Experimental Comparisons of Derivative Free Optimization Algorithms

Anne Auger Nikolaus Hansen J. M. Perez Zerpa Raymond Ros Marc Schoenauer

TAO Project-Team, INRIA Saclay – Île-de-France, and Microsoft-INRIA Joint Centre, Orsay, FRANCE http://tao.lri.fr First.Last@inria.fr

SEA'09, 4 juin 2009

Comparisons of DFO algorithms

< ロ > < 同 > < 回 > < 回 > < 回 > <

Problem Statement

Continuous Domain Search/Optimization

The problem

Minimize a objective function (*fitness* function, *loss* function) in continuous domain

$$f: \mathcal{S} \subseteq \mathbb{R}^n \to \mathbb{R},$$

• in the Black Box scenario (direct search)

Hypotheses

• domain specific knowledge only used within the black box

gradients are not available

Problem Statement

Continuous Domain Search/Optimization

The problem

Minimize a objective function (*fitness* function, *loss* function) in continuous domain

$$f: \mathcal{S} \subseteq \mathbb{R}^n \to \mathbb{R},$$

• in the Black Box scenario (direct search)

$$\xrightarrow{x}$$
 $f(x)$

Typical Examples

- shape optimization (e.g. using CFD)
- model calibration
- parameter identification

curve fitting, airfoils biological, physical

controller, plants, images

The practitionner's point of view

Issues

- How to choose the best algorithm?
 - For a given objective function
 - Without theoretical support
- Empirical comparisons on extensive test suites
 - what performance measures?
 - what test functions?

set of functions

representative of real-world

Some proposals

- Expected Running Time + Empirical Cumulative Distributions
- An artificial testbed, with controlled typical difficulties
- A (partial) case study, involving 2 deterministic and 3 bio-inspired algorithms
- in back-box scenario without specific intensive parameter tuning

Conclusion

Performance Measures and Experimental Comparisons • How to empirically compare algorithms?

・ 同 ト ・ ヨ ト ・ ヨ

M. Schoenauer (INRIA Orsay)

Comparisons of DFO algorithms

Both Views: Empirical Cumulative Distributions Fns

Horizontal

Vertical

Discussion

Vertical vs horizontal

- Vertical: Value reached for a given effort
 - Fixed budget scenario
 - Qualitative comparisons Algo. A reaches better value than Algo. B
- Horizontal: Effort required to reach a given objective value
 - Baseline requirement
 e.g. beat the opponent!
 - Absolute comparisons: Algo. A is X times faster than Algo. B
 - Monotonous-invariant criterion

Statistics

- Difficult to summarize multiple viewpoints into a single measure
- ... and to find a sound estimator for it

compute its variance, perform statistical tests, ...

< ロ > < 同 > < 回 > < 回 >

Performance measures

ECDFs

Require arbitrary

 maximal target precision,
 maximal run length

 Can be used for sets of benchmark functions

 previous slide

 Need to be sub-sampled for comparisons

Horizontal performance measures

- Fix a target objective value,
- compute Expected Running Times Distribution,
- measure average effort to success

from Empirical Cumulative Distribution Functions

from Empirical Cumulative Distribution Functions

to Expected Running Time

M. Schoenauer (INRIA Orsay)

Comparisons of DFO algorithms

Expected Running Time

Experiments and notations

- Fixed number of runs
- Arbitrary target objective value *f*target
- Arbitrary bound on # evaluations
- *p*_{succ}: proportion of successful runs

RT_{succ} (resp. *RT_{fail}*): empirical average number of evaluations of successful (resp. unsuccessful) runs

Expected Running Time Measures

$$SP1(f_{target}) = \frac{\widehat{RT}_{succ}}{p_{succ}} \qquad SP2(f_{target}) = \frac{p_{succ}\widehat{RT}_{succ} + (1 - p_{succ})\widehat{RT}_{fail}}{p_{succ}}$$

A (10) + A (10) +

Expected Running Time (2)

Discussion

- Both measures
 - reflect some average effort to reach f_{target}
 - are equivalent in case of 100% success
 - are unreliable estimators in case of small p_{succ}
 - can be used to easily compare algorithms on sets of functions by normalizing w.r.t. best algorithm on each function
- SP1 insensitive to the running length of unsuccessful runs
- SP2 very sensitive to the stopping criterion and the restart strategy, that are part of the algorithm fine tuning ...

History

- CEC'05 Challenge on Continuous Optimization used SP1
- GECCO'09 Workshop on Black-Box Optimization Benchmarking uses SP2

Performance Measures and Experimental Comparisons

- Problem difficulties and algorithm invariances
 What makes a continuous optimization problem hard?
- 3 Derivative-Free Optimization Algorithms
- Experiments and Results
- 5 Conclusion

マロト イラト イラ

Problem Difficulties and Algorithm Invariances

- What makes a problem hard?
 - Non-convexity

invalidates most of deterministic theory

Ruggedness

Multimodality

non-smooth, discontinuous, noisy presence of local optima

Dimensionality

line search is 'trivial'

The magnifiscence of high dimensionality ...

- Ill-conditioning Very different scalings along different directions
- Non-separability

Correlated variables

The benefits of invariance

- Some difficulties become harmless
- More robust parameter setting

Ruggedness and Monotonous Invariance

Monotonous transformations of the objective function

Monotonous Invariance

- Invariance w.r.t. monotonous transformations
- A guarantee against ill-scaled objective functions
- Comparison-based algorithms are monotonous-invariant

< ロ > < 同 > < 回 > < 回 >

Multimodality

Presence of multiple local optima

Restart strategies

- For local optimizers, starting point is crucial on multimodal functions
- Multiple restarts are mandatory
 - from uniformly distributed points
 - from the final point of some previous run after some parameter reset

global restart local restart

• Also efficient with any optimization algorithm

< ロ > < 同 > < 回 > < 回 >

III-Conditionning

- The Condition Number (CN) of a positive-definite matrix *H* is the ratio of its largest and smallest eigenvalues
- If f is quadratic, $f(x) = x^{T}Hx$, the CN of f is that of its Hessian H
- More generally, the CN of *f* is that of its Hessian wherever it is defined.

Graphically, ill-conditioned means "squeezed" lines of equal function value

Separability

Definition (Separable Problem)

A function f is separable if

$$\arg\min_{(x_1,\ldots,x_n)} f(x_1,\ldots,x_n) = \left(\arg\min_{x_1} f(x_1,\ldots),\ldots,\arg\min_{x_n} f(\ldots,x_n)\right)$$

solve *n* independent 1D optimization problems

Example: Additively
decomposable functions
$$f(x_1,...,x_n) = \sum_{i=1}^n f_i(x_i)$$

e.g. Rastrigin function

< ロ > < 同 > < 回 > < 回 >

Designing Non-Separable Problems

Rotating the coordinate system

- $f : \mathbf{x} \mapsto f(\mathbf{x})$ separable
- $f: \mathbf{x} \mapsto f(\mathbf{R}\mathbf{x})$ non-separable

R rotation matrix

Hansen, Ostermeier, & Gawelczyk, 95; Salomon, 96

< A >

< ∃ >

- **Derivative-Free Optimization Algorithms** 3 Deterministic and Bio-Inspired Algorithms

4 3 5 4 3

< 🗇 🕨

Long history

Optimization techniques

Numerical methods

- Applied Mathematicians
- Classical methods based on First Principles gradient-based require regularity numerical gradient amenable to numerical pitfalls
- Recent DFO methods quadratic interpolation of the objective function

	・ロト・日本・日本・日本・日本・日本・1000
 No convergence proof 	almost
 Computationally heavy 	
but	
 Many recent (and trendy) methods 	
 Computer Scientists 	mostly from AI field
Bio-inspired algorithms	

Performance	Problem Difficulties	Continuous Optimization	Experiments and Results	Conclusion
		000000000000		

BFGS Broyden, Fletcher, Goldfarb, & Shanno, 1970 Gradient-based methods

$$\begin{cases} x_{t+1} = x_t - \rho_t d_t \\ \rho_t = Argmin_{\rho} \{ \mathcal{F}(x_t - \rho d_t) \} \text{ Line search} \\ \text{Choice of } d_t, \text{ the descent direction} \end{cases}$$

BFGS: a Quasi-Newton method

• Maintain an approximation \hat{H}_t of the Hessian of f

Solve for d_t

$$\hat{H}_t d_t = \nabla f(x_t)$$

- Compute x_{t+1} and update $\hat{H}_t \rightarrow \hat{H}_{t+1}$
- Converges if quadratic approximation of $\mathcal F$ holds

around the optimum

Reliable and robust

on quadratic functions!

BFGS: A priori Discussion

Properties

- Gradient-based algorithms are
 - local optimizers
 - not monotonous invariant
 - independent of the coordinate system
- But numerical gradient is not rotational invariant

and can suffer from ill-conditionning

	M Schoopquor (INPLA Oregy)	Comparisons of DEO algorithms			
	 Multiple restarts m 	local or global			
	 Function improvement threshold set to 10⁻²⁵ 				
	 using numerical gradient 				
	• Matlab built-in fm:	inunc	widely blindly used		
I	mplementation				

NEWUOA

Powell, 2006

A Derivative-Free Optimization Algorithm

- Builds a quadratic interpolation of the objective function
- Maintains a trust region size ρ
- Alternates
 - trust region iterations: one conjugate gradient step on the surrogate model
 - alternative iterations:

new trust region and surrogate model

Parameters

• Number of interpolation points from n + 6 to $\frac{n(n+1)}{2}$

2n+1 recommended

• Initial (ρ_{init}) and final (ρ_{end}) sizes of trust region

where interpolation is accurate

NEWUOA: A priori Discussion

Properties

a global optimizer

(re)start with large trust region size

- not monotonous invariant
- Full model $(\frac{n(n+1)}{2}$ points) is independent of coordinate system Most efficient model (2n + 1) is not

Implementation

• Matthieu Guibert's implementation http://www.inrialpes.fr/bipop/people/guilbert/ newuoa/newuoa.html

•
$$\rho_{init} = 100$$
 and $\rho_{end} = 10^{-15}$

after some preliminary experiments

< ロ > < 同 > < 回 > < 回 >

• Local restarts by resetting ρ to ρ_{init}

Stochastic Search

A unified point of view

A black box search template to minimize $f : \mathbb{R}^n \to \mathbb{R}$

Initialize distribution parameters θ , set sample size $\lambda \in \mathbb{N}$ While not terminate

- **1** Sample distribution $P(\mathbf{x}|\boldsymbol{\theta}) \rightarrow \mathbf{x}_1, \dots, \mathbf{x}_{\lambda} \in \mathbb{R}^n$
- 2 Evaluate x_1, \ldots, x_λ on f

3 Update parameters $\theta \leftarrow F_{\theta}(\theta, \mathbf{x}_1, \dots, \mathbf{x}_{\lambda}, f(\mathbf{x}_1), \dots, f(\mathbf{x}_{\lambda}))$

Covers

٩	Deterministic algorithms	including BFGS and NEWUOA	
٩	Evolutionary Algorithms, PSO, DE		
	P implicitly defined by the variation operators (crossover/mutation)		
٩	Estimation of Distribution Algorithms		

Particle Swarm Optimization (PSO)

Eberhart & Kennedy, 1995

The basic algorithm

Let $\pmb{x}_1,\ldots,\pmb{x}_\lambda\in\mathbb{R}^n$ be a set of particles

Sample new positions

$$x_i^j(t+1) = x_i^j(t) + w \left(x_i^j(t) - x_i^j(t-1) \right)$$

aka velocity

+
$$c_1 \mathcal{U}_i^j(0,1)(p_i^j - x_i^j(t)) + c_2 \tilde{\mathcal{U}}_i^j(0,1)(g_i^j - x_i^j(t))$$

approach the "previous" best

approach the "global" best

2 Evaluate
$$x_1(t+1), \ldots, x_{\lambda}(t+1)$$

Opdate distribution parameters

$$p_i = x_i(t+1) \text{ if } f(x_i(t+1)) < f(p_i)$$

$$g_i = x_*(t+1) \text{ where } f(x_*(t+1)) = \min \{f(x_k(t+1)), k \in \mathsf{neighbor}(i)\}$$

PSO: A priori Discussion

Properties

- Comparison-based
- not rotational invariant

Monotonous invariance

sampled distribution is an hyperrectangle

Implementation

• Standard PSO 2006, C code,

≠ Matlab code! from PSO Central at

< ロ > < 同 > < 回 > < 回 >

http://www.particleswarm.info/

- Default settings:
 - inertia weight $w \approx 0.7$,

$$c_1 = c_2 \approx 1.2$$

• Swarm size = $\lambda = 10 + floor(2\sqrt{n})$

Differential Evolution (DE)

Rainer & Storn, 1995

Basic algorithm

- Generate NP individuals uniformly in bounds
- Until stopping criterion
 - For each individual x in the population
 - Perturbation using an intra-population difference vector

$$\hat{x} = x^{\alpha} + \mathbf{F}(x^{\beta} - x^{\gamma})$$

(Uniform) crossover with probability 1 – CR Ke

Keep \hat{x} if CR = 1

 $y_i = \hat{x}_i \text{ if } U(0,1) < CR$ $x_i \text{ otherwise}$

Keep best from x and y

DE: A priori Discussion

Properties

- Comparison-based
- Crossover is not rotational invariant

Implementation

- C code from DE home page
- No default setting!
- Extensive DOE:
 - Strategy 2

$$F = 0.8$$

$$CR = 1.0$$

• Population size: NP = 10 * n

Monotonous invariance

exchange coordinates

On 10-D ellipsoid function

イロト イポト イヨト イヨト

Rotational invariance

The (μ, λ) -CMA-Evolution Strategy

$\mathsf{Minimize}\,f:\mathbb{R}^n\to\mathbb{R}$

Initialize distribution parameters $\theta,$ set population size $\lambda \in \mathbb{N}$ While not terminate

- **1** Sample distribution $P(\mathbf{x}|\boldsymbol{\theta}) \rightarrow \mathbf{x}_1, \dots, \mathbf{x}_{\lambda} \in \mathbb{R}^n$
- **2** Evaluate offspring x_1, \ldots, x_λ on f

3 Update parameters $\theta \leftarrow F_{\theta}(\theta, \mathbf{x}_1, \dots, \mathbf{x}_{\lambda}, f(\mathbf{x}_1), \dots, f(\mathbf{x}_{\lambda}))$

• *P* is a multi-variate normal distribution

$$\mathcal{N}(\boldsymbol{m},\sigma^2\boldsymbol{C}) \sim \boldsymbol{m} + \sigma \mathcal{N}(\boldsymbol{0},\boldsymbol{C})$$

• $\theta = \{m, C, \sigma\} \in (\mathbb{R}^n \times \mathbb{R}^{n \times n} \times \mathbb{R}_+)$

• $F_{\theta}(\theta, \mathbf{x}_{1:\lambda}, \dots, \mathbf{x}_{\mu:\lambda})$ only depends on the $\mu \leq \lambda$ best offspring

(日)

Continuous Optimization

Experiments and Results

< A >

Conclusion

Cumulative Step-Size Adaptation (CSA)

loosely speaking steps are

- perpendicular under random selection (in expectation)
- perpendicular in the desired situation (to be most efficient)

Comparisons of DFO algorithms

Covariance Matrix Adaptation

Rank-One Update

initial distribution, C = I

- new distribution: $C \leftarrow 0.8 \times C + 0.2 \times \langle z \rangle_{sel}^{T}$
- ruling principle: the adaptation increases the probability of successful steps, (z)_{sel}, to appear again

< ロ > < 同 > < 回 > < 回 >

Covariance Matrix Adaptation

Rank-One Update

 $\langle z \rangle_{sel}$, movement of the population mean *m* (disregarding σ)

- new distribution: $C \leftarrow 0.8 \times C + 0.2 \times \langle z \rangle_{sel} \langle z \rangle_{sel}^{T}$
- ruling principle: the adaptation increases the probability of successful steps, (z)_{sel}, to appear again

< ロ > < 同 > < 回 > < 回 >
Rank-One Update

mixture of *C* and step $\langle z \rangle_{sel}$, $C \leftarrow 0.8 \times C + 0.2 \times \langle z \rangle_{sel} \langle z \rangle_{sel}^{T}$

• new distribution: $C \leftarrow 0.8 \times C + 0.2 \times \langle z \rangle_{sel} \langle z \rangle_{sel}^{T}$

 ruling principle: the adaptation increases the probability of successful steps, (z)_{sel}, to appear again

Rank-One Update

new distribution (disregarding σ)

- new distribution: $C \leftarrow 0.8 \times C + 0.2 \times \langle z \rangle_{sel} \langle z \rangle_{sel}^{T}$
- ruling principle: the adaptation increases the probability of successful steps, (z)_{sel}, to appear again

Rank-One Update

movement of the population mean m

- new distribution: $C \leftarrow 0.8 \times C + 0.2 \times \langle z \rangle_{sel} \langle z \rangle_{sel}^{T}$
- ruling principle: the adaptation increases the probability of successful steps, (z)_{sel}, to appear again

< ロ > < 同 > < 回 > < 回 >

Rank-One Update

mixture of *C* and step $\langle z \rangle_{sel}$, $C \leftarrow 0.8 \times C + 0.2 \times \langle z \rangle_{sel} \langle z \rangle_{sel}^{T}$

• new distribution: $C \leftarrow 0.8 \times C + 0.2 \times \langle z \rangle_{sel} \langle z \rangle_{sel}^{T}$

 ruling principle: the adaptation increases the probability of successful steps, (z)_{sel}, to appear again

< ロ > < 同 > < 回 > < 回 >

Rank-One Update

- new distribution: $C \leftarrow 0.8 \times C + 0.2 \times \langle z \rangle_{sel} \langle z \rangle_{sel}^{T}$
- ruling principle: the adaptation increases the probability of successful steps, $\langle z \rangle_{sel}$, to appear again

CMA-ES: A priori Discussion

Properties

- Comparison-based
- Rotational invariant

Monotonous invariance

Adapts the coordinate system

Implementation

- CMA-ES: Matlab code from author's home page http://www.bionik.tu-berlin.de/user/niko/
- Using rank-µ update

faster adaptation Hansen et al., 2003

- Default settings
- Population size: $\lambda = 4 + floor(3 \ln n)$

-

Performance Measures and Experimental Comparisons

- Problem difficulties and algorithm invariances
- 3 Derivative-Free Optimization Algorithms
- Experiments and Results
 Empirical Comparisons

5 Conclusion

A B > < B</p>

< 🗇 🕨

Conclusion

Problem Difficulties

Performance

Ellipsoid

•
$$f_{\text{elli}}(x) = \sum_{i=1}^{n} 10^{\alpha \frac{i-1}{n-1}} x_i^2 = x^T H_{\text{elli}} x$$

 $H_{\text{elli}} = \begin{pmatrix} 1 & 0 & \cdots \\ \ddots & \ddots \\ \cdots & 0 & 10^{\alpha} \end{pmatrix}$
convex, separable
• $f_{\text{elli}}^{\text{rot}}(x) = f_{\text{elli}}(\mathbf{R}x) = x^T H_{\text{elli}}^{\text{rot}} x$
 $R \text{ random rotation}$
 $H_{\text{elli}}^{\text{rot}} = \mathbf{R}^T H_{\text{elli}} \mathbf{R}$
convex, non-separable

•
$$\operatorname{cond}(H_{\text{elli}}) = \operatorname{cond}(H_{\text{elli}}^{\text{rot}}) = 10^{\circ}$$

 $\alpha = 1, \ldots, 10$

 $\alpha = 6 \equiv \text{axis ratio of } 10^3, \texttt{typical for real-world problem} \\ \overset{\circ}{=} 6 \equiv \texttt{axis ratio of } 10^3, \texttt{typical for real-world problem} \\ \overset{\circ}{=} 6 \equiv \texttt{axis ratio of } 10^3, \texttt{typical for real-world problem} \\ \overset{\circ}{=} 6 \equiv \texttt{axis ratio of } 10^3, \texttt{typical for real-world problem} \\ \overset{\circ}{=} 6 \equiv \texttt{axis ratio of } 10^3, \texttt{typical for real-world problem} \\ \overset{\circ}{=} 6 \equiv \texttt{axis ratio of } 10^3, \texttt{typical for real-world problem} \\ \overset{\circ}{=} 6 \equiv \texttt{axis ratio of } 10^3, \texttt{typical for real-world problem} \\ \overset{\circ}{=} 6 \equiv \texttt{axis ratio of } 10^3, \texttt{typical for real-world problem} \\ \overset{\circ}{=} 6 \equiv \texttt{axis ratio of } 10^3, \texttt{typical for real-world problem} \\ \overset{\circ}{=} 6 \equiv \texttt{axis ratio of } 10^3, \texttt{typical for real-world problem} \\ \overset{\circ}{=} 6 \equiv \texttt{axis ratio of } 10^3, \texttt{typical for real-world problem} \\ \overset{\circ}{=} 6 \equiv \texttt{axis ratio of } 10^3, \texttt{typical for real-world problem} \\ \overset{\circ}{=} 6 \equiv \texttt{axis ratio of } 10^3, \texttt{typical for real-world problem} \\ \overset{\circ}{=} 6 \equiv \texttt{axis ratio of } 10^3, \texttt{typical for real-world problem} \\ \overset{\circ}{=} 6 \equiv \texttt{axis ratio of } 10^3, \texttt{typical for real-world problem} \\ \overset{\circ}{=} 6 \equiv \texttt{axis ratio of } 10^3, \texttt{typical for real-world problem} \\ \overset{\circ}{=} 6 \equiv \texttt{axis ratio problem$

Ellipsoid dimension 10, 21 trials, tolerance 1e-09, eval max 1e+07

M. Schoenauer (INRIA Orsay)

Comparisons of DFO algorithms

Ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

M. Schoenauer (INRIA Orsay)

Comparisons of DFO algorithms

SEA'09 - 4/6/09 37 / 58

Ellipsoid dimension 40, 21 trials, tolerance 1e-09, eval max 1e+07

M. Schoenauer (INRIA Orsay)

Comparisons of DFO algorithms

SEA'09 - 4/6/09 37 / 58

Rotated Ellipsoid function PSO, DE2, CMA-ES, NEWUOA, and BFGS - Dimension 10

Rotated Ellipsoid dimension 10, 21 trials, tolerance 1e-09, eval max 1e+07

M. Schoenauer (INRIA Orsay)

Comparisons of DFO algorithms

SEA'09 - 4/6/09 38 / 58

Rotated Ellipsoid function PSO, DE2, CMA-ES, NEWUOA, and BFGS - Dimension 20

Rotated Ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

M. Schoenauer (INRIA Orsay)

Comparisons of DFO algorithms

SEA'09 - 4/6/09 38 / 58

Rotated Ellipsoid function PSO, DE2, CMA-ES, NEWUOA, and BFGS - Dimension 40

Rotated Ellipsoid dimension 40, 21 trials, tolerance 1e-09, eval max 1e+07

M. Schoenauer (INRIA Orsay)

Comparisons of DFO algorithms

Ellipsoid dimension 40, 21 trials, tolerance 1e-09, eval max 1e+07

M. Schoenauer (INRIA Orsay)

Comparisons of DFO algorithms

Ellipsoid: Discussion

Bio-inspired algorithms

- Separable case: PSO and DE insensitive to conditionning
- ... but PSO rapidly fails to solve the rotated version
- ... while CMA-ES and DE (CR = 1) are rotation invariant
- DE scales poorly with dimension $d^{2.5}$ compared to $d^{1.5}$ for PSO and CMA-ES

and BFGS

... vs deterministic

- BFGS fails to solve ill-conditionned cases Matlab "Roundoff error"
- CMA-ES only 7 times slower on pure quadratic functions!
- NEWUOA 70 times better than CMA-ES
- performs worse for very high conditionning and rotated cases

on separable cases

< ロ > < 同 > < 回 > < 回 > < 回 > <

Away from "quadraticity"

Monotonous invariance

- Comparison-based algorithms are insensitive to monotonous transformations
 True for DE, PSO and all ESs
- BFGS and NEWUOA are not convexity

theory behind BFGS depends on

< ロ > < 同 > < 回 > < 回 >

Another test function

Simple transformation of ellispoid

$$f_{\rm SSE}(x) = \sqrt{\sqrt{f_{\rm elli}(x)}}$$

M. Schoenauer (INRIA Orsay)

SEA'09 - 4/6/09 41 / 58

Ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

M. Schoenauer (INRIA Orsay)

Comparisons of DFO algorithms

Separable Ellipsoid^{1/4} function PSO, DE2, CMA-ES, NEWUOA, and BFGS - Dimension 20

Sqrt of sqrt of ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

M. Schoenauer (INRIA Orsay)

Comparisons of DFO algorithms

SEA'09 - 4/6/09 42 / 58

Rotated Ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

M. Schoenauer (INRIA Orsay)

Comparisons of DFO algorithms

Rotated Ellipsoid^{1/4} function PSO, DE2, CMA-ES, NEWUOA, and BFGS - Dimension 20

Sqrt of sqrt of rotated ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

M. Schoenauer (INRIA Orsay)

Comparisons of DFO algorithms

SEA'09 - 4/6/09 42 / 58

Non-quadratic: Discussion

Bio-inspired algorithms

Invariant

as expected!

NEWUOA and BFGS

- Worse on $\sqrt{\sqrt{\text{Ellipsoid}}}$ than on Ellispoid
- Premature numerical convergence for high CN for BFGS ... fixed by the 'local restart' strategy
- NEWUOA suffers from conjonction of rotation, high CN and non-quadraticity

Problem Difficulties

Continuous Optimization

Rosenbrock function (Banana)

$$f_{\text{rosen}}(x) = \sum_{i=1}^{n-1} \left[(1-x_i)^2 + \beta (x_{i+1} - x_i^2)^2 \right]$$

• Non-separable, but ...

also ran rotated version

• $\beta = 100$, classical Rosenbrock function

$$\beta = 1, \ldots, 10^8$$

• Multi-modal for dimension > 3

(日)

Rosenbrock functions PSO, DE2, CMA-ES, NEWUOA, and BFGS - Dimension 10

Rosenbrock dimension 10, 21 trials, tolerance 1e-09, eval max 1e+07

M. Schoenauer (INRIA Orsay)

Comparisons of DFO algorithms

SEA'09 - 4/6/09 45 / 58

Rosenbrock functions PSO, DE2, CMA-ES, NEWUOA, and BFGS - Dimension 20

Rosenbrock dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

Rosenbrock functions PSO, DE2, CMA-ES, NEWUOA, and BFGS - Dimension 40

Rosenbrock dimension 40, 21 trials, tolerance 1e-09, eval max 1e+07

M. Schoenauer (INRIA Orsay)

Comparisons of DFO algorithms

SEA'09 - 4/6/09 45 / 58

Rosenbrock: Discussion

Bio-inspired algorithms

- PSO sensitive to non-separability
- DE still scales badly with dimension

...vs BFGS

- Numerical premature convergence on ill-condition problems
- Both local and global restarts improve the results

< ロ > < 同 > < 回 > < 回 >

Experiments and Results

Conclusion

Rastrigin function

$$f_{\text{rast}}(x) = 10n + \sum_{i=1}^{n} x_i^2 - 10 \cos(2\pi x_i)$$

• separable

multi-modal

 $f_{\rm rast}^{\rm rot}(x) = f_{\rm rast}(\mathbf{R}x)$

- R random rotation
- on non-separable
- multimodal

Rastrigin function - SP1 vs objective value **PSO**, **DE2**, **DE5**, **CMA-ES**, and **BFGS** - PopSize 10

Rastrigin function - SP1 vs objective value **PSO**, **DE2**, **DE5**, **CMA-ES**, and **BFGS** - PopSize 16

Rastrigin function - SP1 vs objective value **PSO**, **DE2**, **DE5**, **CMA-ES**, and **BFGS** - PopSize 30

Rastrigin function - SP1 vs objective value **PSO**, **DE2**, **DE5**, **CMA-ES**, and **BFGS** - PopSize 100

Performance

Continuous Optimization

Rastrigin function - SP1 vs objective value **PSO**, **DE2**, **DE5**, **CMA-ES**, and **BFGS** - PopSize 300

Performance

Problem Difficulties

Continuous Optimization

Experiments and Results

Rastrigin function - SP1 vs objective value **PSO**, **DE2**, **DE5**, **CMA-ES**, and **BFGS** - PopSize 1000

Conclusion

Rastrigin function - Cumulative distributions **PSO, DE2, DE5, CMA-ES**, and **BFGS** - PopSize 10

astrigin : 21 trials, dimension 10, tol 1.000E-09, alpha 10, default size , eval max 10000000

Rastrigin : 21 trials, dimension 10, tol 1.000E-09, alpha 10, default size , eval max 1000

Comparisons of DFO algorithms
Rastrigin function - Cumulative distributions PSO, DE2, DE5, CMA-ES, and BFGS - PopSize 16

astrigin : 21 trials, dimension 10, tol 1.000E-09, alpha 16, default size , eval max 10000000

Rastrigin : 21 trials, dimension 10, tol 1.000E-09, alpha 16, default size , eval max 1000

Rastrigin function - Cumulative distributions **PSO, DE2, DE5, CMA-ES**, and **BFGS** - PopSize 30

astrigin : 21 trials, dimension 10, tol 1.000E-09, alpha 30, default size , eval max 10000000

Rastrigin : 21 trials, dimension 10, tol 1.000E-09, alpha 30, default size , eval max 1000

Rastrigin : 21 trials, dimension 10, tol 1.000E-09, alpha 100, default size , eval max 100

Rastrigin function - Cumulative distributions **PSO, DE2, DE5, CMA-ES**, and **BFGS** - PopSize 100

astrigin : 21 trials, dimension 10, tol 1.000E-09, alpha 100, default size , eval max 10000000

Comparisons of DFO algorithms

Rastrigin : 21 trials, dimension 10, tol 1.000E-09, alpha 300, default size , eval max 100

Rastrigin function - Cumulative distributions **PSO, DE2, DE5, CMA-ES**, and **BFGS** - PopSize 300

astrigin : 21 trials, dimension 10, tol 1.000E-09, alpha 300, default size , eval max 10000000

Rastrigin function - Cumulative distributions **PSO, DE2, DE5, CMA-ES**, and **BFGS** - PopSize 1000

strigin : 21 trials, dimension 10, tol 1.000E-09, alpha 1000, default size , eval max 10000000

Rastrigin : 21 trials, dimension 10, tol 1.000E-09, alpha 1000, default size , eval max 100

SEA'09 - 4/6/09 49 / 58

Comparisons of DFO algorithms

Rastrigin: Discussion

Bio-inspired algorithms

- Increasing population size improves the results
 - Optimal size is algorithm-dependent
- CMA-ES and PSO solve separable case
 PSO 100 times slower
- Only CMA-ES solves the rotated Rastrigin reliably

requires $popSize \ge 300$

... vs BFGS

- Gets stuck in local optima
- Whatever the restart strategies

No numerical premature convergence

identifies the global parabola

... and NEWUOA?

solves it in 5 iterations!

M. Schoenauer (INRIA Orsay)

Comparisons of DFO algorithms

Some functions from GECCO'09 BBOB Workshop

Properties

- No tunable difficulty
 - but systematic non-linear transformations
 - and asymetrisation of global and local structures

Issue

- Difficult to interpret or generalize
- Except on some families of functions e.g.

e.g. with high conditionning

< ロ > < 同 > < 回 > < 回 >

e.g. single condition number

Experiments and Results

< 17 ▶

< ∃ >

Asymetric Rastrigin

Step ellipsoid

Piecewise constant with global ellipsoid structure

Image: A Image: A

< 口 > < 同 >

< 🗇 🕨

Image: A Image: A

Gallagher's Gaussian Peaks

Very weak global structure

Performance Measures and Experimental Comparisons

- Problem difficulties and algorithm invariances
- 3 Derivative-Free Optimization Algorithms
- 4 Experiments and Results
- 5 Conclusion
 - and perspectives

・ 同 ト ・ ヨ ト ・ ヨ

Empirical Comparisons of DFO algorithms

An ill-defined problem

- Trade-off between precision and speed
- Task-dependent

Performance Measures

- Empirical Cumulative Distributions display all information
- Otherwise, need to chose one view-point e.g. horizontal
- $\bullet \rightarrow \mathsf{Expected} \ \mathsf{Running} \ \mathsf{Times}$ for easy comparisons

Identified problem difficulties

- allow us to define test-suite for specific comparison purposes
- highlight the benefits of algorithm invariance properties

-

on (quasi-)quadratic functions.

イロト イポト イラト イラト

Bio-inspired Algorithms: The coming of age

Bio-inspired vs Deterministic

• CMA-ES only 7 (70) times slower than BFGS (DFO)

but

- is less hindered by high conditionning,
- is monotonous-transformation invariant,
- is a global search method!

Moreover,

- Theoretical results are catching up
 - Linear convergence for SA-ES with bound on the CV speed
 - On-going work for CMA-ES

Auger, 05

Perspectives

Empirical comparisons

- GECCO'09 BBOB Workshop and Challenge
 - Noise, and/or non-linear asymmetrizing transformations
 - Compare wide set of algorithms
- Longer term
 - Constrained functions
 - Real-world functions

but which ones ???

optimally tuned

COCO, an open platform for COmparison of Continuous Optimizers

Toward automatic algorithm choice

- Need descriptors of problem difficulty
- informative enough to guide algorithmic choice

Inspiration from SAT domain (Hoost et al, 06) and Statistical Physics?

easy to compute