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Abstract

Developing pervasive computing applications is a difficult task be-
cause it requires to deal with a wide range of issues: heterogeneous
devices, entity distribution, entity coordination, low-level hardware
knowledge. . . Besides requiring various areas of expertise, pro-
gramming such applications involves writing a lot of administra-
tive code to glue technologies together and to interface with both
hardware and software components.

This paper proposes a generative programming approach to
providing programming, execution and simulation support dedi-
cated to the pervasive computing domain. This approach relies on
a domain-specific language, named DiaSpec, dedicated to the de-
scription of pervasive computing systems. Our generative approach
factors out features of distributed systems technologies, making
DiaSpec-specified software systems portable.

The DiaSpec compiler is implemented and has been used to
generate dedicated programming frameworks for a variety of per-
vasive computing applications, including detailed ones to manage
the building of an engineering school.

Categories and Subject Descriptors D.2.11 [Software Engineer-
ing]: Software Architectures—Domain-specific architectures, Lan-
guages, Patterns; D.3.4 [Programming Languages]: Processors—
Code generation, Retargetable compilers

General Terms Design, Languages

Keywords pervasive computing, generative programming, DSL

1. Introduction

Pervasive computing systems are being deployed in a rapidly in-
creasing number of areas, including building automation, assisted
living, and supply chain management. Regardless of their target
area, pervasive computing systems have a typical architectural pat-
tern. They aggregate data from a variety of distributed sources,
whether sensing devices or software components, analyze a con-
text to make decisions, and carry out decisions by invoking a range
of actuators. Because pervasive computing systems are standing at
the crossroads of several domains (e.g., distributed systems, multi-
media, and embedded systems), they raise a number of challenges
in software development.

[Copyright notice will appear here once ’preprint’ option is removed.]

Heterogeneity. Pervasive computing systems are made of off-the-
shelf entities, that is, hardware and software building blocks. These
entities run on specific platforms, feature various interaction mod-
els, and provide non-standard interfaces. This heterogeneity tends
to percolate in the application code, preventing its portability and
reusability, and cluttering it with low-level details.

Lack of structuring. Pervasive computing systems coordinate nu-
merous, interrelated components. A lack of global structuring
makes the development and evolution of such systems error-prone:
component interactions may be invalid or missing.

Combination of technologies. Pervasive computing systems involve
a variety of technological issues, including device intricacies, com-
plex APIs of distributed systems technologies, undocumented in-
terfaces, and middleware-specific features. Coping with this range
of issues results in code bloated with special cases to glue technolo-
gies together.

Dynamicity. In a pervasive computing system, devices may either
become available as they get deployed, or unavailable due to mal-
function or network failure. Dealing with these issues explicitly in
the implementation can quickly make the code cumbersome.

Testing. Pervasive computing systems are complicated to test. Do-
ing so requires equipments to be acquired, tested, configured and
deployed. Furthermore, some scenarios cannot be tested because of
the nature of the situations involved (e.g., fire and smoke). As a re-
sult, the programmer must resort to writing specific code to achieve
ad hoc testing.

Software engineering approaches provide developers with
general-purpose support, targeting a wide spectrum of areas, from
business applications to scientific computing. For example, mid-
dlewares like CORBA [OMG 1995] offer a profusion of services,
large APIs, and abstraction layers to hide low-level intricacies. Yet,
they do not cover the specific range of issues involved in developing
a pervasive computing system: heterogeneous entities, application
structuring, combination of technologies, dynamicity, and testing.
Leveraging existing software engineering approaches thus requires
the programmer to write code to bridge the gap between general-
purpose support and pervasive computing-specific needs.

Our approach

We propose a generative programming approach to providing sup-
port throughout the development of a pervasive computing system:
programming, simulation and execution. This approach relies on a
domain-specific language, named DiaSpec, dedicated to describing
a pervasive computing system. Let us outline the development pro-
cess underlying DiaSpec. This process revolves around key stages
and roles depicted in Figure 1.
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Taxonomy. Because of their heterogeneity, entities of pervasive
computing environments need to be specified in a high-level man-
ner to abstract over their variations. The number of existing en-
tities also require to characterizing the ones that are relevant to
a given area. To address these issues, we provide an area ex-
pert with a declarative language to define a hierarchy of building
blocks (stage ➀). Each class of building blocks is characterized in
terms of the types of data that are gathered from the environment
and the actions that are supported.

Architecture. A taxonomy definition is used as a basis to declare
the architecture of pervasive computing applications. To do so, we
introduce a declarative language inspired by architecture descrip-
tion languages (ADLs) [Medvidovic and Taylor 2000] but dedi-
cated to an architectural pattern commonly used in the pervasive
computing domain [Dey et al. 2001]. This architectural pattern
consists of context components fueled by sensing building blocks
from the taxonomy. These components process gathered data to
make them amenable to the application needs. Context data are
then passed to controller components that trigger actions in build-
ing blocks (stage ➁).

Development. A DiaSpec description, consisting of a taxonomy
definition and architecture declarations, is then passed to a com-
piler, called DiaGen. This compiler produces a Java programming
framework, dedicated to the input DiaSpec description (stage ➂).

DiaGen generates high-level, DiaSpec-specific operations to
support the development of devices and applications (stages ➃

and ➄). In doing so, the generated support abstracts away from un-
derlying technologies. As well, it raises the level of abstraction by
implementing a language to query a pervasive computing environ-
ment to discover entities. This language is specific to each DiaSpec
description.

Simulation. To test pervasive computing applications prior to de-
ploying a real environment, the DiaGen compiler generates simula-
tion support. It produces support to implement the simulated build-
ing blocks from a set of predefined behaviors, whenever possible.
This generated support is then linked to our pervasive computing
simulator, named DiaSim [Bruneau et al. 2009]. DiaSim provides
an editor to build a simulated environment and a 2D-renderer to
guide and visualize the simulation (stage ➅).

Deployment. Last, the system administrator deploys the pervasive
computing system. To this end, a distributed systems technology
needs to be selected. Currently, DiaGen offers a back-end for the
following targets: Web Services [Consortium 2004], RMI [Down-
ing 1998], CORBA [OMG 1995] and SIP [Rosenberg et al. 2002].
In doing so, we close the gap between these general-purpose soft-
ware layers and the pervasive computing-specific needs (stage ➆).
This targeting does not necessitate any changes in the application
code. Furthermore, the simulated environment can be mixed with
the actual environment. This form of hybrid simulation enables ap-
plications to migrate incrementally to an actual environment, per-
forming unit tests on actual components.

Our contributions

In this paper, we propose a domain-specific approach to supporting
the development of pervasive computing systems. We generate a
programming framework dedicated to a high-level description of a
pervasive computing system. Our contributions can be summarized
as follows.

• DiaSpec. We introduce a declarative language dedicated to
specifying pervasive computing systems. DiaSpec includes (1)
a language to define a taxonomy of the kinds of building blocks
relevant to a target area and (2) an ADL-inspired language to
describe application architectures. DiaSpec has been designed
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Figure 1. Development cycle

to permit the generation of support covering the development
cycle of a pervasive computing system: programming, simula-
tion and execution.

• DiaGen. DiaSpec descriptions are processed by a compiler,
named DiaGen, that generates dedicated programming frame-
works. A dedicated framework guides the development of the
application code and raises the level of abstraction by providing
the programmer with high-level operations for entity discovery
and component interactions.

• Retargetable compiler. DiaGen leverages existing distributed
systems technologies. It generates glue code to customize them
with respect to the needs of pervasive computing, without man-
ual intervention. Currently, DiaGen offers back-ends for the fol-
lowing targets: Web Services, RMI, SIP and CORBA.

• Simulation generation. DiaSpec declarations are also used to
generate simulation support. It takes the form of predefined
behaviors for the most common existing building blocks. It also
generates skeletons to implement the simulation logic of a new
kind of building block. Finally, code is produced to configure
our pervasive computing simulator, DiaSim.

The rest of this paper is organized as follows. Section 2 in-
troduces DiaSpec throughout an example. Section 3 examines the
different elements generated in the dedicated programming frame-
work. This section also describes how to develop on top of a Dia-
Gen-generated programming framework. In Section 4, we present
the generation of a layer specific to a distribution systems technol-
ogy. Section 5 discusses the generation of a simulator configura-
tion. In Section 6, we describe our implementation and the evalua-
tion of our approach. Related works are discussed in Section 7 and
conclusions are given in Section 8.

2. DiaSpec

This section introduces the DiaSpec language. First, we examine
how to specify the taxonomy of a pervasive computing environ-
ment. Then, we present declarations to define the architecture of a
pervasive computing application.

2.1 Working example

To illustrate our approach, an example of fire management is used
throughout this paper. This example is part of a larger project aimed
to automate an entire engineering school building. This project is
briefly presented in Section 6.
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To manage fire situations, we assume fire is detected by analyz-
ing data from smoke and temperature sensors. When a fire occurs
the corresponding application must trigger sprinklers and alarms,
and unlock doors to allow occupants to evacuate the building.

2.2 Specifying a taxonomy

Pervasive computing applications interact with the environment
through building blocks. Whether software or hardware, we view
these building blocks as devices. A taxonomy is a collection of
device declarations, each of which characterizes a set of possible
device implementations sharing common functionalities. Device
functionalities consist of data sources and actions. A data source
specifies values sensed by a device. An action declares a set of
operations supported by a device. Device declarations also include
attributes, characterizing properties of devices instances. Device
declarations are organized hierarchically allowing devices to inherit
attributes, sources and actions from other devices.

Let us now describe device declarations in more detail by ex-
amining the taxonomy for fire management given in Figure 2. De-
vice classes are introduced by the device keyword. At the root
of our taxonomy is the Device node (line 1). It introduces the
location attribute. The SmokeDetector device extends the root
node and defines the Smoke data source, using the source key-
word (lines 3 to 5). Another example of device declaration is Door
(lines 15 to 18). Besides a data source giving the door state, Door
defines the Locking action interface to operate a door lock. An ac-
tion interface defines the signatures of methods supported by a de-
vice (lines 20 to 22). These methods are triggered by applications.
As explained in Section 3, the hierarchy of device classes and the
attribute declarations are used to generate support for device dis-
covery.

1 device Device(Location location){}
2

3 device SmokeDetector extends Device {
4 source Smoke;
5 }
6 device TemperatureSensor(Accuracy accuracy) extends Device {
7 source Temperature;
8 }
9 device Sprinkler extends Device {

10 action OnOff;
11 }
12 device Alarm extends Device {
13 action Activation;
14 }
15 device Door extends Device {
16 action Locking;
17 source LockedStatus;
18 }
19

20 action OnOff {on(); off(); toggle();}
21 action Activation {activate(AlarmType alarmType); deactivate();}
22 action Locking {lock(); unlock();}
23

24 enum LockedStatus {LOCKED, UNLOCKED}
25 enum AlarmType {FIRE, INTRUSION}

27 struct Temperature {
28 int value;
29 enum {CELSIUS, FAHRENHEIT} unit;
30 }
31 struct Smoke {
32 boolean isDetected;
33 }

Figure 2. Extract of the ENSEIRB taxonomy in the DiaSpec
syntax

2.3 Declaring an application architecture
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DiaSpec offers constructs to declare the architecture of an ap-
plication following an architectural pattern commonly used in the
pervasive computing domain [Dey et al. 2001]. As depicted in Fig-
ure 3, a pervasive computing system senses the environment via
devices, introduced in a taxonomy definition. The resulting data
are refined by context components to match the application needs.
Context data are then passed to controller components to make de-
cisions by triggering device actions, declared in the taxonomy. A
data flow view of the fire management example is presented in Fig-
ure 4. The bottom part shows the data sources corresponding to
smoke detectors and temperature sensors. These data sources are
aggregated by the FireState context to determine whether there
is a fire. This information is passed to the Fire controller, which
triggers device actions to put out the fire and perform other emer-
gency tasks (top part of the figure).
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Figure 4. A data flow view of the fire management application

The DiaSpec declarations of the fire management application
are presented in Figure 5. The declaration of a context compo-
nent (the context keyword) consists of a name, a list of con-
text/source names as input, and a type as output. For exam-
ple, the SmokeDetected context takes a Smoke source as input,
produced by the SmokeDetector device class (line 1). The re-
striction to this device class is expressed by the from keyword.
SmokeDetected produces a value of type Smoke. In addition to
functionalities, context components are declared as producing data
relative to some situation, expressed as an index. For example, the
SmokeDetected component produces a boolean value that is rela-
tive to the location index, indicating where the smoke is detected.
When multiple indices are associated with a given context value, it
is relative to all the declared indices. When a context component
does not declare an index, its output context data are not relative to
any situation.

For another example, consider the FireState context compo-
nent that produces a value of type boolean indicating whether a
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fire is occurring. This value is computed from two input contexts,
namely SmokeDetected and AverageTemperature, and is rela-
tive to the location index.

Note that the declaration of the source of a context does not
make explicit how the values are supplied, i.e., push or pull. In-
deed, the generated framework provides the programmer with both
modes.

The declaration of a controller component (the controller
keyword) consists of a name, input context names and action
clauses. For example, the FireController controller component
takes the FireState context as input and trigger actions defined
by device interfaces, namely Locking, OnOff, and Activation
(lines 11 to 16). Interfaces may be narrowed down to a device class
with the on keyword, just like a source of context may be restricted
to a device class with the from keyword.

Once the application architecture is declared, the programmer
implements the components. This development is supported by a
dedicated framework discussed in the following section.

1 context SmokeDetected[Location location]: Smoke {
2 source Smoke from SmokeDetector;
3 }
4 context AverageTemperature[Location location]: Temperature {
5 source Temperature from TemperatureSensor;
6 }
7 context FireState[Location location]: boolean {
8 context SmokeDetected, AverageTemperature;
9 }

11 controller FireController {
12 context FireState;
13 action Locking on Door;
14 action OnOff on Sprinkler;
15 action Activation on Alarm;
16 }

Figure 5. Extract of the ENSEIRB fire management application

3. Dedicated programming framework

DiaGen generates a programming framework with respect to a set
of declarations for device classes, context components and con-
troller components. DiaGen produces an abstract class for each
entity declaration (device, context and controller), providing meth-
ods to support the development (discovery and interactions). It also
generates abstract method declarations to allow the developer to
program the application logic (e.g., triggering device actions). Im-
plementing a DiaSpec-declared entity is done by subclassing the
corresponding generated abstract class. In doing so, the developer
is required to implement each abstract method. To facilitate this
process, most Java IDEs are capable of generating class templates
based on super abstract classes. The developer writes the applica-
tion logic in subclasses and not in the generated abstract classes.

Generating abstract classes instead of incomplete source code
better separates programming support and developer code. As a re-
sult, generating a new programming framework, after changes in a
DiaSpec description, does not override the code of the developer.
However, these changes might modify the generated support, re-
quiring the developer to revise his already-written code.

Let us now describe the dedicated support generated for devices,
contexts and controllers.

3.1 Device implementation

The compilation of a device declaration produces a dedicated skele-
ton in the form of an abstract class depicted in Figure 6. Let us
examine what is generated for each part of a device declaration:
actions, sources and attributes.

1 public abstract class Door {
2 protected void setLocation(Location location) {...}
3 protected void setLockedStatus(LockedStatus lockedStatus) {...}
4 public abstract void lock();
5 public abstract void unlock();
6 ...
7 }

Figure 6. The abstract class Door generated by DiaGen from the
declaration of the Door device (Figure 2, lines 15 to 18)

Actions An action corresponds to a set of operations supported
by a device. It takes the form of an interface included by the
abstract class generated for a device declaration. Each operation
is to be implemented by the device developer. This implementation
is aimed to bridge the gap between the declared interface and an
actual device instance.

The following code fragment wraps a Door device that is con-
trolled using X10, a protocol commonly used in home automa-
tion [X10].

1 public class Door_X10 extends Door {

3 ... // defines x10Ctrl and x10Addr

5 public Door_X10(Location location) {
6 setLocation(location);
7 }

9 @Override
10 public void lock() {
11 x10Ctrl.addCommand(new Command(x10Addr, Command.OFF));
12 setLockedStatus(LOCKED);
13 }

15 @Override
16 public void unlock() {
17 x10Ctrl.addCommand(new Command(x10Addr, Command.ON));
18 setLockedStatus(UNLOCKED);
19 }
20 }

Figure 7. A developer-supplied implementation of a Door device
using the X10 protocol in Java

According to the declaration of the Door device (Figure 2,
lines 15 to 18), the generated Door class (Figure 6) declares ab-
stract methods lock and unlock (lines 4 and 5). The Door_X10
implementation of these two methods (Figure 7, lines 9 to 19) re-
lies on the X10 library.

Sources A device declares sources that make its state and sensed
data available to context components. The generated support pro-
vides the developers with dedicated methods to update source data.
In the above example, the generated setLockedStatus method
(Figure 6, line 3) sets the door state and is called by the developer
(Figure 7, lines 12 and 18). This method is generated thanks to the
LockedStatus declaration (Figure 2, line 17).

Attributes Devices are characterized by attributes. These at-
tributes can be assigned values at runtime. Attributes are managed
by generated getters and setters. For example, the Door device in-
herits the location attribute from the Device node (Figure 2,
line 1), which triggers the generation of a setLocation method
(Figure 6, line 2). In Figure 7, the setLocation method is used
(line 6) to set the door location to a value passed as a constructor
parameter.

3.2 Developing application logic

For each context and controller declaration, the DiaSpec compiler
generates a skeleton, implemented as an abstract class. The devel-
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opment of the application logic thus consists of implementing the
generated abstract classes.

3.2.1 Implementation of context components

From a context declaration, DiaGen generates support to develop
the context processing logic. This support allows distributed de-
vices to be selected through service discovery. Proxies are gener-
ated to interact with selected devices.

The code fragment in Figure 8 presents the implementation of
the SmokeDetected context declaration. This is done by extending
the corresponding generated abstract class named SmokeDetected
(not shown here, but similar to the one in Figure 6) with a
new class named MySmokeDetector. Because this context is de-
clared as taking a Smoke input source from smoke detectors (Fig-
ure 5, line 2), the generated framework provides support to se-
lect and interact with instances of this device class. For example,
the allSmokeDetectors method is generated in the abstract class
SmokeDetector to discover all available smoke detectors and is
used in Figure 8 line 4. The subscribeSmoke method is invoked
to subscribe to the Smoke input source.

A context may access data from devices using two interaction
modes: pulling (line 23) or pushing (line 4 for subscription and
line 8 for notification). The implementation of a context compo-
nent must provide values to its consumers, whether other contexts
or controllers. To do so, methods are generated as illustrated by
lines 11 and 14 where the context component code pushes a new
boolean value to indicate the presence of smoke at a specific loca-
tion. These interaction modes are further described in Section 3.4.

1 public class MySmokeDetected extends SmokeDetected {

3 public MySmokeDetected() {
4 allSmokeDetectors().subscribeSmoke(this);
5 }

7 @Override
8 public void smokeChanged(SmokeDetector smokeDetector, Smoke

smokeDetected) {
9 Location location = smokeDetector.getLocation();

10 if (smokeDetected.isDetected)
11 setSmokeDetected(location, new Smoke(true));
12 else

13 // check whether there is still smoke at this location

14 setSmokeDetected(location, isSmokeDetected(location));
15 }

17 // Tests whether smoke is detected for a particular location

18 private Smoke isSmokeDetected(Location location) {
19 SmokeDetectorComposite detectors =
20 discover(smokeDetectorWhere().location(location));
21 for (SmokeDetector sd : detectors) {
22 try {
23 if (sd.getSmoke().isDetected)
24 return new Smoke(true);
25 } catch (DiaGenCommunicationException e) {...}
26 }
27 return new Smoke(false);
28 }
29 }

Figure 8. A developer-supplied implementation of the
SmokeDetected context in Java

3.2.2 Implementation of controller components

DiaGen generates support to create a controller component from
its DiaSpec declaration. Controllers use the context information to
take decisions that are carried out by calling actions on devices.
To do so, support is generated to allow a controller to access con-
text information in both push and pull modes. This is illustrated

by the FireController generated abstract class (not shown here,
but similar to the one in Figure 6). In this abstract class, and be-
cause the FireController depends on the FireState context
(Figure 5, line 12), methods have been generated to provide both
modes of interaction to access FireState context information. In
Figure 9, the implementation of the FireController controller
component is done by extending the corresponding generated ab-
stract class named FireController with a new class named
MyFireController. The implementation starts by invoking the
subscribeFireState method, generated in the abstract super-
class FireController to be notified when the FireState infor-
mation changes (Figure 9, line 4). Correspondingly, the method
fireStateChanged, declared abstract in the generated abstract
class FireController, is overridden to receive these notifications
(Figure 9, lines 7 to 28). Arguments passed to the notification call-
backs are always the new context value, followed by the indices
characterizing this value.

The controller declaration makes explicit what devices are con-
trolled through what operations. This information is used to gen-
erate an abstract class that supports mechanisms to discover target
devices. Device discovery is illustrated in line 13 of Figure 9 where
methods discover and doorsWhere are called to select all the
doors of the building. The implementation of these methods is gen-
erated in the abstract superclass FireController.

Methods unlock (line 14), on (line 18) and activate (line 25)
are generated in the Door, Sprinkler and Alarm proxies, respec-
tively. A proxy is a generated class representing a local view of a
remote device. In doing so, a device invocation abstracts over dis-
tribution details.

After having presented the overall programming support given
by a generated framework, let us focus on a key mechanism to cope
with dynamicity, namely, device discovery.

1 public class MyFireController extends FireController {

3 public MyFireController() {
4 subscribeFireState();
5 }

7 @Override
8 public void fireStateChanged(boolean fireState, Location location)
9 {

10 Location building = location.getBuilding();
11 if (fireState) {
12 // Unlock all doors of the building in fire

13 DoorComposite d = discover(doorsWhere().location(building));
14 d.unlock();
15

16 // Switch on the sprinklers where the fire is located

17 SprinklerComposite s = discover(sprinklersWhere().location(
location));

18 s.on();
19

20 // Activate the alarms

21 AlarmComposite alarms = discover(alarmsWhere().location(
building));

23 // Equivalent to alarms.activate(AlarmType.FIRE):

24 for (Alarm a: alarms)
25 try { a.activate(AlarmType.FIRE); }
26 catch (DiaGenCommunicationException e) {...}
27 } else {...}
28 }
29 }

Figure 9. A developer-supplied implementation of the
FireController in Java
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3.3 Device discovery

Our dedicated programming frameworks provide support to dis-
cover devices based on a taxonomy definition. Device discovery
returns a collection of proxies for the selected devices. Importantly,
this collection is encapsulated in a composite object, an instance of
the composite design pattern [Gamma et al. 1995]. An example of
such collection, DoorComposite, is returned in line 13 of Figure 9.
In this design pattern, the developer can process all elements of the
collection either explicitly by using a loop or implicitly by invoking
a method of the composite that implements an iteration. Line 14 in
Figure 9 is an example of an implicit iteration. Lines 24 through 26
illustrate an explicit iteration.

Composites provide a way of factorizing exception handling.
The generative approach has the potential of further leveraging this
situation by parameterizing the generative process with respect to
policies for exception handling and fault tolerance. We are cur-
rently investigating this direction.

To help developers express queries to discover devices, DiaGen
generates a Java-embedded, type-safe DSL, inspired by the work
of Kabanov et al. [Kabanov and Raudjärv 2008]. This technique
makes it possible to keep using a standard Java compiler, instead of
augmenting the Java grammar, as is done in Silver [Van Wyk et al.
2007] and ArchJava [Aldrich et al. 2002].

An example of the use of our query language is given
in the MyFireController class shown in Figure 9. The
fireStateChange method selects doors to operate. The call to
doorsWhere (line 13) restricts the selection to doors in the build-
ing where the fire has been detected. On line 17, the discover
method call returns sprinklers specifically located where the fire is
occurring.

More complex queries can also be expressed, as illustrated
below.

1 Location room1, room2;
2 ...
3 discover(doorsWhere().location(or(eq(room1),eq(room2))));

This query selects doors that are either located in room 1 or 2.
A method suffixed by Where is available for each device that

can be discovered. These methods return a dedicated filter object on
which it is possible to add specific filters over attributes associated
wth the device class. For example, the FireController abstract
class defines a doorsWhere method that returns a DoorFilter.
This filter can be further parametrized by adding an attribute filter
for the location attribute defined by the Door in the taxonomy. This
is done by calling the location() method defined in the gener-
ated DoorFilter class. The parameter to this method is either a
Location value or a logical expression. If a Location value is
passed then the discovered devices must have this location in order
to be selected. If a logical expression is chosen, the attributes of
the selected devices hold with respect to the logical expression. A
logical expression is made of relational and logical operators. New
methods can be defined to further enhance the expressiveness of the
query language.

Our approach allows developers to specify filters for more than
one attribute, as is shown in the following example.

1 Accuracy minAccuracy;
2 Location room1;
3 ...
4 discover(temperatureSensorsWhere().location(room1).accuracy(gt(

minAccuracy)));

This query will select all temperature sensors that are both in
room 1 and provide a specified minimum accuracy. Our current im-
plementation does not allow logical expressions across attributes.
For example, it is not possible for a query to specify that a device

must have a particular value for an attribute or another value for
another attribute. We are working on this limitation.

This embedded DSL is both expressive and concise. It plays
a key role in enabling the developer to handle the dynamicity
of a pervasive computing environment without making the code
cumbersome.

3.4 Interaction modes

As mentioned earlier, an application interacts with a device either
to carry out an action or access context data. A generated program-
ming framework supports the former case with the command inter-
action mode. The latter case is supported by both a push and pull
mode.

Command. A command is a one-to-one asynchronous interaction
mode, similar to a remote procedure call. The developer can pass
arguments to a command according to signatures included in the
DiaSpec taxonomy. Because a command is limited to operate a
device, it does not return a value. However, errors can be expressed
as exceptions. An example of command invocation is given in
line 14 of Figure 9.

Pull. A context can fetch data from devices and other contexts. As
well, a controller can fetch data from contexts. To achieve these in-
teractions, the pull mode provides a one-to-one synchronous inter-
action mode with a return value. Accessing data from a device then
consists of invoking the appropriate methods of the device proxy
returned by the device discovery mechanism. This is exemplified
by line 23 in Figure 8. Accessing data from a context is achieved
by calling a method with the required context indices.

Push. This mode corresponds to the asynchronous publish/sub-
scribe paradigm. When a device or a context needs to push some
data (e.g., whenever it changes), it calls a set method implemented
in its abstract class. This is illustrated by the SmokeDetected con-
text that publishes the Smoke event. To do so, its abstract class im-
plements a setSmokeDetected method that takes a Smoke value
as argument, together with an index value characterizing the event.
This index value indicates the location where the smoke is detected.
An event value is received by all entities that have subscribed to the
event type. A subscription method is generated in an abstract class
for each input source or context declared in a component.

The management of subscribers and the propagation of events
are supported by the generated programming frameworks, easing
the development process.

4. Targeting distributed technologies

A generated programming framework abstracts away from the un-
derlying distributed systems technologies. Besides raising the level
of abstraction, this strategy makes the application code portable
across distributed systems technologies without any change. Dia-
Gen currently offers four back-ends targeting Web Services,
CORBA, SIP and RMI. Each of these technologies provides spe-
cific features and mechanisms with various benefits for the devel-
opment of pervasive computing systems. For example, RMI is well-
suited for testing because it requires a light infrastructure. SIP is
needed when a pervasive computing system relies on a telephony
infrastructure.

Each of these technologies is widely deployed, providing a pro-
fusion of existing components. For example, Web Services tech-
nology offers services in a wide range of areas (e.g., weather fore-
casting and electronic commerce). In our approach, these existing
components can be re-used as building blocks to develop DiaSpec
applications. They are introduced as devices in a taxonomy. From
a device declaration, DiaGen generates the configuration and code
necessary to integrate device instances in DiaSpec applications.
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The rest of this section describes how DiaGen compiles Dia-
Spec concepts into Web Services and CORBA. This compilation
relies on generative programming tools existing in both distributed
systems technologies. These tools allow a generative programming
approach to be used throughout the compilation process. In doing
so, boilerplate tasks are avoided, making the development of Dia-
Spec applications less error-prone.

4.1 Web services

The generation of a dedicated Web Services back-end is performed
in three stages as illustrated by Figure 10.

Programmingframework
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Figure 10. Distribution generation

In stage a©, given a DiaSpec taxonomy, DiaGen generates inter-
face descriptions written in the Web Service Description Language
(WSDL). A translation is needed to adapt the high-level commu-
nication abstractions of our approach into Web Services concepts.
For example, DiaSpec actions become operations. Figure 11 shows
the WSDL translation of the Alarm device defined in Figure 2.

1 <message name="void" />
2 <message name="ActivateInput">
3 <part name="alarmType" type="xsd:AlarmType"/>
4 </message>
5 <portType name="Activation">
6 <operation name="activate">
7 <input message="ns0:ActivateInput" />
8 <output message="ns0:void" />
9 </operation>

10 <operation name="deactivate">
11 <input message="ns0:void" />
12 <output message="ns0:void" />
13 </operation>
14 </portType>

Figure 11. Extract of the Alarm WSDL definition

In stage b©, from these WSDL definitions, stubs and skeletons

are generated using the Axis libraries1. Finally, in stage c©, DiaGen
creates the glue-code to plug the generated Web Services stubs and
skeletons with DiaSpec dedicated programming framework.

4.2 CORBA

The back-end generation process for Web Services and CORBA are
quite similar. The DiaSpec taxonomy is used to generate descrip-
tions written in the Interface Definition Language (IDL). DiaSpec
concepts are translated to the IDL constructs. Devices, contexts and
controllers become interfaces. Actions are mapped into methods.
DiaGen generates the glue-code to fill the gap between CORBA
stubs and skeletons and the dedicated programming framework.

Note that DiaGen-generated WSDL and IDL descriptions can
be used independently of our approach to develop Web Services
and CORBA components. The compliance of these native compo-
nents is checked by their compiler, enabling their integration in a
DiaGen-generated software system.

1 http://ws.apache.org/axis/java/index.html

5. Generation of the simulation part

Existing simulation tools for pervasive computing applications are
usually either general-purpose, or ad hoc. In both cases, application
testers have to write a lot of code to model the pervasive comput-
ing environment and to dynamically visualize its state. Introducing
simulated entities requires the development of tedious and boiler-
plate code that becomes a major part of the final software system.

In this section, we show how the DiaSpec description is used to
generate a simulation support.

5.1 Simulated environment

A DiaSpec taxonomy gives information about the physical environ-
ment. Device declarations define interactions with the environment.
These interaction points are used to produce a simulation support.

In a concrete environment, performing actions on a device can
impact the environment data by changing values. For example,
a call to methods activate and deactivate of Alarm devices
modifies the noise level around their locations. The application
tester chooses and parameterizes the suitable behavior to translate
an action into the simulated environment state.

A simulated environment is populated with devices. From a
DiaSpec taxonomy, the tester selects devices and places them on
a 2D representation of the physical space.

5.2 Simulated entities

The test of an application through simulation involves simulated
devices. These simulated devices have to link their sources with the
simulated environment. Also, their actions must fuel the simulation
engine with updated environment data. Simulated devices are built
above the same programming framework as the one used to imple-
ment contexts and controllers. In doing so, contexts and controllers
are able to interact with simulated devices transparently. From a
device declaration, DiaSim editor provides the tester with several
predefined behaviors (periodical, threshold, etc) for each source.
DiaGen generates an implementation of a device bridging the gap
between the programming framework and the simulated environ-
ment.

5.3 Hybrid simulation

Given a device declaration, both real and simulated implementa-
tions share the same generated programming framework. Thanks
to the framework abstractions, contexts and controllers interact
uniformly with devices regardless of their nature. The application
tester can include real devices into a simulated environment. The
incremental integration of real devices facilitates the development
and testing process.

6. Evaluation

In this section, we present experimentations we conducted using
our approach to illustrate its practical benefits. First, we introduce
a pervasive computing project developed by our research group to
automate an engineering school building. Second, we present an as-
sessment of a practical course we gave to introduce pervasive com-
puting to engineering students using DiaSpec. Finally, we briefly
outline the implementation of our tool chain.

6.1 Engineering school building

The DiaSpec description presented in Figures 2 and 5 is an ex-

tract from a larger project2, whose goal is to manage a 13,500-
square meters building, hosting an engineering school and research
groups. The project features many applications including fire man-

2 https://diasim.bordeaux.inria.fr/Examples/Enseirb/
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Figure 12. DiaSim simulation renderer for the ENSEIRB project on the automation of the engineering school. The left frame displays a 2D

view of the first floor of the ENSEIRB engineering school building, the simulated devices deployed (e.g., light and temperature sensors, display screens) and

simulated occupants. This view also displays pop-up notifications for information sensed from the simulated environment. The right frame displays detailed

information on both an occupant (e.g., name, position) selected in the left frame and its surroundings (e.g., light, temperature). The simulation renderer is

interactive; it allows users to alter time, temperature and luminosity, to move occupants around. . .

agement, light and air conditioning management, and access con-
trol.

This project involves 21 device classes, 13 contexts, 7 con-
trollers, 47 type declarations and 17 action definitions. The Dia-
Spec taxonomy represents 200 LOC, the architecture 130 LOC, the
generated framework 7,000 LOC and manually written Java code
3,000 LOC.

The engineering school building is simulated using DiaSim3.
Figure 12 displays part of the simulation rendering of the project.
Table 1 lists the number of simulated devices involved in the fire
management scenario that have been deployed. At the moment,
more than 250 device instances and 300 occupants are simulated
(e.g., staff, researchers, students, visitors) with various behavioral
patterns. We are planning on deploying part of the project in-situ
to study the benefits of the DiaSpec approach for the incremental
deployment of pervasive computing applications.

6.2 Teaching

We used the DiaSpec language and related tools in a course on
pervasive computing system programming. The class consisted
of twenty undergraduate computer science students with no prior
experience. Their assignment was to develop a meeting manager
application whose role was to notify participants of approaching
meetings. The notification medium and the delays before starting

3 The simulation of the engineering school building has been presented at
the demonstration track of PERCOM’09.

Devices deployed

Smoke detectors 40
Temperature sensors 40
Sprinklers 20
Doors 16
Alarms 20

Table 1. Numbers of devices simulated in DiaSim involved in the
fire situation management scenario of the ENSEIRB demonstra-
tion.

the meeting depended on the participant locations and surroundings
(i.e., email, voice mail, IM, or SMS).

All student groups designed a working DiaSpec architecture
for the meeting manager and most completed the assignment with
an implementation. This experience demonstrated that students be-
come fluent in using DiaSpec in a short time.

6.3 Implementation of DiaSpec and DiaSim

DiaSpec4 is a project actively developed and maintained by the IN-

RIA Phoenix research group5. Its compiler, DiaGen, consists of a
tool chain including a parser, a verifier and code generators. The
implementation of DiaGen is based on the JastAdd compiler com-

4 https://diaspec.bordeaux.inria.fr/
5 http://phoenix.labri.fr/
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piler [Ekman and Hedin 2007]. The modifications to the JastAdd
parser and compiler to handle DiaSpec amount for 2,800 LOC, and
the code generators have 2,300 LOC. DiaGen was tested by sam-
ple applications and approximately 100 unit-tests. The distribution
library has 10,000 LOC.

DiaSim6, our pervasive computing simulator, uses Siafu [Mar-
tin and Nurmi 2006], an open source context simulator for the 2D
rendering of DiaSpec-simulated pervasive computing applications.
DiaSim amounts for 15,000 LOC (without counting Siafu). In ad-
dition to the simulation renderer (Figure 12), DiaSim comprises a
visual editor (Figure 13) to set-up and configure a pervasive com-
puting environment and pre-defined behavior patterns for simulated
devices and entities (persons, etc.).

Figure 13. DiaSim simulated environment editor for an health care
scenario. The middle frame displays a 2D view of a home environment.

The devices extracted from a DiaSpec taxonomy are displayed on the left

frame and can be placed via drag-and-drop operations in the simulated envi-

ronment. The right frame summarizes devices deployed in the environment.

7. Related Work

In this section, we review existing approaches for the development
of pervasive computing applications. As well, we briefly describe
how our generative strategy leverages existing approaches.

Middleware. Middleware is a widely used approach to devel-
oping distributed applications. Standardized middlewares (e.g.,
CORBA [OMG 1995], DCOM [Sessions 1998], and Web Ser-
vices [Consortium 2004]) support the development of distributed
applications via dedicated mechanisms to perform operations such
as event subscription and device discovery. Existing middlewares
often provide a variety of interface definition languages (IDLs),
mainly to define the type signature of individual entities. These
definitions are used to generate communication support, as illus-
trated by the RPC paradigm [Sun Microsystem 1988]. Our ap-
proach leverages this basic support by providing a high-level pro-
gramming framework encompassing the architectural aspects of the
pervasive computing system.

Olympus is a programming framework on top of the Gaia mid-
dleware, which is dedicated pervasive computing[Román et al.
2002, Ranganathan et al. 2005]. It provides high-level program-
ming interfaces to implement active spaces. However, the frame-
work remains general purpose and thus provides little guidance to
the developer and still requires boilerplate code to be written.

Component-oriented programming languages. ComponentJ [Seco
and Caires 2000], ACOEL [Sreedhar 2002] and ArchJava [Aldrich

6 https://diasim.bordeaux.inria.fr/

et al. 2002] build a bridge between ADLs and programming lan-
guages by adding syntactic constructs to a mainstream program-
ming language such as Java to model architectures. Because these
approaches mix architecture declarations with application code, ar-
chitecture changes can be difficult to make. In contrast, a DiaSpec
specification is processed prior to component programming, allow-
ing dedicated programming support to be generated. Of these ap-
proaches, ArchJava addresses the distributed setting by allowing
users to introduce new connectors [Aldrich et al. 2003]. However,
this approach imposes additional burden on the developer because
it requires implementing the new connectors. In contrast, DiaGen
provides complete support for built-in connectors, including map-
pings to various distributed systems technologies.

Architecture Description Languages. Architecture description lan-
guages model distributed and non-distributed systems to ensure dif-
ferent properties at compile time and at run time. Some of them also
provide a generic framework on top of which developers can imple-
ment components and connectors [Garlan et al. 2000, Allen 1997,
Moriconi and Riemenschneider 1997, Binns et al. 1996, Magee and
Kramer 1996, Luckham et al. 1995, Shaw et al. 1995]. DiaSpec is
an ADL-inspired DSL for modeling pervasive computing systems;
it relies on a tool chain for the generation of a dedicated program-
ming framework.

Domain-specific languages. In previous work, we have developed
the domain-specific coordination language Pantaxou, which in-
cludes a language layer for describing the entities relevant to an ap-
plication area, and another for implementing services coordinating
these entities [Mercadal et al. 2008]. The former language layer is
inspired by DiaSpec but not as dedicated to the pervasive comput-
ing domain. Furthermore, our approach brings the idea of declar-
ing the interactions allowed between distributed components from a
domain-specific language to a mainstream programming language,
Java.

8. Conclusion and Future Work

In this paper, we have presented DiaSpec, a DSL for the devel-
opment of pervasive computing systems. We have shown that the
DiaSpec language facilitates the description of pervasive comput-
ing applications. We have also demonstrated that our generative
programming approach covers the entire development cycle of a
pervasive computing system.

The DiaSpec language eases the description of pervasive com-
puting environments by enforcing an architectural pattern com-
monly used in this domain. DiaSpec provides abstractions to model
(1) the process of gathering data from devices, (2) their transfor-
mation into context information relevant to making decisions, and
(3) the triggering of actions to carry out decisions.

We have shown that the DiaSpec generative approach leverages
existing technologies to cover the development cycle of pervasive
computing systems. At design time, DiaSpec proposes high-level
constructs to describe a pervasive computing system. A DiaGen-
generated framework abstracts over the specific features of dis-
tributed systems technologies and proposes programming support
dedicated to a taxonomy definition and architecture declarations.
Moreover, DiaGen makes it possible for applications to easily in-
tegrate existing components from various technologies (e.g., Web
Services, CORBA, SIP). Finally, our approach allows incremental
testing and deployment by generating configuration code for the
DiaSim simulation environment.

This work is being actively expanded in various directions; we
briefly mention two of them. Because applications are written in
Java, the developer can bypass the restrictions imposed by the gen-
erated programming framework. To complement the restrictions
imposed by the Java language, we plan to annotate a generated
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framework to enable a model checker to ensure that the imple-
mentation is compliant to the DiaSpec specification. In the longer
term, we want to widen the scope of DiaSpec by introducing non-
functional architectural information (e.g., security and fault toler-
ance).
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