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Abstract. — In this paper, the performances of the quasi-Newton BFGS algo-
rithm, the NEWUOA derivative free optimizer, the Covariance Matrix Adapta-
tion Evolution Strategy (CMA-ES), the Differential Evolution (DE) algorithm
and Particle Swarm Optimizers (PSO) are compared experimentally on bench-
mark functions reflecting important challenges encountered in real-world op-
timization problems. Dependence of the performances in the conditioning of
the problem and rotational invariance of the algorithms are in particular investi-
gated.

1 Introduction

Continuous Optimization Problems (COPs) aim at finding the global optimum
(or optima) of a real-valued function (akaobjectivefunction) defined over (a
subset of) a real vector space. COPs commonly appear in everyday’slife of
many scientists, engineers and researchers from various disciplines, from physics
to mechanical, electrical and chemical engineering to biology. Problems suchas
model calibration, process control, design of parameterized parts are routinely
modeled as COPs. Furthermore, in many cases, very little is known about the
objective function. In the worst case, it is only possible to retrieve objective
function values for given inputs, and in particular the user has no information
about derivatives, or even about some weaker characteristics of theobjective
function (e.g. monotonicity, roughness, . . . ). This is the case, for instance, when
the objective function is the output of huge computer programs ensuing from
several years of development, or when experimental processes needto be run in
order to compute objective function values. Such problems amount to what is
calledBlack-Box Optimization(BBO).

Because BBO is a frequent situation, many optimization methods (akasearch
algorithms) have been proposed to tackle BBO problems, that can be grossly
classified in two classes: (i) deterministic methods include classical derivative-



based algorithms, in which the derivative is numerically computed by finite dif-
ferences, and more recent Derivative Free Optimization (DFO) algorithms[1],
like pattern search [2] and trust region methods [3]; (ii) stochastic methodsrely
on random variables sampling to better explore the search space, and include
recently introduced bio-inspired algorithms (see Section 3).

However, the practitioner facing a BBO problem has to choose among those
methods, and there exists no theoretical solid ground where he can stand toper-
form this choice, first because he does not know much about his objective func-
tion, but also because all theoretical results either make simplifying hypotheses
that are not valid for real-world problems, or give results that do not yield any
practical outcome.

In such context, this paper proposes an experimental perspective on BBO al-
gorithms comparisons: in Section 2, some characteristics of the objective func-
tion are surveyed that are known to make the corresponding BBO problemhard.
Section 3 introduces the algorithms that will be compared here. Section 4 then
introduces the test bench that illustrates the different difficulties highlightedin
Section 2, as well as the experimental conditions of the comparisons. The results
are presented and discussed in Section 5.

2 What makes a search problem difficult?

In this section, we discuss three problem characteristics that are especially chal-
lenging for search algorithms:
Ill-conditioning The conditioning of a problem can be defined as the range (over
a level set) of the maximum improvement of objective function value in a ball
of small radius centered on the given level set. In the case of convex quadratic
functions (f (x) = 1

2xTHx whereH is a symmetric definite matrix), the condi-
tioning can be exactly defined as the condition number of the Hessian matrix
H, i.e., the ratio between the largest and smallest eigenvalue. Since level sets
associated to a convex quadratic function are ellipsoids, the condition number
corresponds to the squared ratio between the largest and shortest axislengths of
the ellipsoid. Problems are typically considered as ill-conditioned if the condi-
tioning is larger than 105. In practice we have seen problems with conditioning
as large as 1010.
Non-separabilityAn objective functionf (x1, . . . ,xn) is separable if the optimal
value for any variablexi can be obtained by optimizingf (x̃1, . . . , x̃i−1,xi , x̃i+1, . . . , x̃n)
for any fixed choice of the variables̃x1, . . . , x̃i−1, x̃i+1, . . . , x̃n. Consequently op-
timizing ann-dimensional separable objective function reduces to optimizing
n one-dimensional functions. Functions that are additively decomposable,i.e.,
that can be written asf (x) = ∑n

i=1 fi(xi) are separable. One way to render a sep-
arable test function non-separable is to rotate first the vectorx, which can be



achieved by multiplyingx by an orthogonal matrixB: if x 7→ f (x) is separable,
the functionx 7→ f (Bx) might be non-separable for all non-identity orthogonal
matricesB.

Non-convexitySome BBO methods implicitly assume or exploit convexity of
the objective function. Composing a convex functionf to the left with a monotonous
transformationg : R → R can result in a non-convex function, for instance the
one-dimensional convex functionf (x) = x2 composed withg(.) = sign(.)|.|1/4

becomes the non-convex function
√
|.|.

In this paper we will quantitatively assess the performance dependency on
the conditioning of objective functions, investigate separable and non-separable
problems as well as study the dependence of the performances in the convexity
of the problem.

3 Algorithms tested

This section introduces the different algorithms that will be compared in this
paper. They have been chosen because they are considered to be thechampi-
ons in their category, both in the deterministic optimization world (BFGS and
NEWUOA) and in the stochastic bio-inspired world (CMA-ES, DE and PSO).
They will also be a priori discussed here with respect to the difficulties of con-
tinuous optimization problems highlighted in Section 2.

BFGS is a well-known quasi-Newton algorithm. It has a proven convergence to
a stationary point provided the starting point is close enough from the solution,
and the objective function is regular. Because it is blindly used by many scien-
tists facing optimization problems, the MatlabR© version of BFGSfminunc has
been used here, with its default parameters. The algorithm is stopped whenever
the objective improvement in one iteration is less than 10−25. Of course, in BBO
contexts, the gradients have to be computed numerically.

NEWUOA (NEW Unconstrained Optimization Algorithm) [3] is a DFO algo-
rithm using the trust region paradigm. NEWUOA computes a quadratic interpo-
lation of the objective function in the current trust region, and performs atrun-
cated conjugate gradient minimization of the surrogate model in the trust region.
It then updates either the current best point or the radius of the trust region, based
on the a posteriori interpolation error. The implementation by Matthieu Guibert
(http://www.inrialpes.fr/bipop/people/guilbert/newuoa/newuoa.html)
has been used.

An important parameter of NEWUOA is the number of points that are used
to compute the interpolation. As recommended [3], 2n+ 1 points have been



used. Other parameters are the initial and final radii of the trust region, respec-
tively governing the initial ’granularity’ and the precision of the search. After
some preliminary experiments, values of 100 and 10−15 were chosen.
CMA-ES is an Evolution Strategy (ES) [4] algorithm: from a set of ’parents’,
’offspring’ are created by sampling Gaussian distributions, and the bestof the
offspring (according to the objective function values) become the next parents.
The Covariance Matrix Adaptation [5] uses the path that has been followed
by evolution so far to (i) adapt the step-size, a scaling parameter that tunes
the granularity of the search, by comparing the actual path length to that of a
random walk; (ii) modify the covariance matrix of the multivariate Gaussian
distribution in order to increase the likelihood of beneficial moves. A single
Gaussian distribution is maintained, centered at a linear combination of the par-
ents. CMA-ES proposes robust default parameters: the population sizeis set to
4+ ⌊3log(n)⌋ and the initial step-size to a third of the parameters range. The
version used here (Scilab 0.92) implements weighted recombination and rank-µ
update [6] (version 0.99 is available athttp://www.lri.fr/~hansen/cmaes_
inmatlab.html).
PSO (Particle Swarm Optimization) [7] is a bio-inspired algorithm based on the
biological paradigm of a swarm of particles that ’fly’ over the objective land-
scape, exchanging information about the best solutions they have ’seen’. More
precisely, each particle updates its velocity, stochastically twisting it toward the
direction of the best solutions seen by (i) itself and (ii) some parts of the whole
swarm; it then updates its position according to its velocity and computes the
new value of the objective function. A Scilab transcription of the Standard PSO
2006, the latter available atPSO Centralhttp://www.particleswarm.info/,
was used with its default settings.
Differential Evolution (DE) [8] borrows from Evolutionary Algorithms (EAs)
the paradigm of an evolving population. However, a specific ’mutation’ oper-
ator is used that adds to an individual the difference between two others from
the population. Standard uniform crossover is also used. The implementation
posted by the original authors athttp://www.icsi.berkeley.edu/~storn/
code.html was used here. However, the authors confess that the results highly
depend on the parameter tuning. They propose 6 possible strategies, andexten-
sive experiments (3×288 trials) on a moderately ill-conditioned problem lead
us to consider the “DE/local-to-best/1/bin” strategy, where the difference vector
is computed between a random point and the best point in the population. Also,
the use of crossover seemed to have little beneficial impact on the results, sono
crossover was used, thus making DE rotationally invariant. Moreover, thepop-
ulation size was set to the recommended value of 10n, the weighting factor to
F = 0.8.



Invariances Some a priori comparisons can be made about those algorithms,
related to the notion ofinvariance. Invariance is a desirable property since an
algorithm invariant under a transformation will have the same performances
on all functions belonging to the equivalence class induced by this transforma-
tion. Two sets of invariance properties are distinguished, whether they regard
transformations of the objective function value or transformations of the search
space. First, all comparison-based algorithms are invariant under monotonous
transformations of the objective function, as comparisons are unaltered ifthe
objective functionf is replaced with someg◦ f for some monotonous function
g. All bio-inspired algorithms used in this paper are comparison-based, while
the BFGS and NEWUAO are not.

Regarding transformations of the search space, all algorithms are trivially
invariant under translation of the coordinate system. But let us consider some
orthogonal rotations: BFGS is coordinate-dependent due to the computation of
numerical gradients. NEWUOA is invariant under rotation when considering
the complete quadratic model, i.e. built with1

2(n+ 1)(n+ 2) points. This vari-
ant is however often more costly compared to the 2n+1 one – but the latter is
not invariant under rotation. The rotational invariance of CMA-ES is built-in,
while that of DE depends whether or not crossover is used – as crossover re-
lies on the coordinate system. This was one reason for omitting crossover here.
Finally, PSO is (usually) not invariant under rotations, as all computations are
done coordinate by coordinate [9, 10].

4 Test functions and experimental setup

Test functionsComparative results on 3 benchmark functions are presented:
the Ellipsoid felli(x) = ∑n

i=1 α
i−1
n−1 y2

i , a ’deconvexified’ version of the Ellipsoid,

f 1/4
elli (x)= felli(x)

1
4 and the Rosenbrock functionfRosen(x)= ∑n−1

i=1

(
α(y2

i −yi+1)
2+

(yi −1)2
)
, wherey = Bx, for a random orthogonal matrixB. The functions are

tested in their original axis-parallel version (i.e.B is the identity andy = x), and
in rotated versions, wherey = Bx. The orthogonal matrixB is chosen such that
each column is uniformly distributed on the unit hypersphere surface [5],fixed
for each run.

The Ellipsoid functionfelli is a convex-quadratic function where the param-
eterα is the condition number of the Hessian matrix that is varied between 1 and
1010 in our experiments. Ifα = 1 the Ellipsoid is the isotropic separable sphere
function. The functionf 1/4

elli has the same contour lines (level sets) asfelli , how-

ever it is neither quadratic nor convex. Forα 6= 1, the functionsfelli and f 1/4
elli are

separable if and only ifB = I .



The Rosenbrock functionfRosen is non-separable, has its global minimum
at x = [1,1, . . . ,1] and, for large enoughα andn, has one local minimum close
to x = [−1,1, . . . ,1], see also [11]. The contour lines of the Rosenbrock func-
tion show a bent ridge that guides to the global optimum (the Rosenbrock is
sometimes called banana function) and the parameterα controls the width of
the ridge. In the classical Rosenbrock function,α equals 100. For smallerα, the
ridge becomes wider and the function becomes less difficult to solve. We vary
α between one and 108.

Experimental SetupFor each algorithm tested we conduct 21 independent trials
of up to 107 function evaluations. For all algorithms, initial points have been
sampled uniformly in the range[−20,80]n. If, for BFGS, no success was en-
countered, the number of trials was extended to 1001. We quantify the perfor-
mance of the algorithms using the success performanceSP1 used in [12], an-
alyzed in [13]. TheSP1 equals the average number of function evaluations for
successful runs divided by the ratio of successful runs, where a run is success-
ful if the target function value 10−9 is reached before 107 function evaluations
are exceeded. TheSP1 is an estimator of the expected number of function eval-
uations to reach 10−9 if the algorithm is restarted until a success (supposing
infinite time horizon) and assuming that the expected number of function eval-
uations for unsuccessful runs equals the expected number of evaluations for
successful runs.

5 Results

Results are shown for dimension 20. Results for 10 and 40-D (not shown) reveal
similar trends.

Ellipsoid functions: dependenciesIn Figure 1 (1rst and 2nd columns) a re-
markable dependency of the performance (SP1) on the condition number can be
observed in most cases. The two exceptions are PSO on the separable functions
and DE. In the other cases the performance declines by at least a factorof ten
for very ill-conditioned problems as for CMA-ES. The overall strongestperfor-
mance decline is shown by PSO on the rotated functions. NEWUOA shows in
general a comparatively strong decline, while BFGS is only infeasible for high
condition numbers in the rotated case, reporting some numerical problems. The
decline of CMA-ES is moderate.

For CMA-ES and DE the results are (virtually) independent of the given el-
lipsoidal functions, where CMA-ES is consistently between five and forty times
faster than DE. For PSO the results are identical on Ellipsoid and Ellipsoid1/4,
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Fig. 1. Ellipsoidal functions in 20D (1st and 2nd columns). Shown isSP1 (the expected run-
ning time or number of function evaluations to reach the target function value) versus condition
number. Rosenbrock function (3rd column). Shown isSP1 versus conditioning parameterα.

while the performance declines under rotation (top versus bottom) is very pro-
nounced. A similar strong decline under rotation can be observed for NEWUOA
on the Ellipsoid function for moderate condition numbers. BFGS, on the other
hand, shows a strong rotational dependency on both functions only forlarge
condition numbers≥ 106.

Switching from Ellipsoid (left) to Ellipsoid1/4 (middle) only effects BFGS
and NEWUOA. BFGS becomes roughly five to ten times slower. A similar ef-
fect can be seen for NEWUOA on the rotated function. On the separable El-
lipsoid function the effect is more pronounced, because NEWUOA performs
exceptionally well on the separable Ellipsoid function.

Ellipsoid functions: comparisonOn the separable Ellipsoid function up to a
condition number of 106 NEWUOA clearly outperforms all other algorithms.
Also BFGS performs still better than PSO and CMA-ES while DE performs
worst. On the separable Ellipsoid1/4 function BFGS, CMA-ES and PSO perform
similar. NEWUOA is faster for low condition numbers and slower for large
ones. For condition number larger than 106, NEWUOA becomes even worse
than DE.

On the rotated functions, for condition numbers larger than 103, PSO is re-
markably outperformed by all other algorithms. On the rotated Ellipsoid func-



tion for moderate condition numbers BFGS and NEWUOA perform best and
outperform CMA-ES by a factor of five, somewhat more for low condition num-
bers, and less for larger condition numbers. For large condition numbersCMA-
ES becomes superior and DE is within a factor of ten of the best performance.

On the rotated Ellipsoid1/4 BFGS and CMA-ES perform similar up to con-
dition of 106. NEWUOA performs somewhat better for lower condition num-
bers up to 104. For larger condition numbers BFGS and NEWUOA decline and
CMA-ES performs best.

Rosenbrock functionOn the Rosenbrock function NEWUOA is the best algo-
rithm (Figure 1). NEWUOA outperforms CMA-ES roughly by a factor of five,
vanishing for very large values for the conditioning parameterα. For smallα,
BFGS is in-between, and forα > 104 BFGS fails. DE is again roughly ten times
slower than CMA-ES. Only PSO shows a strong dependency on the rotationof
the function and the strongest performance decline with increasingα.

Scaling behaviorsThe scaling of the performance with search space dimension
is similar for all functions (results not shown here for space reasons).CMA-ES,
NEWUOA and PSO show the best scaling behavior. They slow down by a factor
between five and ten in 40D compared to 10D. For BFGS the factor is slightly
above ten, while for DE the factor is thirty or larger, presumably because the
default population size increases linearly with the dimension.

AcknowledgementsWe would like to acknowledge Philippe Toint for his kind
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dard PSO 2006 code.
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A All Results
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Fig. 2. Ellipsoid function. Shown isSP1 (the expected running time or number of function eval-
uations to reach the target function value) versus condition number.



Separable Ellipsoid1/4 Function
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Fig. 3. Ellipsoid1/4 function. Shown isSP1 (the expected running time or number of function
evaluations to reach the target function value) versus condition number.
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Rotated Rosenbrock Function

0
10

2
10

4
10

6
10

8
10

10
10

3
10

4
10

5
10

6
10

7
10

Rotated Rosenbrock dimension 10, 21 trials, tolerance 1e−09, eval max 1e+07

alpha
S

P
1

NEWUOA 
BFGS 
DE2 
PSO 
CMAES 

0
10

2
10

4
10

6
10

8
10

10
10

3
10

4
10

5
10

6
10

7
10

Rotated Rosenbrock dimension 20, 21 trials, tolerance 1e−09, eval max 1e+07

alpha

S
P

1

NEWUOA 
BFGS 
DE2 
PSO 
CMAES 

0
10

2
10

4
10

6
10

8
10

10
10

3
10

4
10

5
10

6
10

7
10

Rotated Rosenbrock dimension 40, 21 trials, tolerance 1e−09, eval max 1e+07

alpha

S
P

1

NEWUOA 
BFGS 
DE2 
PSO 
CMAES 

Fig. 4. Rosenbrock function. Shown isSP1 (the expected running time or number of function
evaluations to reach the target function value) versus conditioning parameterα.


