension 20, 21 trials, tolerance 1e−09, eval max 1e+07

alpha

S
P

1

NEWUOA 

BFGS 

DE2 

PSO 

CMAES 

M. Schoenauer (INRIA Orsay) Comparisons of DFO algorithms SEA’09 – 4/6/09 45 / 58



Performance Problem Difficulties Continuous Optimization Experiments and Results Conclusion

Rosenbrock functions
PSO, DE2, CMA-ES, NEWUOA, and BFGS - Dimension 40
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Rosenbrock: Discussion

Bio-inspired algorithms
PSO sensitive to non-separability
DE still scales badly with dimension

. . . vs BFGS
Numerical premature convergence on ill-condition problems
Both local and global restarts improve the results
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Rastrigin function
frast(x) = 10n +

∑n
i=1 x2

i − 10 cos(2πxi)

separable
multi-modal
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f rot
rast(x) = frast(Rx)

R random rotation
non-separable
multimodal
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Rastrigin function - SP1 vs objective value
PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 10
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Rastrigin function - SP1 vs objective value
PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 16
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Rastrigin function - SP1 vs objective value
PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 30
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Rastrigin function - SP1 vs objective value
PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 100
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Rastrigin function - SP1 vs objective value
PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 300
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Rastrigin function - SP1 vs objective value
PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 1000
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Rastrigin function - Cumulative distributions
PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 10

Rastrigin : 21 trials, dimension 10, tol 1.000E−09, alpha 10, default size , eval max 10000000
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Rastrigin function - Cumulative distributions
PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 16

Rastrigin : 21 trials, dimension 10, tol 1.000E−09, alpha 16, default size , eval max 10000000
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Rastrigin function - Cumulative distributions
PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 30

3

10
4

10
5

10
6

10
7

10

0

10

20

30

40

50

60

70

80

90

100

Rastrigin : 21 trials, dimension 10, tol 1.000E−09, alpha 30, default size , eval max 10000000

evaluation number

%
ru

n

−1

10
0

10
1

10
2

10
3

10
4

10

0

10

20

30

40

50

60

70

80

90

100

Rastrigin : 21 trials, dimension 10, tol 1.000E−09, alpha 30, default size , eval max 10000000

fitness value
%

ru
n

% success
vs

# eval to reach success threshold (= 10−9)

% success
vs

objective value reached before max eval (= 107)

M. Schoenauer (INRIA Orsay) Comparisons of DFO algorithms SEA’09 – 4/6/09 49 / 58



Performance Problem Difficulties Continuous Optimization Experiments and Results Conclusion

Rastrigin function - Cumulative distributions
PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 100
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Rastrigin function - Cumulative distributions
PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 300
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Rastrigin function - Cumulative distributions
PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 1000
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Rastrigin : 21 trials, dimension 10, tol 1.000E−09, alpha 1000, default size , eval max 10000000
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Rastrigin: Discussion
Bio-inspired algorithms

Increasing population size improves the results
Optimal size is algorithm-dependent

CMA-ES and PSO solve separable case PSO 100 times slower

Only CMA-ES solves the rotated Rastrigin reliably
requires popSize ≥ 300

. . . vs BFGS
Gets stuck in local optima
Whatever the restart strategies

No numerical premature convergence

. . . and NEWUOA?
solves it in 5 iterations! identifies the global parabola
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Some functions from GECCO’09 BBOB Workshop

Properties
No tunable difficulty e.g. single condition number

but systematic non-linear transformations
and asymetrisation of global and local structures

Issue
Difficult to interpret or generalize
Except on some families of functions e.g. with high conditionning
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Asymetric Rastrigin

2D plot SP2 for ftarget = 10−8

CMA-ES, NEWUOA, and BFGS
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Step ellipsoid

Piecewise constant with global ellipsoid structure

2D plot SP2 for ftarget = 10−8

CMA-ES, NEWUOA, and BFGS
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Gallagher’s Gaussian Peaks

Very weak global structure

2D plot SP2 for ftarget = 10−8

CMA-ES, NEWUOA, and BFGS
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1 Performance Measures and Experimental Comparisons

2 Problem difficulties and algorithm invariances

3 Derivative-Free Optimization Algorithms

4 Experiments and Results

5 Conclusion
and perspectives
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Empirical Comparisons of DFO algorithms

An ill-defined problem
Trade-off between precision and speed
Task-dependent

Performance Measures
Empirical Cumulative Distributions display all information
Otherwise, need to chose one view-point e.g. horizontal

→ Expected Running Times for easy comparisons

Identified problem difficulties
allow us to define test-suite for specific comparison purposes
highlight the benefits of algorithm invariance properties
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Bio-inspired Algorithms: The coming of age

Bio-inspired vs Deterministic
CMA-ES only 7 (70) times slower than BFGS (DFO)

on (quasi-)quadratic functions.
but

is less hindered by high conditionning,
is monotonous-transformation invariant,
is a global search method!

Moreover,
Theoretical results are catching up

I Linear convergence for SA-ES Auger, 05
with bound on the CV speed

I On-going work for CMA-ES
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Perspectives
Empirical comparisons

GECCO’09 BBOB Workshop and Challenge
I Noise, and/or non-linear asymmetrizing transformations
I Compare wide set of algorithms optimally tuned

Longer term
I Constrained functions
I Real-world functions but which ones ???

COCO, an open platform for COmparison of Continuous Optimizers

Toward automatic algorithm choice
Need descriptors of problem difficulty easy to compute

informative enough to guide algorithmic choice

Inspiration from SAT domain (Hoost et al, 06) and Statistical Physics?
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