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Abstract—With the recent introduction of Spot Instances in
the Amazon Elastic Compute Cloud (EC2), users can bid for
resources and thus control the balance of reliability versus
monetary costs. A critical challenge is to determine bid prices
that minimize monetary costs for a user while meeting Service
Level Agreement (SLA) constraints (for example, sufficient re-
source availability to complete a computation within a desired
deadline). We propose a probabilistic model for the optimization
of monetary costs, performance, and reliability, given user and
application requirements and dynamic conditions. Using real
instance price traces and workload models, we evaluate our
model and demonstrate how users should bid optimally on Spot
Instances to reach different objectives with desired levels of
confidence.

Index Terms—Cloud Computing, SLA’s, Optimization

I. INTRODUCTION

With the recent surge of Cloud Computing systems, the

trade-offs between performance, reliability, and costs are more

fluid and dynamic than ever. For instance, in December 2009,

Amazon Inc. released the notion of Spot Instances in the

Amazon Elastic Compute Cloud (EC2). These Spot Instances

are essentially idle resources in Amazon’s data centers. To

allocate them, a user must first bid a price for the instance.

Whenever the current instance price falls at or below the

bid price, the Spot Instance is made available to the user.

Likewise, if the current price goes above the bid price, the

user’s Spot Instances are terminated without warning. Recent

reports indicate that Google Inc. has developed a prototype that

uses a similar market-based approach for resource allocation

[1]. Many argue [2] that market economies will be increasingly

prevalent in order to achieve high utilization in often-idle data

centers.

Given these market-like resource allocation systems, the

user is presented with the critical question of how to bid for

resources. Clearly, the bid directly affects the reliability of the

Spot Instances, the computational time, and the total cost of

the user’s job. The problem is challenging as often the user

has Service Level Agreement (SLA) constraints in mind, for

instance, a lower bound on resource availability, or an upper

bound on job completion time.

Our main contribution is a probabilistic model that can

be used to answer the question of how to bid given SLA

constraints. A broker can easily apply this model to present

automatically to the user a bid (or set of bids) that will meet

reliability and performance requirements. This model is partic-

ularly suited for Cloud Computing as it is tailored for environ-

ments where resource pricing and reliability vary significantly

and dynamically, and where the number of resources allocated

initially is flexible and is almost unbounded. We demonstrate

the utility of this model with simulation experiments driven

by real price traces of Amazon Spot Instances, and workloads

based on real applications.

This paper is organized as follows. In Section II, we detail

the market system of Amazon’s Spot Instances, and describe

our system model for the application and its execution. In

Section III, we present our method for optimizing a user’s bid

and simulation approach. In Section IV, we show the utility

of our model through simulation results. In Section V, we

compare and contrast our approach with previous work, and

in Section VI, we summarize our contributions and describe

avenues for future work.

II. SYSTEM MODEL

A. Characteristics of the Spot Instances

Amazon users can bid on unused EC2 capacity provided as

(42+6)1 different types of Spot Instances [3], [4]. The price

of each type (called the spot price) changes based on supply

and demand (see Figure 1). If a customer’s bid price meets

or exceeds the current spot price, the requested resources are

granted. Conversely, EC2 revokes the resources immediately

without any notice when a user’s bid is less than or equal to

the current spot price. We call this an out-of-bid event or a

failure, see Figure 2. The requested instances with the same

bid price are completely allocated or deallocated as a whole

(i.e. synchronously). We assume that the bid and number

of instances requested does not have a “feedback loop” nor

influences future pricing.

The following rules characterize some minor aspects of this

schema. Amazon does not charge the latest partial hour when

it stops an instance, but the latest partial hour is charged (as

a whole hour) if the termination is due to the user. Each hour

is charged by the current spot price, which could be lower

than the user’s bid. The price of Amazon’s storage service is

negligible - at most 0.15 USD for 1 GB-month, which is much

lower than the price of computation [5].

1In the beginning of Dec. 2009, EC2 started to provide 42 types of
instances, and 6 more types are added in the end of Feb. 2010.



Table I
USER PARAMETERS AND CONSTRAINTS

Notation Description

ninst number of instances that process the work in parallel

nmax upper bound on ninst

W total amount of work in the user’s job

Winst workload per instance (W/ninst )

T task length, time to process Winst on a specific instance

B budget per instance

cB user’s desired confidence in meeting budget B
tdead deadline on the user’s job

cdead desired confidence in meeting job’s deadline

ub user’s bid on a Spot Instance type

Itype EC2 instance type

Note that there is a potential exploitation method to reduce

the cost of the last partial hour of work called "Delayed

Termination" [6]. In this scenario, a user waits after finished

computation almost to the next hour-boundary for a possible

termination due to an out-of-bid situation. This potentially

prevents a payment for the computation in the last partial hour.
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Figure 1. Price history for some Spot Instance types (in USD per hour;
geographic zone eu-west; operating system Linux/UNIX)

B. Workloads and SLA Constraints

We assume a user is submitting a compute-intensive, em-

barrassingly parallel job that is divisible. Divisible workloads,

such video encoding and biological sequence search (BLAST,

for example), are an important class of application prevalent

in high-performance parallel computing [7]. We believe this

is a common type of application that could be submitted on

EC2 and amenable to failure-prone Spot Instances.

The job consists of a total amount of work W to be

executed by ninst many instances (of the same type) in

parallel, which yields Winst = W/ninst, the workload per

Table II
PARAMETERS OF THE EXEMPLARY WORKLOADS

Workload Itype nmax Winst T tdead cdead

W1 2.5GHz 20, 000 11.5 4.6h 9d 0.9
W2 2.5GHz 50 6.83 2.7h 17.9h 0.8

instance. Note that ninst can be usually varied up to a certain

limit given by the number nmax of “atomic” tasks in the

job; thus, ninst ≤ nmax. We measure W and Winst in

hours of computation needed on a single EC2 instance with

processing capacity of one EC2 Compute Unit (or simply

unit), i.e. equivalent CPU capacity of a 1 . . . 1.2 GHz 2007

Opteron or 2007 Xeon processor [4]. We refer to amount of

work done in one hour on a machine with one EC2 Compute

Unit as unit-hour. We call the time needed for processing

Winst on a specific instance type Itype the task length T =
T (Itype). Simplifying slightly, we assume the perfect relation-

ship T (Itype) = Winst/(processing capacity of Itype). Note

that T is the “net” computation time excluding any overheads

due to resource unavailability, checkpointing and recovery.

This is different than the actual clock time needed to process

Winst(called execution time, see Section III-A), which is at

least T .

Further constraints which might be specified as part of user’s

input are:

• budget B, upper bound on the total monetary cost per

instance

• cB : user’s desired confidence in meeting this budget

• deadline tdead, upper bound on the execution time (clock

time needed to process Winst)

• cdead: the desired confidence in meeting tdead.

Table I lists the introduced symbols.

C. Optimization Objectives

We assume that a user is primarily interested in answering

the following questions:

Q1. Can the job be executed under specified budget and

deadline constraints?

Q2. What is the bid price and instance type that mini-

mizes the total monetary costs?

Q3. What is the distribution of the monetary cost and the

execution time for a specific instance type and bid

price?

To simplify our approach, we assume that the instance type

and the bid price are fixed, and focus on answering Q3. In

order to answer Q1 and Q2, one needs just to evaluate a

small number of relevant combinations of instance types and

bid prices (see Section IV-E). The user can also apply this

approach dynamically, i.e. periodically re-optimize the bid and

instance type selection during the computation, depending on

the execution progress and changes in spot prices.

D. Exemplary Workloads

To emulate real applications, we base the input workload

on that observed in real Grids and Desktop Grids. The ma-

jority of workloads in traditional Grids consist of pleasantly
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Figure 2. Illustration of the execution model and computation of the random
variables (RVs)

parallel and independent bags of tasks. By far, the majority

of workloads in Desktop Grids consist of compute-intensive

and independent tasks. Desktop Grids resemble Spot Instances

in the sense that a desktop user can reclaim his/her machine

at any time, preempting the executing application. As such,

we believe these workloads are representative of applications

amenable or actually deployed across Spot Instances.

The Grid and Desktop Grid workload parameters corre-

spond to relatively small and relatively large jobs respectively.

This is partly because Grids have on the order of hundreds to

thousands or resources, and Desktop Grids have on the order

of tens to hundreds of thousands of resources. So the workload

size is reflective of the platform size.

The specific Grid and Desktop Grid workload parameters

that we use are based the BOINC Catalog [8] (Workload

W1), and Grid Workload Archive [9], [10] (Workload W2),

respectively (Table II).

Workload W1. In the BOINC Catalog [8], we find that the

median job deadline tdead is 9 days, and the mean task length

T is 4.6 hours (276 minutes) on a 2.5GHz core. This translates

to a mean per-instance workload Winst of 11.5 unit-hours. We

will assume in the following an instance type with 2.5 EC2

Compute Units (e.g. a single core of the High-CPU medium

instance type) [3] so that the task lengths remain around the

original values. We also learned that a typical value for nmax

is 20,000 tasks. Thus, we center the range of W , tdead, Winst

(or equivalently, of T ) around these values. See Table II for

these and additional parameters.

Workload W2. From the Grid Workloads Archive [9], [10],

we find that the mean job deadline tdead is 1074 minutes

(17.9 hours), and the mean task length T is 164 minutes

(2.7 hours) on a 2.5GHz core. This gives us an average per-

instance workload Winst of 6.75 unit-hours. nmax is 50 tasks,

the highest average reported in [10]. We will again assume in

Table III
RANDOM VARIABLES (RVS) USED FOR MODELING

Notation Description

ET execution time of the job (clock time)

AT availability time (total time in-bid)

EP expected price, i.e. (cost per instance)/AT
M monetary cost AT · EP per instance

AR availability ratio AT/ET
UR utilization ratio T/ET

the following an instance type with 2.5 EC2 Compute Units

for a single core. This let us center our study around the values

of T and tdead as reported in the third row of Table II.

III. MODELING AND OPTIMIZATION APPROACH

A. Execution Scenario

Figure 2 illustrates an exemplary execution scenario. A user

submits a job with a total amount of work W of 12 unit-

hours with ninst = 2 which translates to a Winst = 6 unit-

hours and the task time (per instance) T of 6 hours (assuming

EC2’s “small instance” server). User’s bid price ub is 0.30

USD, and during the course of the job’s computation, the job

encounters a failure (i.e. an out-of-bid situation) between time

5 and 7. The total availability time was 8 hours, from which

the job has (4+2) = 6 hours of useful computation, and uses

1 hour for checkpointing and 1 hour for restart. (Obviously,

these overheads are unrealistic, but defined here for simplicity

of the example.) The clock time needed until finishing was

10 hours. During the job’s active execution, the spot price

fluctuates; there are 3 hours at 0.10 per time unit, 4 hours at

0.20 per time unit, and 1 time unit at 0.30 per time unit, giving

a total cost of 1.40. Thus the expected price is 1.40/8 = 0.175
(USD / hour).

B. Modeling of the Execution

The execution is modeled by the following random variables

(RVs):

• execution time ET is the total clock time needed to

process Winst on a given instance (or, equivalently, to

give the user T hours of useful computation on this

instance); in the example, ET assumes the value of 10
hours

• availability time AT is the total time in-bid; in our

example, this is 8 hours

• expected price EP is the total amount paid for this

instance to perform Winst divided by the total availability

time; note that always EP ≤ ub

• monetary cost M is the amount to be payed by the user

per instance, defined by M = AT ·EP ; in the example,

we have (in USD) M = 8 · 0.175 = 1.40.

Note that as we assume ninst instances of the same type,

they all are simultaneously in-bid and out-of-bid; therefore,

the values of the variables ET , AT , EP are identical for

all instances deployed in parallel. In particular, the whole

job completes after time ET , and so ET is also the job’s

execution time. Furthermore, all the above RVs depend on



the checkpointing strategy. As designing and optimizing such

a strategy is a complex undertaking beyond the scope of

this work, we assume here one of the following two simple

strategies taken from [6]:

• OPT - the optimal strategy, where a checkpoint is taken

just prior to a failure; this (unrealistic) strategy serves as

a base-case for cost comparison

• HOUR - the hourly strategy, where a checkpoint is taken

is at a boundary of each paid hour (measured from the

start of current availability interval).

C. Models Independent of the Task Time T

The following RVs give an alternative characterization of

the execution process:

• availability ratio AR = AT/ET is the ratio of the total

availability time (time in-bid) to execution time; in our

example, AR = 8/10
• utilization ratio UR is T/ET , or ratio of the total useful

computation to the execution time; in the example, UR =
6/10.

Originally we have attempted to find distributions of AR and

UR independently of T , and derive the distributions of RVs

in Section III-B using following relations (expected price and

monetary cost are only bounded from above):

ET = T/UR,

AT = AR · ET = AR · T/UR,

EP ≤ ub,

M ≤ ub · AR · T/UR.

This approach requires to store only the distributions of AR
and UR for representative pairs (bid price ub, instance type);

the independence of the the task length T saves a lot of storage

and simulation time. However, our experimental findings show

that both AR and UR depend significantly on T (this relation

is shown in Section IV-B3). Thus, to optimize accurately, we

need to store the distributions of these RVs for many values

of T . In face of this effect we decided to simulate and store

directly the distributions of RVs introduced in Section III-B

(for relevant combinations of bid price, instance type, and

intervals of T ).

D. Decision Models

Verifying feasibility and optimizing of the bid prices require

that we can “represent” the distributions of a random variable

(RV) X as a (scalar) number. As the Cumulative Distribution

Functions (CDFs) of our RVs are strictly increasing (disre-

garding sampling and simulation errors), we can use to this

aim the value X(y) = F−1

X (x) of the inverse CDF F−1

X (y)
for the y-th percentile, y ∈ [0, 1]. In other words, for a RV

X we write X(y) for x s.t. Pr(X < x) = y. For example,

ET (0.5) is the median execution time.

For fixed input parameters (Table I), instance type Itype and

bid price ub we retrieve first the pre-computed distributions of

Table IV
USED INSTANCE TYPES (ZONE: EU-WEST-1; OS: LINUX; CLASS: HI-CPU =

HIGH-CPU, STD = STANDARD, HI-MEM = HIGH-MEMORY)

Symbol Class API Mem. Total Num. Units /
Name (GB) Units Cores Core

A hi-cpu c1.medium 1.7 5 2 2.5
B hi-cpu c1.xlarge 7 20 8 2.5
C std m1.small 1.7 1 1 1
D std m1.large 7.5 4 2 2
E std m1.xlarge 15 8 4 2
F hi-mem m2.2xlarge 34.2 13 4 3.25
G hi-mem m2.4xlarge 68.4 26 8 3.25

the RVs ET and M (Table III). The feasibility decisions are

then made as follows:

• the deadline constraint can be achieved with confidence

cdead iff tdead ≥ ET (cdead)

• the budgetary constraint can be achieved with confidence

cB iff B ≥ M(cB).

To find the optimal instance type and bid price, we compute

ET (cdead) and M(cB) and check the feasibility (as above)

for all relevant combinations of both parameters. As these

computations are basically “look-ups” in tables of previously

computed distributions, the processing effort is negligible.

Among the feasible cases, we select the one with the smallest

M(cB); if no feasible cases exist, the job cannot be performed

under the desired constraints. This process is demonstrated in

Sections IV-C and IV-D.

Only ET and M are used in the above decision process.

However, the remaining RVs (AT , EP , AR, UR) provide

additional characterization of the execution and are beneficial

in defining more advanced SLA conditions. For example, AR
can be used to guarantee certain minimum resource availability

in a time interval, and so ensure a lower bound on execution

progress (per time unit).

E. Simulation Method

We implemented a simulator that uses real Spot Instance

price traces to find the distributions of the RVs shown in

Table III via the Monte-Carlo method. The distributions are

obtained via 10, 000 experiments (per unique set of input

parameters). Each experiment corresponds to a single task

execution (on one instance) as outlined in Figure 2, where

the starting point is selected randomly between Jan. 11th and

Mar. 18th, 2010, and the execution terminates as soon as the

cumulative “useful execution” time of T has been reached.

A set of input parameters consists of the instance type Itype,

the bid price ub, task length T and the checkpointing strategy

(OPT or HOUR). The simulator was written in the C language

with standard libraries, and can be ported to any UNIX-type

operating system with minimal effort.

IV. RESULTS

A. Evaluation Settings

In our study we used all seven types of Spot Instances,

which were available starting in December 2009. We con-

sidered prices of instance types that run under Linux/UNIX



operating system (OS) and are deployed in the zone eu-west-1.

Table IV shows the symbols, class (high-CPU, standard, high-

memory), API names, RAM memory (in GB), total processing

capacity in EC2 Compute Units (units), number of cores per

instance, and processing capacity per core (in units) (see [4]

for details).

If not stated otherwise, we use the instance type A with

task length T of 276 minutes (4.6 hours) and the (realistic)

checkpointing policy HOUR (also abbreviated H). We used

the same settings of the remaining parameters, such as check-

pointing cost and rollback cost in time as in [6]. Furthermore,

our models assume that a job is executed on a single instance

only, as running several instances (of same type) in parallel

yields the identical time and proportional cost behavior.

B. Impact of Input Factors

In this section we study how the input parameters from

Table I influence the distributions of the random variables

(especially ET and M ), and investigate the overhead of the

checkpointing strategies.

1) Execution Time and Monetary Cost: Figure 3 (left)

shows (in hours) execution time ET (p) for various values of

p and bid prices ub. Note that instead of assuming a fixed

deadline tdead, we study here which deadline - represented

by ET (p) - can be achieved with confidence p = cdead, see

Section III-D. Obviously low bid prices in conjunction with

high values of cdead lead to extremely long execution times -

up to factor 100 compared to the task length T . For sufficiently

high bid prices (ub ≥ 0.077 USD) the execution time drops

to half of the peak value, but only in the “top range” of the

bid prices the execution time is on the order of T . Figure 3

(right) shows the monetary cost M(p).
Differently from the execution time, M(p) increases only

slightly with the bid price, and is relatively indifferent to the

percentile p (corresponding to the budget confidence cB). We

explain this by the fact that a long execution time comes

primarily from out-of-bid time for which the user is not

charged: even during an execution time of 400 hours there

might be only small in-bid time (on the order of T = 4.6
hours) which is charged by EC2. In summary, a user does

not save much (about 10% of the costs) when bidding low

but risks very high execution times. Analogous results hold

for the case of the optimal checkpointing strategy (OPT) (not

shown).

2) Checkpointing Overhead: Figure 4 shows (in hours) the

difference AT (p) − T for optimal checkpointing OPT (left)

and the hourly checkpointing HOUR (right), where both the

percentile p and the bid price ub are varied. The value AT (p)−
T represents the time overhead due to checkpointing, lost work

prior to a failure, and recovery (as AT (p) is time provided by

EC2). Clearly, the HOUR approach has much higher overhead,

which can amount to over 40% of the task length T for low bid

prices and high p’s. Low prices lead to more frequent failures,

which increases the checkpointing overhead.

3) Influence of Task Length: Figure 5 illustrates how the

distributions of the random variable AR depends on the task
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Figure 6. Outer: Coefficient of variation of execution as task length T
increases with bid price ub=0.80. Inner: Slack and deadline as T increases

length T . The left figure shows the median of AR as a function

of the bid price and T . Obviously T does not influence

AR(0.5). For comparison, the right figure shows AR(0.9) (i.e.

value v larger / equal than 90% of values assumed by AR,

see Section III-D). Here the influence of T is strongly visible,

especially for low bid prices. As a consequence, distribution

of AR depend on T , and cannot be stored only as functions of

bid price and instance type (see Section III-C). A very similar

effect occurs for the utilization ratio UR. We also studied the

effect of T on the monetary cost M but we did not identify

any relation except for an almost linear increase of M(p) (for

any fixed p) with growing T .

We also find that the coefficient of variation (standard

deviation / mean) of ET decreases sub-linearly with T (see

Figure 6) where we use a bid price ub of 0.80 USD. This can

be explained by the Law of Large Numbers, which states that

the sample mean approaches the expected value as as number

of samples (in this case availability durations) goes towards

infinity. Also, the sample variance (the standard deviation

squared) is the ratio of the distribution variance squared to

the sample size. We observe that as the sample size becomes

large, the variance becomes relatively low.

This fact can be leveraged by the user to determine initial

values of the deadline relative to T . In Figure 6, we show

the 90th percentile for ET (i.e. ET (0.9)) in the red plot, and

slack with the blue plot. The slack is defined as the ratio of the

90th percentile for ET to T . The rapid decrease of slack is due

to the decrease of ET ’s variance as the number availability

durations increases. Intuitively, Figure 6 gives guidance as to

how much room a user must give between the task deadline

and amount of work T . For instance, if T is roughly 5500
minutes, a reasonable deadline that can be achieved with 0.90
confidence is 3 ∗ 5500 minutes.
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Figure 4. Overhead (AT (p) − T ) of the checkpointing for the strategy OPT (left) and HOUR (right) for various bid prices and percentiles p

C. Meeting Deadline and Budgetary Constraints for W1

In this section we study distributions of the execution time

and the monetary constraints for the workload W1 (Section

II-D). We also demonstrate how these interplay with the

constraints introduced in Section II-B.

Figure 7 shows the cumulative distribution function (CDF)

of the execution time ET and the monetary costs per instance

M according to different values of the bid price ub, check-

pointing strategy, and the task length T . The red vertical lines

represent the given deadline tdead (Table II) and the budget

B, while the blue horizontal lines represent their required

confidence. In the results of Figure 7 (c) the lowest bid price

(0.076 USD) cannot meet the user’s given deadline constraints

tdead and cdead, while the two highest bid prices (0.083 ~

0.084 USD) cannot meet the budget limit constraints B and

cB . Note that the value of T also affects the possible range of

bid prices.

The constraints tdead and cdead act as a "high-pass filter"

of possible bid prices, and the other constraints B and cB act

as a "low-pass filter". Figure 8 shows the range of bid prices

according to all results in Figure 7. As we can observe from

Figure 8 some bid prices are not feasible. In these cases we

need to either decrease the confidence values or set higher

limits on the deadline and the budget.

Figure 9 shows the CDF of the execution time and the

monetary cost for T = 246 minutes. Table V shows the

lowest monetary costs in the case of this figure according

to different values of cdead. This result demonstrates that

the total costs can be significantly affected by changing the

degree of the confidence value. By comparing the two cases,

cdead = 0.90 and cdead = 0.82, we observe that using slightly

lower confidence can reduce more than 21% of the monetary

costs.
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Figure 5. Availability ratio AR(p) for p = 0.5 (median) (left) and for p = 0.9 (right) depending on the bid price and the task length T

Figure 8. The ranges of the bid prices according to the results in Figure 7

Table V
THE LOWEST MONETARY COSTS (USD) IN CASE OF FIGURE 9 FOR

DIFFERENT VALUES OF cdead AND BID PRICE ub

bid = 0.076 bid = 0.077 bid = 0.078 bid = 0.079
cdead OPT H(our) OPT H OPT H OPT H

0.99 - - - - 0.39 0.39 0.39 0.39

0.90 - - 0.38 0.38 0.39 0.39 0.39 0.39

0.82 0.30 0.38 0.38 0.38 0.39 0.39 0.39 0.39

D. Meeting Deadline and Budgetary Constraints for W2

In this section we present a study according to the param-

eters for the workload W2. Figure 10 shows the CDF of the

total execution time and the total monetary costs per instance

according to each bid price, checkpointing strategy, and the

task time T . To compensate that the deadline (cdead = 1074
minutes) is much smaller than the deadline for workload W1,

the confidence cdead of meeting tdead is assumed to be lower.

Table VI shows the lowest execution time derived from

Figure 10 according to the different budget B and the confi-

dence cB values. We find that a slight change of the budgetary

confidence cB has significant impact on the execution time. In

addition, there is a significant cut-off on the total budget. If

the user assumes 0.01 USD more for the budget B, she will

Table VI
THE LOWEST EXECUTION TIME (MINUTES) ACCORDING TO FIGURE 10

FOR DIFFERENT VALUES OF B AND cB

Budget per instance B (USD)
cb ≤ 0.22 0.23 ≥ 0.24

OPT H(our) OPT H OPT H

0.90 - - 1080 1140 180 180

0.80 - - 840 900 180 180

0.70 - - 660 720 180 180

0.60 - - 180 180 180 180

0.50 - - 180 180 180 180

Table VII
BIDING PRICE COMPARISON ACROSS INSTANCE TYPES (IN US-CENTS)

Symbol Class Total Low High Low / High / Ratio
Units Bid Bid Unit Unit in %

A hi-cpu 5 7.6 8.4 1.52 1.68 10.5
B hi-cpu 20 30.4 33.6 1.52 1.68 10.5
C std 1 3.77 4.2 3.77 4.2 11.4
D std 4 15 16.8 3.75 4.2 12.0
E std 8 30.4 33.6 3.8 4.2 10.5
F hi-mem 13 53.3 58.8 4.1 4.52 10.3
G hi-mem 26 106 118 4.08 4.54 11.3

benefit from a significant reduction of execution time at the

same confidence value.

We also found that there is a big difference on the monetary

costs between this case (T = 164 minutes) and a simulation

for T = 184 minutes (not shown). This is explained by the fact

that monetary cost is highly depending on Amazon’s pricing

policy, because the granularity of calculating price is an hour,

and thus, if we exceed the hour-boundary we need to pay the

last partial hour.

E. Comparing Instance Types

Table VII attempts to answer two questions: what is the

variation of the typical bid prices per instance type? (i.e.

how much can we save by bidding low compared to bidding

high?) and how much can we save by changing the instance

type? The first three columns are the same as in Table IV.



Figure 7. CDF of execution time (ET , left) and monetary cost (M , right) for various task lengths on instance type A (workload W1)

The “typical” price range [“Low Bid”, “High Bid”] has been

determined on the price history from Jan. 11, 2010 to March

18, 2010; we plotted this history (as in Figure 1), removed

obviously anomalous prices (high peaks or long intervals of

constant prices), and took the minimum L (“Low Bid”) and

maximum H (“High Bid”). The last column (“Ratio in %”)

shows (H − L)/L ∗ 100 per instance type, i.e. the range of

bid prices divided by “Low Bid” (in %). This answers the first

question: the variation of the typical bid prices is only about

10% to 12% accross all instance types.

In Table VII, column “Low / Unit” shows the “Low Bid”

price divided by the total number of EC2 Computing Units

(units) of this instance type. The column “High / Unit” is

computed analogously. For workload types assumed here, this

allows one to estimate the cost of processing one unit-hour (in

US-cent) disregarding the checkpointing and failure/recovery

overheads. Obviously, instance types within the high-CPU

class [4] have lowest cost of unit-hour - only about 40%

of the standard class. For the high-memory instance types a

user has to pay a small premium - approx. 8% more than for

the standard class. Interestingly, all instance types within each

class have almost identical cost of one unit-hour. In summary,

switching to a high-CPU class (if amenable to the workload

type) can reduce the cost of unit-hour by approx. 60% while

bidding low saves only 10% of the cost, with a potentially

extreme increase of the execution time.



Figure 9. CDF of execution time (ET , left) and monetary cost (M , right) for task length of T = 246 minutes on instance type A (workload W1)

Figure 10. CDF of execution time (ET , left) and monetary cost (M , right) for task length of T = 164 minutes on instance type A (workload W2)

F. Summary

We have shown in this Section several interesting findings

of potential value for users deploying Spot Instances:

• Bidding low prices reduces the monetary cost typically

only by about 10% but can lead to extremely high

execution times (or, equivalently, realistic deadlines) - up

to 400x the task length (Section IV-B1).

• The execution times (or equivalently, realistic deadlines)

increase rapidly especially for confidence values (on

the deadline) above 0.9; on the other hand, lowering

the confidence value by only 0.1 (to 0.8) can lead to

substantial cost savings (Table V, Section IV-C).

• Similar to the effect of increasing bid price, increasing

the budget slightly can reduce the execution time by a

large factor (Table VI, Section IV-D).

• The coefficient of variation (standard deviation / mean)

of execution time decreases sub-linearly with the task

length. In other words, with longer task lengths the exe-

cution time becomes more predictable (Section IV-B3).

• The availability ratio and usage ratio (see Section III-B)

depend on the task length, especially for low bid prices

(Section IV-B3).

• The time overhead of checkpointing, failures and recov-

ery becomes significant only for low bid prices and very

high confidence values; in general, the hourly checkpoint-

ing strategy is efficient in terms of time and monetary cost

of overhead (Figure 4, Section IV-B2).

• Selecting an instance type from the high-CPU class can

yield cost savings up to 60% (for the considered workload

type) compared to other classes without any increase of

the execution time. If possible, this measure should be

preferred over bidding low prices.

V. RELATED WORK

Branches of related work include cloud computing eco-

nomics and resource management systems. With respect to

cloud economics, several previous works focus on the perfor-

mance and monetary cost-benefits of Cloud Computing com-

pared to other traditional computing platforms, such as Grids,

Clusters, and ISPs [11], [12], [13], [14], [15]. These economic

studies are useful for understanding the general economic

and performance trade-offs among those computing platforms.

However, the same studies do not address the specific and

concrete decisions an application scientist must make with

respect to bid price and resource allocation when using a

market-based Cloud platform, such as Spot Instances.



With respect to resource management systems, several batch

schedulers such as OAR [16], and DIRAC [17] exist for the

management of job submissions and deployment of resources.

Some of these batch scheduler even enable the deployment

of applications across Clouds (such as EC2) dynamically.

However, these resource management systems do not provide

any guidance to users submitting jobs, which is critical to

making decisions under SLA and budget constraints.

Specifically, with the the advent of market-based resource

allocation systems, new trade-offs in performance, reliability,

and monetary costs exist. But these resource management

systems currently are too rigid and do not take into account

these new variables such as bid prices and the ability to request

an arbitrary number of instances; these new variable are often

not present in traditional computing systems. Even companies,

such as RightScale Inc. [18], that provide monitoring and

scheduling services for the Cloud do not guide the application

scientists in this respect, to the best of our knowledge.

VI. CONCLUSIONS AND FUTURE WORK

Market-based resource allocation is becoming increasingly

prevalent in Cloud Computing systems. With Spot Instances

of Amazon Inc., users bid prices for resources in an auction-

like system. A major challenge that arises is how to bid

given the user’s SLA constraints, which may include resource

availability and deadline for job completion. We formulated a

probabilistic model that enables a user to optimize monetary

costs, performance, and reliability as desired. With simulation

driven by real price traces of Amazon’s Spot Instance and

workloads of real applications, we evaluated and showed the

utility of this model.

Our specific recommendations and general implications of

this model are as follows:

• Users can achieve largest cost savings (for considered

workload types) by using the high-CPU instance types

instead of standard or high-memory instance types.

• Bidding low prices typically yields cost savings of about

10% but creates extremely large realistic deadlines (or,

expected execution time) - up to factor 100x of the task

length. This is especially the case in conjunction with

high confidence values on the deadline.

• With growing task time, the variance of the execution

time decreases.

• A user can change several of these “knobs” (parameters)

in order to achieve a suitable balance between monetary

cost and desired service levels, such as deadline for job

execution or average availability. Our model indicates

how to tune these different parameters and the effects.

For future work, we would like to determine if our model

can be generalized for other types of applications. We would

also like to study the optimization problem when allowing for

the mixing of instance types (in terms of size or availability

zones, for example), the dynamic adjustment of the number

of instances during run-time, and rebidding and restarting the

computation at this different bid price. Also we are currently

developing mechanisms to predict forthcoming bid prices and

unavailability durations. This would be helpful to reduce the

checkpointing and rollback overhead during task execution.

Finally, we plan to offer our model as a (web) service to help

users in improving their bidding strategies.
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