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Abstract. To develop better image change detection algorithms, new models able to capture
spatio-temporal regularities and geometries present in an image pair are needed. In this paper, we
propose a multiscale formulation for modeling semi-local inter-image interactions and detecting local
or regional changes in an image pair. By introducing dissimilarity measures to compare patches and
binary local decisions, we design collaborative decision rules that use the total number of detections
obtained from the neighboring pixels, for different patch sizes. We study the statistical properties
of the non-parametric detection approach that guarantees small probabilities of false alarms. Ex-
perimental results on several applications demonstrate that the detection algorithm (with no optical
flow computation) performs well at detecting occlusions and meaningful changes for a variety of il-
lumination conditions and signal-to-noise ratios. The number of control parameters of the algorithm
is small and the adjustment is intuitive in most cases.
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1. Introduction. Occlusion and image change detection is a challenging prob-
lem for the accurate computation of correspondences in image sequence analysis and
stereo vision. Theoretically, the pixels at the occlusion location should not be assigned
any flow vector since there is no correspondence available in the other image. In this
paper, we define the occluded regions are sets of pixels where the differences between
two images are meaningful. These major changes are caused by appearance or disap-
pearance of objects at considered location, and will be considered as not significant if
the changes are due to camera motion/jitter or illumination changes in the scene.

1.1. Previous works. There has been a substantial amount of work to han-
dle changes in an image pair [3, 99, 2, 86, 66, 80, 1, 49]. For a recent survey, see
[83]. Actually, change detection is of significant interest in an increasing number of
applications, such as video-surveillance (e.g., in airports, museums, shops, etc), med-
ical diagnosis [18, 81, 45, 88, 90], cell biology imaging [78, 19] and remote sensing
[23, 54]. The challenge lies in distinguishing between meaningful changes related to
unusual scene events and changes corresponding to camera motion, camera noise or
atmospheric/lighting conditions. This can be generally achieved by using adaptive
thresholds applied to image differencing or to image-background differences. The
problem to be addressed further is to integrate the spatial-contextual information
from the pixels to cope with camera jitter or animated texture in the background.
In [23, 54, 77, 76, 92, 31, 96, 9, 10], several authors proposed to capture the spatial
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correlation among nearby pixels using Markov random fields (MRF). Energy mini-
mization is usually performed by graph-cut algorithms [31, 96] or level set methods
[76]. Nevertheless, MRF-based methods need the adjustment of weighting parameters
to balance the prior energy terms and the fidelity terms. These parameters are usually
adjusted for different image pairs and different signal-to-noise ratios, which may be
considered as a limitation. In addition, the level of confidence of detected areas cannot
be estimated since one focuses mainly on the global minima of the energy. Meanwhile,
deterministic approaches have been also investigated to detect major changes in an
image pair. For instance, in [8, 73] the authors proposed to compute the “intersec-
tion” of two images from the image level lines to detect meaningful changes. The main
advantage is that the topographic map is contrast invariant, which may be attractive
to compare two images depicting the same scene but illuminated differently. Never-
theless, as recently explained in [103], all illumination changes cannot be captured by
this morphological image representation.

In the area of video analysis, a sequence with no moving object is traditionally
used to learn the statistics of the static background [106, 41, 93, 72, 51, 9, 10]. Each
pixel of the current frame is then tested against the learned probability distribution
function (PDF). Stauffer and Grimson [93] were probably the first authors who pro-
posed a mixture of Gaussians to approximate the PDF of the background at each pixel.
In motion analysis, detection of occluded areas is also known to be critical, especially
when displacements are large [5, 94]. Therefore, several methods have attempted to
simultaneously detect motion discontinuities and to compute optical flow [70, 64], or
to detect the violation of motion consistency assumption [47, 49, 107]. Nevertheless,
the optical flow estimated in occluded regions often appears over-smoothed and inac-
curate in most applications. Curiously, not so much work has been done to handle the
occlusion problem in the motion estimation area [14], whereas this problem has been
widely studied in the context of stereo algorithms [35, 50, 60, 61, 89]. The most recent
algorithms based on graph-cuts [102] or loopy belief propagation [105, 95] include a
visibility label in the energy formulation to compute dense disparity [102]. Recently,
Xiao et al. proposed to integrate occlusion penalties into the graph-cut framework
by using a set of three-state pixel graphs with very impressive results [108]. A proba-
bilistic framework for occlusion detection based on generative models was also studied
by Fransens et al. in [42]. Nevertheless, the quality of occlusion detection based on
optical flow techniques is not always satisfactory for processing real challenging and
noisy sequences.

1.2. Our approach and related work. Our idea for better handling both
occlusions and other sources of changes originates from the observation that two suc-
cessive images are redundant ; the occlusions and change regions correspond to areas
in one image which cannot be found in the second image. Our formulation is inspired
by the Efros and Leung’s exemplar-based approach for texture synthesis [39] and
the detectors of repeated scene elements and self-similarities captured by patches, as
respectively introduced in [63] and [91]. The redundancy property captured by im-
age patches was previously exploited for image segmentation [44, 58], image denoising
[17, 25, 56, 7, 40, 87], image inpainting [32], defect detection in images [110] and image
representation [71]. The approach we propose is able to deal with situations as chal-
lenging as those presented in Fig. 1.1. First we assume that, to each patch in the first
image, corresponds a small set of similar patches in the other image but not necessary
an unique one. This was already suggested for image sequence denoising in [20, 24].
To detect the occlusions or changes occurring in two images, we propose further to
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image pair difference image

estimated foreground detection mask ground truth

Fig. 1.1. Change detection in an image pair (see [100, 46]). Our algorithm correctly
highlights the person who appeared in the second image, while ignoring temporal changes
due to complex motion of tree branches in the background.

collect a set of binary decisions obtained from pixels in a local neighborhood. This
amounts to counting the number of neighboring patches in the second image, which
are similar to the current patch in the first image. At the current pixel, we make
a neighborhood-wise decision by aggregation of the local decisions (“1” for change
and “0” for no change), according to a decision-fusion principle [75, 55]. Finally, no
additional regularization process is required to improve the binary detection maps
since we benefit from the regularization property induced by the patches’ overlap.

Since we compute probabilities of false alarms, our probabilistic approach is
related to the a contrario modeling already investigated for change detection in
[66, 101, 98, 88, 37, 84]. In the same spirit, Sabater et al. proposed recently in [89]
a sophisticated a contrario block matching method to guarantee that on average not
more than one wrong block match occurs in the image. Our method is also related to
methods based on neighborhood agreement and votes as proposed in [66, 101, 98, 49].
Also, in [1] the authors performed statistical tests (under Gaussian hypothesis) from
pixels within sliding windows (see also [2, 49]) as we also suggest ; in [4], the authors
proposed a tracking algorithm (“Frag-Track”) which combines multiple votes and his-
togram comparisons in spatial neighborhoods [4] ; in [15, 16], the authors presented
a generative and Bayesian method to detect unusual situations in an image sequence.
Few examples on image pairs (visual inspection and defect detection) are reported in
[16] but no objective comparison with existing change detection methods are given.

1.3. Main contributions. We propose an unsupervised change detection based
on binary decision analysis in local neighborhoods. The method is relatively straight-
forward since it amounts to counting similar patches in local neighborhoods and to
comparing this number to adaptive thresholds. Unlike exemplar-based approaches,
we examine the decisions made for different patch sizes and we provide a probabilistic
multiscale framework to make final decisions with formal rules. Other contributions
include :
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1. Proposing a probabilistic framework based on detection theory to calculate
the spatially-varying levels of confidence (i.e. probability of false alarm) for
each pixel. Generally, benchmarks and labeled images are necessary to eval-
uate the global performance of detectors. Our modeling framework can be
used for evaluating the level of confidence of occlusions for any image pair.

2. Developing a method able to produce regularized detection maps with no
explicit spatial regularization, no precise optical flow computation, no strong
prior image model and no labeling/training stage as recommended with dis-
criminative random field (DRF) [62, 67, 97].

3. Addressing the issue of robustness in image correspondence with respect to
appearance variation due to illumination changes in the scene and low signal-
to-noise ratios.

4. Estimating the detection thresholds with some originality.

Our method needs no statistical assumption on image pairs and noise and is able
to robustly handle small object shifts without compensating camera motion. Unlike
many subtraction methods which need a series of recorded training images, our algo-
rithm is able to produce satisfying results using an image pair only. It is worth noting
that MRF-based methods are traditionally used for change detection but the level of
confidence of occluded areas cannot be estimated since one focuses on the global min-
ima of the energy. In this paper, we address also the issue of parameter setting and
the determination of spatially-varying detection thresholds. In the second part of the
paper, we propose a MRF-CRF (Conditional Random Field) modeling with explicit
spatial priors for regularization to compare experimentally the two approaches.

The remainder of the paper is organized as follows : in Section 2, we describe
basically the approach based on patch comparisons and we present a family of dissim-
ilarity measures, robust to gradual or severe variations in the appearance. In Section
3, we describe the probabilistic approach for image pair analysis and present collabo-
rative decision rules in neighborhoods. Section 4 describes the multiscale framework
to fuse binary decisions at different spatial scales. In Section 5, we present the algo-
rithm and we propose a strategy to set control parameters. In Section 6, we examine
the properties of the detector. Finally, in Section 7 we present experimental results
on several examples and we study an alternative approach based on global energy
minimization in the spirit of most approaches in computer vision.

2. Image redundancy and change detection. Unlike previous methods (kernel-
based [41, 72, 92] or mixture of Gaussian-based [93, 109, 51]) which assume a time
series of images as input, we consider the scenario where we have in our posses-
sion two images, without prior knowledge of the scene as considered in [65]. Back-
ground subtraction based on temporal information cannot be performed as described
in [41, 93, 31, 96, 33] since we are using two images only.

2.1. Principle. In order to describe our detection method, let us first introduce
some useful notations. Consider a gray-scale image pair u = (u(x))x∈Ω and v =
(v(x))x∈Ω defined over a bounded domain Ω ⊂ R

2. Our study examines the situations
where a change occurs in the image pair (u, v). In order to test robustly the similarity
between u and v, we focus on image patches as semi-local image features able to
capture local geometries and contextual information.

Our idea is to guess a patch at location x in u from patches at locations y taken
in the (fixed size) semi-local neighborhood B(x) ⊆ Ω where N = |B(x)| denotes the
number of elements observed at locations y in the second image v. As a starting
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point, if the distance between the reference patch at location x and the patches at
locations y ∈ B(x) taken respectively in u and v, is large enough, we can conclude
that a meaningful change has occurred provided that the global illumination of the
scene is the same in the two images. In what follows, we will propose to make local
decisions about the presence/absence of patches in the second image v that are similar
to the reference in the first image u.

In [24, 39, 20], it has been confirmed that the L2 distance is a good candidate to
express the amount of dissimilarity between image patches. Theoretically the range
of the search space can be as large as the whole image for scene change detection
since the occluded objects are not present in one of the two images. In the area of
image sequence analysis, the search space is smaller but assumed to be larger than the
expected maximum motion amplitude of moving objects in the scene. Nevertheless,
we shall see that examining small neighborhoods enable to detect occlusions reliably
for most studied situations.

2.2. A family of patch dissimilarity measures. The proposed detection
method is based on the patch dissimilarity measure (0 when patches are maximally
similar), usually chosen as the weighted distance between patches :

φuv(x,y) =
∑

t∈R2

Wn(t) g(u(x + t), v(y + t))(2.1)

where g : R → R
+ is a measurable function fixed in advance by the user (measuring a

kind of distance between two image pixels). The dissimilarity measure is non-negative
and the smaller the value of the distance is, the more similar patches are. The function
Wn(·) is used to assign spatial weights to the patch elements and n refers to the size of
the square or circular patches. An usual L2 distance between square

√
n×√

n patches

is obtained if we choose Wn(t) = rectn(t)
△

= 1[‖t‖∞ ≤
√

n
2 ] where 1[·] is the indicator

function. If Wn(t) = Gn(t)
△

= e−‖t‖2

2
/n, the central pixels in the patch contribute

more to the distance than the pixels located at the periphery.
Obviously many dissimilarity measures are not invariant to a number of trans-

formations which may arise in most applications, especially variations in brightness.
Such cases are very common and the detection method should be robust to moving
cast shadows, gradual or sudden intensity variations, specularities, changing lighting
directions. This problem can be alleviated by explicitly removing shadows, speculari-
ties or undesirable effects in a pre-processing stage. For instance, the image pairs can
be normalized by exploiting the general framework based on intrinsic images and illu-
mination eigenspaces (e.g. see [69]). Nevertheless, a time series of images is generally
required and the strategy we adopt here consists in considering other dissimilarity
measures (see [2, 22]) defined as :

φuv(x,y) =
∑

t∈R2

Wn(t) ((u(x + t) − uρ(x)) − (v(y + t) − vρ(y)))2(2.2)

φuv(x,y) =
∑

t∈R2

Wn(t)

(

u(x + t) − uρ(x)

vρ(y)
v(y + t)

)2

(2.3)

φuv(x,y) = 1 −
∑

t∈R2 Wn(t)u(x + t)v(y + t)
√
∑

t∈R2 Wn(t)u2(x + t) ×
√
∑

t∈R2 Wn(t) v2(y + t)
(2.4)

where uρ = Gρ ⋆ u and vρ = Gρ ⋆ v are images convolved with a Gaussian kernel Gρ

with standard deviation ρ. The dissimilarity measure (2.2) is introduced to eliminate
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unwanted changes corresponding to global or local additive contrasts between the
two input images. Under the Lambertian assumption, the relation between observed
intensity, illumination and reflectance is multiplicative [2, 69]. Accordingly, invariance
to multiplicative brightness changes can be obtained by considering the dissimilarity
measure (2.3). Note that ρ influences the computation in matching, and setting ρ to a
very large value means that brightness variation between the two images is global and
the same for every pixels. The correlation dissimilarity measure (2.4) only considers
the similarity between the angles formed by vectorized image patches and discards the
scaling on the magnitude. These dissimilarity measures may have the advantage of
being not sensitive to illumination variation and outperforms the dissimilarity measure
(2.5) in that case. The following dissimilarity measures are not invariant to global
illumination variations but may be considered also in some applications :

φuv(x,y) =
∑

t∈R2

Wn(t) (u(x + t) − v(y + t))2(2.5)

φuv(x,y) =
∑

t∈R2

Wn(t) (u(x + t) − v(y + t))p(2.6)

φuv(x,y) =
∑

t∈R2

Wn(t)

(

m
∑

p=0

(u(p)(x + t) − v(p)(y + t))2

)

(2.7)

φuv(x,y) =
∑

t∈R2

Wn(t)
[

(u(x+t)−v(y+t))2

4σ2 − log
(

erf
(

u(x+t)+v(y+t)
2σ

)

(2.8)

+ erf
(

2 max(sup
x∈R2 u(x),sup

x∈R2 v(x))−u(x+t)−v(y+t)

2σ

))]

where (2.7) is based on the m first derivatives of u and v (Sobolev norm) and (2.8)
is related to the Maximum Likelihood similarity measure [68] in the case of intensity-
independent Gaussian noise with variance σ2 where erf(·) denotes the Gauss error
function.

In the next sections, φuv will denote any of these similarity functions. Additional
dissimilarity measures and functions g(·) based on the normalized cross-correlation
[79] and more general probabilistic similarity measures [85, 68] can be also investi-
gated. In our experiments, we will focus on (2.3), (2.4) and (2.5) for demonstration.
Also it is worth noting that the input images can be preliminarily modified by local
histogram equalization that preserves image level lines [28, 103] or dynamic histogram
warping [30].

2.3. Parametric mixture models and first experiments. In Section 2.1, we
have sketched a procedure based on patch comparisons, which tells whether a local
change at the current pixel has occurred or not. To infer the thresholds for change
detection, we propose here to study the usual image model (e.g. see [86, 2, 83]) of the
form

u(x) = u0(x) + ǫ(x),
v(x) = v0(x) + η(x)

(2.9)

where u0 and v0 are the “true” images and the “errors” ǫ and η are i.i.d. (independent
identically distributed) Gaussian zero-mean random variables with unknown variance
σ2. In the absence of scene change, the noise being Gaussian in both images, the
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Image 1 Image 1 Image 1

Image 2 Image 2 Image 2

difference image difference image difference image

PDF of distances PDF of distances PDF of distances
(Image 1 wrt Image 2) (Image 1 wrt Image 2) (Image 1 wrt Image 2)

PDF of distances PDF of distances PDF of distances
(Image 1 wrt Image 1) (Image 1 wrt Image 1) (Image 1 wrt Image 1)

PDF of distances PDF of distances PDF of distances
(Image 2 wrt Image 2) (Image 2 wrt Image 2) (Image 2 wrt Image 2 )

Fig. 2.1. PDFs of dissimilarity measures computed from image pairs and from a single
image (see text). Left : snowy traffic scene (n = 23× 23, |B(x)| = 3× 3) ; middle : outdoor
scene (n = 23 × 23, |B(x)| = 5 × 5) ; right : traffic scene (n = 11 × 11, |B(x)| = 5 × 5).
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commonly-used distance φuv(x,y) defined as

φuv(x,y) =
1

2σ2

∑

t∈R2

rectn(t) (u(x + t) − v(y + t))2(2.10)

follows a central chi-squared distribution f0 with n degrees of freedom: φuv(x,y) ∼
χ2

n. In the presence of scene change, under Gaussian noise assumptions, φuv(x,y) is
distributed according to the non-central chi-squared distribution f1 with n degrees of
freedom and an unknown spatially-varying parameter defined as

̺u0v0
(x,y) =

1

2σ2

∑

t∈R2

rectn(t) (u0(x + t) − v0(y + t))2,(2.11)

Furthermore, an usual way to evaluate the similarity of two matched patches con-
sists in assuming that the distances φuv(x,y) in a local neighborhood are independent
and distributed according to the following two-component mixture distribution :

f(φuv(x,y)) = π0f0(φuv(x,y)) + π1f1(φuv(x,y))(2.12)

where π0 (resp. π1 = 1 − π0) is the proportion of f0 (resp. f1). Since f0 is perfectly
known, i.e. f0 ≡ χ2

n with mean n and variance 2n, we only need to estimate π0, σ
and the non-centrality parameter ̺u0v0

(x,y). Finally, the probability that a distance
φuv(x,y) is larger than a fixed threshold τ(x) is

(2.13)

P(φuv(x,y) ≥ τ(x)) = π0

Z ∞

τ(x)

f0(φuv(x,y))dφuv(x,y) + π1

Z ∞

τ(x)

f1(φuv(x,y))dφuv(x,y).

For ease of understanding, we evaluated experimentally the potential of this test-
ing method for the entire image. Given an estimation of the noise variance σ2 (e.g.
[56]), we computed the PDFs of dissimilarity measures for several patch sizes and
neighborhood sizes. As shown in Fig. 2.1, the observed PDFs are not stable for sev-
eral tested image pairs and it was actually not possible to approximate the PDFs by
mixtures of two components as described above. Even for small neighborhoods and
homogeneous lighting conditions, the PDFs cannot be easily predicted, especially if
the missing object areas are large. A more flexible strategy would be to give up the
image model (2.9) and to approximate the PDFs by mixtures of Gaussians. Because
it is too versatile, this modeling tends to capture all the observed variabilities and
modes, which is not desirable for meaningful change detection. It is worth noting
that considering small neighborhoods to estimate spatially-varying PDFs is also chal-
lenging and probably over-ambitious. Consequently, this idea was not investigated
further.

In short, the aforementioned parametric modeling approach is generally too re-
strictive and not suitable to analyze any image pairs. The distortions observed in
real images are not Gaussian distributed and known to be spatially non-stationary.
Also, the neighboring and overlapping patches are not independent and the PDF of
distances is potentially affected by the area of missing objects. Even by considering
the same patch sizes and the same neighborhood sizes, the PDFs are not stable and
bimodal. As a conclusion, the basic modeling (2.9) does not hold true in most of real
tested situations. More interestingly, it turns out the PDFs of distances computed
from a reference image u and a second image v look surprisingly similar to the PDFs
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of distances computed from a single reference image u (with the same patch sizes and
neighborhood sizes). For this, we examined the dissimilarities between a reference
patch in u and its neighboring patches taken respectively in the reference image u
and the image v (see Fig. 2.1). In the remainder of the paper, we exploit this result
and propose an original non-parametric approach for detecting changes with no prior
model on PDFs.

3. Neighborhood-wise decision. In this section, we describe the general prob-
abilistic framework proposed for non-parametric change detection. In particular, we
make a collective decision from the decisions obtained at neighboring points. Coop-
eration among neighboring points tends to enhance the ability to detect meaningful
changes, namely, whether a change occurs or not within the search area B(x).

3.1. Principle. Consider a reference patch at location x to be compared to
neighboring patches at locations y ∈ B(x) in the second image v. Based on a dissim-
ilarity measure φuv(x,y) defined for instance as the L2 distance between two patches
(as explained in Section 2.2) :

φuv(x,y) =
∑

t∈R2

Wn(t) (u(x + t) − v(y + t))2,(3.1)

we make a decision regarding the presence of a similar patch in the semi-local search
area.

The collaborative neighborhood-wise decision for change detection is obtained
through a fusion rule. An intuitive choice is to count the total number of positive
decisions denoted SN :

SN (x) =
∑

y∈B(x)

1[φuv(x,y) ≥ τ(x)](3.2)

where τ(x) is a spatially-varying threshold. If the number of decisions exceeds the
overall decision threshold T ∈ {1, · · · , N} assumed to be constant for the whole image,
we declare that a change occurs at pixel x. The neighborhood-wise decision D(x) ∈
{0, 1} at pixel x is then defined as :

D(x)
△
= 1[SN (x) ≥ T ].(3.3)

This natural decision procedure that fuses local binary decisions has been already
proposed in [49, 52] for change detection and in [75, 55] for analyzing distributed
sensors in a wireless network.

3.2. Controlling the number of false alarms. In our framework, we declare
that two patches are dissimilar if φuv(x,y) exceeds a threshold τ(x), that is we se-
lect the hypothesis H1 and the hypothesis H0 on the contrary. The probability of false
alarm, also called probability of Type I error, is defined as P(decide H1 when H0 is true).
This probability must be reduced as much as possible in most detection applications.
In this section, we define the probabilities of false alarm corresponding to our modeling
framework and we propose approximations required for computation.

Let Pfa(x, T )
△
= P(SN (x) ≥ T |H0)be the probability that there exists a collection

of at least T pixels declared in favor of a detection under H0 :

(3.4)

Pfa(x, T ) =
N
X

k=T

X

Xk∈Xk
N

0

@

Y

y∈Xk

P(φuv(x,y)≥τ(x)|H0)

1

A

0

@

Y

y∈X̄k

(1 − P(φuv(x,y)≥τ(x)|H0))

1

A
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where N = |B(x)| is the search window size, X k is a set of k pixels (X̄ k is the
complementary set of X k) and X k

N is the set of all such sets. As the number of
pixels increases in B(x), the computation burden of (3.4) becomes daunting. In what
follows, we assume that the probabilities P(φuv(x,y) ≥ τ(x)|H0) are identical1 for
all the pixels y ∈ B(x), i.e.

P(φuv(x,y) ≥ τ(x)|H0)
△
= pfa(x, τ(x)).(3.5)

In our change detection scenario, most patches overlap since B(x) will be small.
Hence, the decision statistic SN (x) is the sum of dependent Bernouilli random vari-
ables. Nevertheless, from the Central Limit Theorem (CLT) for dependent random
variables [13] we know that SN (x) is asymptotically Gaussian. Indeed, the steady-
state expectation of SN (x) under hypothesis H0 is (E[·] denotes the mathematical
expectation)

E[SN (x)|H0] = Npfa(x, τ(x)),(3.6)

which is also the expectation of the sum of independent random variables ; in [74] it
has been also shown that the steady-state variance of SN (x) is upper-bounded as

Var[SN (x)|H0] ≤ Npfa(x, τ(x))(1 − pfa(x, τ(x))).(3.7)

It turns out that this upper-bound is also the variance for the sum of independent
random variables. Therefore, SN (x) can be approximated as the sum of independent
and identically distributed variables if N is large enough. Finally, the probability
Pfa(x, T ) defined in (3.4) can be approximated by the right tail of the binomial
distribution2, even if the neighbor pixels share common contextual information :

Pfa(x, T )
△

=

N
∑

k=T

(

N
k

)

(pfa(x, τ(x)))k(1 − pfa(x, τ(x)))N−k.(3.9)

In practice, there is no way to derive an explicit form of pfa(x, τ(x)) at location
x. To overcome this difficulty, we propose to examine computable upper-bounds of
Pfa(x, T ) if there exist. First, applying the Chebyshev’s concentration inequality
which states that for a random variable Z, P(|Z − E[Z]| ≥ t) ≤ Var[Z]/t2, ∀t > 0,
the probability of false alarm is upper-bounded as follows :

Pfa(x, T ) ≤ P (|SN (x) −Npfa(x, τ(x))| ≥ (T −Npfa(x, τ(x)))|H0)

≤ Var[SN (x)|H0]

(T −Npfa(x, τ(x)))2
=

Npfa(x, τ(x))(1 − pfa(x, τ(x)))

(T −Npfa(x, τ(x)))2
.(3.10)

The Chebyshev’s inequality yields a bound which is known not to be small enough.
Indeed, we need to know if SN (x) is strongly concentrated around E[SN (x)|H0]. A

1An approximation is given by pfa(x, τ(x)) ≈ 1
N

P

y∈B(x) P(φuv(x,y) ≥ τ(x)|H0)
2When N is large enough, (3.9) is usually calculated (from Central Limit Theorem) by using the

Laplace-DeMoivre approximation :

lim
N→∞

Pfa(x, T ) ≈ 1 − CDF

 

T − Npfa(x, τ(x))
p

Npfa(x, τ(x))(1 − pfa(x, τ(x)))

!

(3.8)

where CDF(·) denotes the standard normal cumulative distribution function.
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typical concentration result is the Chernoff’s bound [29] on the tail of the binomial
distribution :

Lemma 3.1. From the Chernoff’s theorem [29], if t(x)
△

= T −Npfa(x, τ(x)) with
t(x) > 0, then the probability of false alarm corresponding to the tail of the binomial
distribution is bounded as

Pfa(x, T ) ≤ e−2Nt(x)2 .

Unfortunately, the Chebyshev’s and Chernoff’s upper bounds depend on the knowl-
edge on pfa(x, τ(x)) which is not accessible for our purpose.

To compute an upper-bound, we can use the following lemma :
Lemma 3.2. From the Markov’s inequality, the probability of false alarm is

bounded as

Pfa(x, T ) = P
(

eSN (x) ≥ eT |H0

)

≤ e−T E
[

eSN (x)|H0

]

≤ e−T E
[

eSN (x)
]

The bound in Lemma (3.2) suggests that the probability of false alarms can be
bounded from above at each location in the image, provided that the threshold τ(x)
is known and E

[

eSN (x)
]

can be empirically estimated as :

E
[

eSN (x)
]

≈ 1

|V (x)|
∑

y∈V (x)

eSN (y)(3.11)

where V (x) ⊆ Ω stands for an arbitrary set of pixels around x.
Actually, since it is unrealistic to choose the thresholds τ(x) to achieve a desired

local probability of false alarm, we will investigate strategies for estimating these
spatially-varying parameters required to compute (3.11). In the next section, we
present first several dissimilarity measures to be considered for robust change detec-
tion. We present also a conventional parametric testing method and adopt an usual
Gaussian image modeling. The idea is to derive the thresholds τ(x) from the prob-
ability distribution functions of dissimilarity measure approximated by mixtures of
Gaussians. At last, we will address the setting of parameters T , the patch size n and
the sizes of the search window B(x) and the neighborhood V (x).

4. Multiscale probabilistic decision framework. The multiscale approach,
which uses the property of patch repetitions across scales, is recommended tradition-
ally to analyze several spatial contexts [43, 71, 38, 82, 34]. In our case, the multiscale
strategy we adopt enables to reduce the number of false alarms.

4.1. Parameter setting and motivations. For a given patch size n and a
neighborhood size N , at each location x in the image domain, the proposed adaptive
decision mechanism is as follows :

1. for each pixel y ∈ B(x) in v, the dissimilarity measure φuv(x,y) is compared
to the threshold τ(x) ;

2. given SN (x) =
∑

y∈B(x) 1[φuv(x,y) ≥ τ(x)], we make a neighborhood-wise

decision D(x) = 1[SN (x) ≥ T ] ∈ {0, 1} at location x.
While this procedure is straightforward, the detection results depend very much

on the threshold T and patch size n. First, to produce a very low number of false
alarms, a natural idea is to set T = N , yielding to

P (SN (x) = N |H0) = Pfa(x, N) = (pfa(x, τ(x)))N(4.1)
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since the probabilities pfa(x, τ(x)) ≡ P(φuv(x,y) ≥ τ(x)|H0) are assumed to be
identical for all pixels y ∈ B(x). This means that a change occurs at pixel x if all
the distances are higher than τ(x), thus in agreement in the neighborhood B(x). By
setting T = N also justified in [95, 52], a pixel x with no match is then considered
as being subject to a significant change, or occluded. To avoid the precise setting of
the size n of patches, we propose to embed the previous procedure in a multiscale
framework described below.

4.2. Multiscale and probabilistic modeling. Let Dℓ(x) be the binary ran-
dom variable whose value is 1 at location x when a change is detected for a given
patch size nℓ = (2ℓ + 1)2, 1 ≤ ℓ ≤ L, and 0 otherwise. In what follows, L is the
number of patch sizes considered at each location and we define the set of binary
random variables at each location x as : {D1(x), · · · , DL(x)}.

In our analysis, for very small search windows, a pixel is likely associated to a
detected change for a large number of different and strongly correlated patch sizes at
the same location in the image. Accordingly, the Bernouilli random variables Dℓ(x)
are not identically distributed and not really independent mainly because the patches
with different sizes are nested. The decisions are correlated for two successive patch
sizes since they have many pixels in common at a given location x. Nevertheless, the
sum

∑L
ℓ=1Dℓ(x) of Bernouilli random variables is known to converge in distribution

to a Poisson distribution, provided that the dependencies between the variables are
not too large. Actually, there are several ways to prove a Poisson approximation
result and a general formulation is as follows : let D1(x), D2(x), · · · , DL(x) be such
that E[Dℓ(x)|H0] = Pfa,ℓ(x, T ), 1 ≤ ℓ ≤ L where Pfa,ℓ(x, T ) is the probability of false
alarm (3.9) for a given patch size nℓ = (2ℓ+1)2. The probability of success is different

for each Bernouilli variable Dℓ(x) and we define λT (x)
△

=
∑L

ℓ=1 Pfa,ℓ(x, T ). Then
∑L

ℓ=1Dℓ(x) tends to a Poisson law Po(λT (x)) in distribution as nℓ → ∞ according
to the Chen-Stein method [6] :

Theorem 4.1. (Arratia (1989) [6]) Let I be a finite index set and let {Xa :
a ∈ I} be indicator random variables. For a given index a ∈ I, let Bb a set of indices b
such that Xa and Xb are dependent. Let Y =

∑

a∈I Xa and let Z be a Poisson random
variable with mean λ=E[Y ] =

∑

a∈I E[Xa]. Then the total variation distance between
Y and Z is at most Q1 +Q2 +Q3 where

Q1
△

=
∑

a∈I

∑

b∈Ba

E[Xa]E[Xb],

Q2
△

=
∑

a∈I

∑

b∈Ba,b 6=a

E[XaXb],

Q3
△

=
∑

a∈I
E[|E[Xa|Xb : b 6∈ Ba] − E[Xa]|].

Q1 measures the total size of the dependence neighborhoods, Q2 measures how many
dependent pairs are likely to arise, and Q3 measures how far Xa is from being inde-
pendent of {Xb : b 6∈ Ba}.

Consequently, the probability of false alarm denoted as PFA(x, L) at location x

is given by the Poisson tail with parameter λT (x) =
∑L

ℓ=1 Pfa,ℓ(x, T ) :

PFA(x, L)
△

= P

(

L
∑

ℓ=1

Dℓ(x) > kD(x)|H0

)

= 1 −
kD(x)
∑

k=0

(λT (x))k e
−λT (x)

k!
(4.2)
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where (kD(x) + 1) is the actual number of changes (positive decisions) detected for
the different patch sizes at location x: 0 ≤ kD(x) ≤ L − 1. Now, we focus on the
computation of the probability of false alarm PFA(x, L) for application on real images.
From Lemma 3.2, we consider that the probability Pfa,ℓ(x, N) can be bounded at each
pixel as (if T = N)

Pfa,ℓ(x, N) ≤ e−NE
[

eSN,ℓ(x)
]

≈ 1

|V (x)|
∑

y∈V (x)

eSN,ℓ(y)−N(4.3)

where SN,ℓ(x) is the total number of positive decisions obtained from the pixels in the
search window for a given patch size nℓ, 1 ≤ ℓ ≤ L and V (x) stands for a neighbor-
hood around x. In our change detection scenario, we need also to make a pointwise
decision from spatial contexts given the entire image. This can be actually achieved
by considering very large spatial neighborhoods V (x) in order to both capture long
range information and to detect unusual events when comparing two images. In the
special case when V (x) ≡ Ω and λN (x) ≡ λN =

∑L
ℓ=1 Pfa,ℓ(N) adopted in our

experiments, we get


























PFA(x, L) = 1 −
kD(x)
∑

k=0

(λN )k e
−λN

k!
,

λN =

L
∑

ℓ=1

e−N

|Ω|
∑

y∈Ω

eSN,ℓ(y).

(4.4)

Finally, we consider that a change occurs at pixel if

PFA(x, L) ≤ α(x),(4.5)

for a desired level of significance α(x). The final goal is to make a decision by setting
a probability of false alarm α(x) with 0 < α(x) < 1 and close to 1. Actually, we are
not in position to assume that the detected pixels are independent and it would be
more suitable to compare the number of detected pixels to the expectation of this
number as recommended in [36, 66, 101, 88, 37]. This may be possible if we examine
the number of detection tests performed and by applying the Bonferroni strategy for
multiple tests. This amounts to setting α(x) = ε/|Ω| where |Ω| is the number of tested
pixels and ε is a user-defined expected number of false alarms over the entire image.
We can refer to the a contrario framework yielding the same control as Bonferroni
while allowing one to set ε ≥ 1 if needed. Setting ε = 1 as we do in most experiments
(see also [66, 101, 27, 37]), means that about 1 pixel on average is falsely detected
but the remaining detections are “meaningful”. It is a sound choice as the number of
false alarms generally has a exponential behavior with respect to event properties so
the dependence on ε is rather a log-dependence [36].

Let Hε(u, v) : Ω → {0, 1} be the final multiscale change detection map defined
as :

Hε(u, v)(x) =

{

1 if PFA(x, L) ≤ ε/|Ω|,
0 otherwise.

(4.6)

Proposition 4.2. The expected number of false alarms in Ω is lower than ε.
Proof.

E

[

∑

x∈Ω

Hε(u, v)(x)|H0

]

=
∑

x∈Ω

E[Hε(u, v)(x)|H0]
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=
∑

x∈Ω

P(Hε(u, v)(x) = 1|H0)

=
∑

x∈Ω

P

(

L
∑

ℓ=1

Dℓ(x) > kD(x)|H0

)

=
∑

x∈Ω

PFA(x, L) ≤
∑

x∈Ω

ε

|Ω| ≤ ε.

In practice, we can avoid the setting of the value ε provided that a meaningful
change is expected to occur. This means we can derive a minimal value εmin to detect
at least one occluded pixel in the image :

Proposition 4.3. No change detection occurs in the image pair if

ε ≥ εmin
△

= |Ω|
(

1 −
L−1
∑

k=0

(λN )k e
−λN

k!

)

.

Proof. By definition, a meaningful change is detected if

ε

|Ω| ≥ 1 −
kD(x)
∑

k=0

(λN )k e
−λN

k!
≥ 1 −

L−1
∑

k=0

(λN )k e
−λN

k!
.

and we obtain the required assertion.

Finally, we choose to consider a uniform threshold to detect meaningful changes
in the entire image as :

α(x) = α
△

= max

(

ε

|Ω| , inf
x∈Ω

PFA(x, L)

)

.(4.7)

As mentioned earlier, the Bonferonni correction is known to be too conservative
for a detection problem under multiple i.i.d. tests. The correction adjusts the thresh-
old for each individual test in order to satisfy a lower false alarm rate value ε/|Ω| but
reduces the detection capability considerably. Although the chance of false alarm at
each location x is only α, the chance of at least one falsely alarmed pixel is much
higher since the neighboring pixels are spatially correlated. Using the False Discovery
Rate (FDR) approach [11], we could expect to improve the detection results while
maintaining a given false discovery rate. FDR is defined as the expected ratio of
the number of observations falsely classified into alternate hypotheses to the total
number of observations classified into the alternate hypotheses. When the total of
observations come from the null hypothesis as assumed in the paper, FDR is proved
to be equivalent to the family-wise error rate (FWER). In all other cases, FWER is
bounded below by FDR. In the context of our change detection problem, considering
only the probability of false alarm yielded satisfactory detection results as shown in
Section 6 and we did not investigate further FDR for the time being.

5. Algorithm and implementation. In this section, we describe the multi-
scale change detection procedure.
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5.1. Estimation of spatially-varying thresholds. To apply the algorithm
summarized in Fig.5.1, we need to address the estimation problem of τ(x) already
introduced in Section 3.1.

To compute the spatially-varying thresholds τ(x), we propose here to adopt a non-
parametric approach to capture the variability sources related to spatial contexts. Our
idea is to estimate adaptive detection thresholds for each individual pixel and from a
unique reference image. The PDF of distance is no longer considered and we examine
the highest distances in very small neighborhoods b(x) ⊆ Ω.

To derive the adaptive thresholds for change detection, we postulate that all
positive decisions correspond to distance φuv(x,y) higher than the highest distance

at pixel x computed from the reference image u : τ(x)
△

= τu(x). Note that considering
only one training image for change detection has been already suggested in [51] but
a mixture of Gaussians was necessary to derive a unique decision threshold for the
entire image. We define

τu(x) = max

(

sup
y∈b(x)

φuu(x,y), τ̄

)

,

τ̄ =
1

|Ω|
∑

x∈Ω

inf
y∈b(x)

φuu(x,y)
(5.1)

where b(x) is a small neighborhood around x (e.g. 3 × 3 square windows or balls of
R

2 of radius rb = 1 pixel, i.e. set of pixels y ∈ b(x) such that ‖y − x‖2
2 ≤ r2b ). By

introducing a minimal value τ̄ in (5.1) defined as the average of the lowest distance
computed over the image domain Ω, we improve the robustness to low signal-to-noise
ratios. In this learning procedure, the nearby patches taken in b(x) around x are
assumed to correspond to perturbed configurations of the central patch located at
pixel x. By examining only the local neighborhoods in the reference image u, we
derive minimal adaptive thresholds (5.1), yielding to robust change detection results
as we shall see in our experiments (Section 7).

Intuitively, the background is assumed to be nearly static with residual motions
due to camera instability, non-constant camera exposure, other sources of measure-
ment noise or other irrelevant background dynamics, all described by stochastic pro-
cesses. In order to cope with such random local changes, the threshold τu(x) is
defined as the higher distance in the neighborhood since motion cannot be predicted.
Formally, let s(x) ∈ R

2 be a local random shift (or displacement) vector such that

E[‖s(x)‖2] = 0 and E[‖s(x)‖2
2] = σ2

s . The “jittering” noise can be described by a
stochastic process : a patch at random position y ∈ b(x) defined as y = x + s(x)
is expected to be moved to the position x in the second image v if no meaningful
change occurs [48]. The size of the local neighborhood b(x) is related to the ampli-
tude of camera jitter and/or background dynamics. Also, we assume that the patches
at location x and location y for some y ∈ b(x) are similar if we use a single image u
to derive a minimal detection threshold at location x. Finally, the probability that
the amplitude ‖s(x)‖2 of the background motion is higher than the radius rb of local
neighborhoods is upper-bounded and decreases as τu(x) increases :

Proposition 5.1. Assume that b(x) is a ball in Ω ⊂ R
2 with radius rb =

√

|b(x)|/π and u ∈ R
Ω is K-Lipschitz, namely ∃K ≥ 0 such that |u(x) − u(y)| ≤

K‖x − y‖2. Then,

P

(

‖s(x)‖2 ≥
√

|b(x)|
π

)

≤ nKσ2
s

τu(x)
≤ nKσ2

s

τ̄
.
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Proof. If we consider the usual Euclidean distance to evaluate the dissimilarity
between image patches, we have

τu(x) = max

(

sup
y∈b(x)

∑

t∈R2

rectn(t) (u(x + t) − u(y + t))2, τ̄

)

≤ max

(

sup
y∈b(x)

K2n‖x − y‖2
2, τ̄

)

≤ K2nr2b .

From the Chebyshev’s inequality, we get P (‖s(x)‖2 ≥ rb) ≤ σ2
s

r2b
≤ nK2σ2

s

τu(x)
.

The size of the local neighborhood b(x) corresponds to the expected jittering
amplitude or, in image sequence analysis, to the movement amplitude of animated
texture in the background. Note that if rb → 0 then τ(x) → 0 and a change is likely
detected at location x in the image. From (5.1), it turns out that if the images u and
v are two noisy versions of the same scene, no meaningful change detection occurs
with a very high probability. Finally, the thresholds are computed directly from image
data and the computation of the noise variance is not required since it is assumed to
be a constant value in the vote procedure.

In other respects, the method we have described will not produce the same de-
tection results if we compare u to v and vice-versa, mainly because the thresholds are
estimated either from u or v. It may be desirable in some applications to get the same
answer in both cases. This can be achieved by combining the definitions of thresholds
and dissimilarity measures from u and v as follows :

τ(x) = min (τu(x), τv(x)) ,

φuv(x,y)
△

= min (φuv(x,y), φvu(x,y)) .
(5.2)

5.2. Implementation. Our final algorithm is presented in Fig. 5.1 and can serve
in different applications. Note that the size N of the search window depends on the
motion amplitude (due to camera jittering or residual motion in the background) we
do not want to detect. Since, we focus on the change and occlusion detection problem,
we set N = 3 × 3 (5 × 5 at most) (or circular windows with radius 1 pixel) in the
applications with still cameras. This means we are testing dissimilarities in very local
neighborhoods. Accordingly, we can choose |b(x)| ≡ |B(x)|, which limits the number
of algorithm parameters. Increasing the search window size should produce the same
results since the missing or occluded patches are not visible in the second image for
any location. Nevertheless, undesirable but similar patterns can be found if there is
repeated structure or texture in the background. We evaluate the performance of the
proposed algorithm in section 7.

6. Theoretical properties. In this section, we examine some properties of the
proposed detector.

6.1. Detection for low signal-to-noise ratios. Our multiscale change detec-
tion method can actually deal with low signal-to-noise ratios. Actually, the method
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Asymmetric Change detection algorithm

Let L be the number of patch scales, φuv the dissimilarity measure used for patch comparison
and ρ the smoothing parameter for brightness invariance (see (2.2) and (2.3)).
◦ For ℓ = 1 · · ·L

1. For each pixel x ∈ Ω and 3 × 3 (or 5 × 5) neighborhoods b(x), compute

τu,ℓ(x) = max

 

sup
y∈b(x)

φuu,ℓ(x,y), τ̄ℓ

!

where τu,ℓ(x), τ̄ℓ and φuu,ℓ(x,y) are respectively the thresholds τu(x) and τ̄ and
the dissimilarity measure φuu(x,y) computed for a given patch size nℓ = (2ℓ + 1)2.

2. For each pixel x ∈ Ω and 3 × 3 (or 5 × 5) search window B(x), compute

SN,ℓ(x) =
X

y∈B(x)

1[φuu,ℓ(x,y) ≥ τℓ(x)].

3. Compute Pfa,ℓ(N) =
1

|Ω|

X

y∈Ω

eSN,ℓ(y)−N .

◦ Compute λN =
L
X

ℓ=1

Pfa,ℓ(N).

◦ The final decision at pixel x ∈ Ω is defined as :

Hε(u, v)(x) = 1[PFA(x, L) ≤ α]

with α = max(ε/|Ω|, infx∈Ω PFA(x, L)) and PFA(x, L) = 1 −

kD(x)
X

k=0

(λN )k e−λN

k!
where 1 ≤

(kD(x)+1) ≤ L is the actual number of changes detected at location x for the set of L patch
sizes.

Fig. 5.1. Asymmetric change detection algorithm between images u and v.

is designed to avoid the detection of undesirable patterns due to noise, as we shall see
in the experiments. In this section, we study the idealized situation : u = u0 + ǫ and
v = v0 + η where the underlying images u0 and v0 are piecewise constant and ǫ and
η Gaussian noises with known variance σ2.

Proposition 6.1. Define

φuv(x,y) =
∑

t∈R2

rectn(t) (u(x + t) − v(y + t))2,

where y ∈ B(x) ⊆ Ω and assume P(φuv(x,y) ≥ τ(x)|H0) ≡ pfa(x, τ(x)),∀y ∈ B(x).
If σ → +∞, 0 < u0 < +∞ and n large enough, we have

P (SN (x) = N |H0) ≤ C−nN with some 1 < C < +∞.

Proof. If σ → +∞, the contents of u0 and v0 are drowned in the noise and
we have φuv(x,y) ≈ ∑

t∈R2 rectn(t) (ǫ(x + t) − η(y + t))2,y ∈ B(x). It follows that
φuv(x,y) ∼ 2σ2χ2

n,E[φuv(x,y)] = 2nσ2 and Var[φuv(x,y)] = 8nσ4 since ǫ and η are
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i.i.d. Gaussian variables. Moreover, if σ tends to infinity, we have

τ(x) ≈ max

(

τ̄(x), sup
y∈b(x)

∑

t∈R2

rectn(t) (ǫ(x + t) − ǫ(y + t))2

)

≥ max



τ̄(x),
1

|b(x)|
∑

y∈b(x)

∑

t∈R2

rectn(t) (ǫ(x + t) − ǫ(y + t))2



 ≈ max
(

τ̄(x), 2nσ2
)

.

Since |b(x)| is constant ∀x ∈ Ω, we have

τ̄ =
1

|Ω|
∑

x∈Ω

inf
y∈b(x)

φuu(x,y)

≤ 1

|Ω|
∑

x∈Ω

1

|b(x)|
∑

y∈b(x)

φuu(x,y) =
1

|b(x)|
∑

y∈b(x)

1

|Ω|
∑

x∈Ω

φuu(x,y)

≈ 1

|b(x)|
∑

y∈b(x)

E

[

∑

t∈R2

rectn(t) (ǫ(x + t) − ǫ(y + t))2

]

= 2nσ2.

It follows that τ(x) ≥ 2nσ2.
It is worth noting that (φuv(x,y)−n)/

√
2n ∼ N (0, 1) if n is large enough. Define

τ(x)
△

= 2nσ2δ(x) subject to infx∈Ω δ(x) > 1
2σ2 . From the exponential Chebychev’s

applied to normal variables, we have

P(φuv(x,y) ≥ τ(x)|H0) = P
(

φuv(x,y)−n√
2n

> τ(x)−n√
2n

|H0

)

≤ exp
(

− (τ(x)−n)2

4n

)

≤
(

exp
(

(2σ2δ(x)−1)2

4

))−n

≤
(

exp
(

(2σ2 infx∈Ω δ(x)−1)2

4

))−n

.

It follows that

P (SN (x) = N |H0) = (P(φuv(x,y) ≥ τ(x)|H0))
N ≤ C−nN ,

with C = exp
(

(2σ2 infx∈Ω δ(x)−1)2

4

)

> 1 and we obtain the required assertion.

This bound is small provided that nN is large enough. Consequently, with a
probability of at least 1−C−nN , u(x) coincides with v(x) at location x if σ → +∞ and

for a given patch size n. From (3.6)-(3.10), it follows that λN =
∑L

ℓ=1 Pfa,ℓ(N) → 0
and consequently PFA(x, L) → 1,∀x ∈ Ω if σ is very large. Hence, no change occurs
at location x since PFA(x, L) → 1 > α based on the aforementioned assumptions
and the two images are “similar”. In short, no change is expected if the two images
are corrupted by white Gaussian noise whose variance σ2 is the same and tends to
infinity.

6.2. Detection for high signal-to-noise ratios. Now we discuss the situation
when σ → 0. We intend to show that if the contrast of the image is sufficiently
large compared with the level of noise then we typically obtain positive decisions
for all pixels y ∈ B(x). To simplify the presentation, we suppose that u0 and v0
are piecewise constant images in regions but have different values : u0(x) = a1 and
v0(x) = a2,∀x ∈ A(x) subject to a1 6= a2 where A(x) ⊂ Ω is a set of pixels. We
assume that A(x) is a sufficiently large region and we impose |a1 − a2|2 > τ(x)/n
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when σ tends to 0. This implies that the neighborhood b(x) belongs completely to
A(x).

Proposition 6.2. Assume u0(x) = a1 and v0(x) = a2,∀x ∈ A(x) subject to
a1 6= a2 and b(x) ⊂ A(x) ⊂ Ω such that |a1 − a2|2 > τ(x)/n. It follows that

lim
σ→0

(

P (SN (x) = N |H0) = (P(φuv(x,y) ≥ τ(x)|H0))
N
)

→ 1.

Proof. If σ → 0, the geometrical structure and texture of u and v dominate over
noise, and we have u(x) ≈ a1 and v(x) ≈ a2. Accordingly, we have

φuv(x,y) =
∑

t∈R2

rectn(t) (u(x + t) − v(y + t))2 ≈ n|a1 − a2|2 > τ(x),∀y ∈ B(x).

Hence all the decisions at locations y ∈ B(x) are positive. With these assumptions,
the probability (P(φuv(x,y) ≥ τ(x)|H0))

N tends to 1 and the assertion is proved.

The result of proposition 6.2 leads to the following conclusion. Based on the the
previous assumptions, λN =

∑L
ℓ=1 Pfa,ℓ(N) → L for any patch size and PFA(x, L) →

0,∀x ∈ Ω if σ tends to 0. Therefore, since PFA(x, L) ≤ α holds true for any value
α > 0, a change occurs at location x. In short, if the two images are piecewise con-
stant and the regions have different values and areas large enough, a change is likely
detected at each pixel in the image.

6.3. Invariances. In this section, several invariance properties of our detector
are given. We consider the Euclidean dissimilarity measure (2.5).

• Shift and linear invariance : Let s(u) = c0 + c1u be a linear contrast
change. It follows that, ∀c0, c1 ∈ R and ∀(u, v) ∈ R

Ω × R
Ω, we have3

Hε(u, v) = Hε(s(u), s(v)).

• Translation invariance : Assume that Ω is a torus and let s ∈ R
2. If Ts

is a translation operator defined as Ts ◦ u(x) = u(x − s) for all u ∈ R
Ω, the

change detector satisfies :

Hε(Ts ◦ u, Ts ◦ v) = Ts ◦Hε(u, v).

• π/2 rotation invariance : If Rπ/2 is a π/2 rotation sending Ω onto itself,
then, for all (u, v) ∈ R

Ω × R
Ω, we have :

Hε(Rπ/2 ◦ u,Rπ/2 ◦ v) = Rπ/2 ◦Hε(u, v).

If we consider circular search windows (not used in practice) and Wn(·) =
Gn(·), the detector is invariant to any rotation of angle ν ∈ [0, 2π] :

Hε(Rν ◦ u,Rν ◦ v) = Rν ◦Hε(u, v).

3Sketch of proof : Assume with loss of generality τ̄ = 0. Hence, we have

SN (x) =
X

y∈B(x)

1

"

φuv(x,y) ≥ sup
y∈b(x)

φuu(x,y)

#

=
X

y∈B(x)

1

"

φs(u)s(v)(x,y) ≥ sup
y∈b(x)

φs(u)s(u)(x,y)

#

.
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• Symmetry invariance : It may be also desirable to provide the same change
detection results when u is compared to v and vice-versa. The algorithm given
in Fig. 5.1 is then modified using (5.2) as explained in Section 5.2 to get this
invariance.

• Invariance to illumination changes : By considering the set of distances
given in Section 3.1, invariance to illumination changes can be achieved.

Because of the complex nature of the algorithm, the theoretical property of scale
invariance is extremely difficult to obtain. This could be investigated in future work
since it is an important issue in computer vision and desirable for shape recognition.
Nevertheless, our method considers a multiscale framework to avoid the precise setting
of n, which is known to be related to the scale of noise and texture in the image. In
video-surveillance applications, the objects may also have different sizes. Therefore,
the multiscale framework is suitable to analyze the robustness of the decision rules at
various scales while slightly increasing the computation time.

7. Experimental results. To evaluate our multiscale method, we conducted
experiments on a variety of image pairs and applications including video surveillance,
blotch detection in old digitized movies and symmetry detection in MRI imaging.
In this section, we present results on different image pairs with illumination and
motion variations. We compare also our results to those produced by algorithms of
the state-of-the-art for several image pairs. In all our experiments, the parameters
are those given in Fig. 5.1. We used the Euclidean dissimilarity measure (2.5) in most
experiments. In the case of illumination changes, we considered the dissimilarity
measure (2.3) and (2.4). Moreover, the size of neighborhoods b(x) and the size of
search windows B(x) are the same (i.e. B(x) ≡ b(x)) except in Section 6.5. In

all experiments, we have chosen Wn(t) = Gn(t)
△

= e−‖t‖2

2
/n to delineate better the

foreground object borders. For display purposes only, the change detection masks are
superimposed (in yellow) on the first original image. The probabilities of false alarms
are also shown for several tested image pairs.

7.1. Evaluation of robustness on real images. In the two first examples, our
multiscale method is applied to outdoor and traffic scenes respectively. In Fig. 1.1,
we considered |b(x)| = |B(x)| = 5 × 5 (N = 25) because of moderate but meaningful
motion in the animated background. The size of Gaussian patches ranges from n =
3 × 3 to n = 81 × 81 since the area of the missing object is relatively large (L = 40)

and we found λ̂N = 16.78. On this example, the quality of the detection mask can be
visually assessed by comparison with the ground truth [100]. The method is robust
to undesirable motions in the background corresponding to trees shaken by the wind.
In Fig. 7.1, 3 × 3 neighborhoods and 3 × 3 search windows were used (N = 9). Since
the background represents a large part of the image, we set L = 11 and we found
λ̂N = 0.88. We also examined the detection maps and the counting values SN (x)
for different and arbitrary patch sizes. Low count numbers are labeled with cold
colors and high count numbers are labeled with hot colors (T = N for the highest
(hot) value). In these two typical examples, the masks are quite regularized with
no hole because of the sliding window process and patch overlapping. Figure 7.1
shows that the object boundaries are better delineated if we consider a set of patches
with different sizes instead of a single arbitrary patch size. In Figs. 7.2-7.5, other
examples of change detection are shown for video-surveillance scenarios for which the
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n = 7 × 7 SN,3(x) image τ(x)

n = 11 × 11 SN,5(x) image τ(x)

n = 15 × 15 SN,7(x) image τ(x)

multiscale detection − log(PFA(x, L)) difference image

masks over image 1 masks over image 2 entropic thresholding [53]

Fig. 7.1. The images SN,ℓ(x) correspond to the number of positive decisions in 3 × 3
search windows B(x) for several patch sizes and scales : n3 = 7 × 7, n5 = 11 × 11 and
n7 = 15× 15 respectively. The level sets corresponding to T = N are superimposed in yellow
on the original image for each patch size (left column). The last row shows the detection
results we obtained by using a multiscale representation when the range of patches varies
from n = 3×3 to n = 23×23 pixels (L = 11). For comparison, the histogram of the absolute
difference image was thresholded with the Kapur’s entropic method [53].
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image pair difference image

multiscale detection − log(PFA(x, L))

Fig. 7.2. Occlusion detection in an image pair using 5 × 5 search windows (L = 15).

image pair difference image

multiscale detection − log(PFA(x, L))

Fig. 7.3. Occlusion detection in an image pair using 5× 5 search windows (L = 15) (see
http ://vision.middlebury.edu/flow/data/).

illumination conditions are relatively stable.

In Fig. 7.6 and Fig. 7.7, the image pairs are composed of two consecutive frames
of an old movie. We used a set of small Gaussian patches (L = 3 pixels) to detect all
the blotches known to suddenly appearing in the image at random locations [12, 98].
These artifacts correspond typically to bright or dark small regions caused by dirt
(on the positive or on the negative). The loss of gelatin covering the film caused
by mishandling or aging of the film is the second well-known degradation process.
Generally, the spatial coherence of blotches means that the neighboring pixels are
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image pair difference image

multiscale detection − log(PFA(x, L))

Fig. 7.4. Occlusion detection in a traffic scene (images at time t = 1 and t = 50) using
5 × 5 search windows (L = 12) (see http ://i21www.ira.uka.de/image sequences/).

image pairs differences detection masks

Fig. 7.5. Change detection results by using the L2 dissimilarity measure (2.5). Top :

L = 5, λ̂N = 0.1 ; bottom : L = 3, λ̂N = 0.13 (PETS 2006 dataset).

corrupted as well but the temporal coherence is not preserved. In this experiments,
we considered small neighborhoods (3× 3 square windows) and we found λ̂N = 0.050

and λ̂N = 0.047 respectively for the two tested images. We analyzed the images in
both directions and the algorithm given in Fig. 5.1 has been then modified accordingly
using (5.2). These detected regions can be repaired further by inpainting methods
(e.g. [39]) if successfully detected. Too many alarms is not desirable in this application
since repairing and inpainting methods may fail.

Robustness to low signal-to-noise ratios. To demonstrate the robustness
to low signal-to-noise ratios, we evaluated the algorithm by applying different levels
of noise (with added artificial white Gaussian noise) on two image pairs shown in
Fig. 2.1. Figs. 7.8-7.9 show that the method (with the same parameters) produces
similar detection masks even if the signal-to-noise ratio is very low (σ = 30). No
undesirable connected component is detected.
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fist image pair (“mabuse”) difference image

multiscale detection − log(PFA(x, L)) entropic thresholding

Fig. 7.6. Blotch detection in an image pair from an old movie (L = 3). The histogram
of the absolute difference image was thresholded with the Kapur’s entropic method [53].

second image pair (“mabuse”) difference image

multiscale detection − log(PFA(x, L)) entropic thresholding

Fig. 7.7. Blotch detection in an image pair from an old movie (L = 3).The histogram of
the absolute difference image was thresholded with the Kapur’s entropic method [53].

On real noisy images, the difficulty is that surveillance cameras normally cap-
ture small non-rigid figures, such as walking persons or moving cars, on low contrast
and low resolution formats. Typically, Fig. 7.10 shows a snowy traffic scene with
low contrast. We applied the usual algorithm to detect the car in the background.
Unfortunately, a large number of undesirable regions are also detected due to non-
stationarities in the animated background for several search windows. To overcome
this problem, we modified the algorithm by simply considering a unique threshold de-
fined as : τ = supx∈Ω τ(x). Because the statistics of temporal and spatial noises



MULTISCALE DECISION FUSION FOR REDUNDANCY DETECTION 25

σ = 10 σ = 20 σ = 30 σ = 40

Fig. 7.8. Robustness to white Gaussian noise. The two first rows show the detection
results and the third row shows the probabilities of false alarm (− log(PFA(x, L))).

are not the same in the image as assumed in Section 3.2, we proposed success-
fully this simple modification. In Fig. 7.10, the expected object is now correctly
identified by our multiscale method and no additional region and hole is extracted
(N = 9, L = 15, λ̂N = 0.44).

Robustness to illumination variation. On a first example (Fig. 7.11), we
compared two photographs of the same scene at two different dates in the year (sum-
mer and spring). The structural changes are better estimated using the dissimilarity
measure (2.3) since illumination changes are irrelevant for scene understanding. The
expected changes correspond to moving objects (e.g. cars) and still objects with ap-
pearance changes according to seasons (e.g. trees). In this application, we have con-
sidered also the dissimilarity measure (2.4) (correlation coefficient) since it represents
an alternative to (2.3). In practice, the dissimilarity measure (2.3) is more flexible
since we can adapt the photometry invariance by adjusting ρ unlike the correlation
criterion (2.4) which is parameter free.

7.2. Comparisons with state-of-the-art methods. We compare our ap-
proach to commonly-used and more recent background subtraction methods [93, 41,
109, 33, 79, 26] applied to images taken from video-surveillance image sequences. All
these change detection methods exploit several frames of the sequence to determine
the foreground objects unlike our multiscale detection method.

For several image pairs, we used ground-truths to evaluate the performance of
the algorithm. We considered the usual “recall” and “precision” rates defined in
the range [0, 1] as :

recall =
number of pixels correctly labeled as foreground

number of foreground pixels in the ground-truth

precision =
number of pixels correctly labeled as foreground

number of foreground pixels detected by the algorithm
.
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σ = 10 σ = 20 σ = 30 σ = 40

Fig. 7.9. Robustness to white Gaussian noise. The two first rows show the detection
results and the third row shows the probabilities of false alarm (− log(PFA(x, L))).

Typically, the algorithm must achieve an inherent trade-off between recall and
precision. It is worth noting that our results are compared to “recall” and “pre-

cision” rates obtained with methods that exploit an image sequence as input.

The following experiments demonstrate first the robustness of the method to il-
lumination changes. We tested several image pairs with the dissimilarity measures
(2.3) and (2.4) to handle illumination conditions, which are not necessarily the same
in the two input images. Figures 7.12 and 7.13 show two image pairs extracted from
the “light switch” and bootstrapping” benchmarks described in [100]. We compared
our results obtained for different standard deviations ρ involved in the dissimilarity
measure (2.3) to ground truths. Our method generally produces satisfying results us-
ing a single reference image when compared to the state-of-the-art methods exploiting
series of temporal images [100] or color information [79]. By setting ρ = 1, the method

is relatively robust to sudden illumination (see Fig. 7.12, N = 9, L = 10, λ̂N = 3.04)

and shadow effects (see Fig. 7.13, (N = 9, L = 15, λ̂N = 4.69)) but the expected num-
ber of false alarms needs to be increased (ε = 100 and ε = 10 respectively) to detect
the desired regions. However, the method suffers from missed detection problem in
constant areas, as it was expected. This is the case of Fig. 7.12 where a portion of
the person’s body is detected as unchanged. In most cases, the dissimilarity mea-
sure (2.4) (correlation coefficient) which is parameter free, enabled to produce similar
results and can be attractive in many applications.

On the tested images (with ground truths), the performance of baseline techniques
are known to be limited as reported in [100, 46]. The potential of our method shown in
Fig. 7.14 is satisfying when compared to the state-of-the-art background subtraction
methods which can handle illumination changes and moving objects [100, 41, 93, 72,
109, 33, 46, 79]. Our method did the same job using two input images and sometimes
outperformed several methods [93, 41, 2, 46, 79] which require a long image sequence
as input. Nevertheless, background subtraction cannot be used to detect changes
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image 1 image 2 difference image

multiscale detection masks over image 2 − log(PFA(x, L))

multiscale detection masks over image 2 − log(PFA(x, L))

Fig. 7.10. Car detection in a snowy traffic scene. The second row corresponds to detection
performed as previously ; the third row shows the detection results by considering a unique
threshold (see text).

between two images only (background model must be learned beforehand). Note that
motion in the background (see Fig. 1.1) makes detecting changes by baseline methods
very challenging (see [100]).

In Fig. 7.15 (third row), the masks of moving objects are estimated by considering
respectively 50 frames and a mixture of three Gaussians [93] (third row, middle), and
a long term model (th = 10−6 (third row, left), [41]). We present also the results
obtained by a recent mean shift-based clustering method [26] which exploits motion
and photometry consistency. The images of the sequence are normally acquired with
a fixed camera and the tested background subtraction methods provide satisfactorily
results in most cases. The pedestrian in front of the water, the bike and the cars are
isolated but holes are created in the masks in Fig. 7.15 because of the uniform appear-
ance of the coat. The third method [26] produced regularized masks but no object and
no car is respectively detected on the water and on the bridge in the background. We
compared this frame (t = 84) to an arbitrarily chosen reference frame (Fig. 7.15, first
row, left) showing the background and with no moving object. The difference image
shows that the tested image (with moving objects) is slightly blurred when compared
to the reference frame showing only the background. Additionally we observe resid-
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same scene in spring and summer

difference image

L2 dissimilarity measure (2.5)

dissimilarity measure (2.3) (ρ = 10)

dissimilarity measure (2.4)

Fig. 7.11. Change detection with several dissimilarity measures in an outdoor scene at
two different dates in the year (spring and summer) (5 × 5 search windows and L = 7).

ual movement due to vibrations of the camera. Nevertheless, the proposed multiscale
modeling and the sliding window process enable to produce regularized masks and to
detect the cars on the bridge and moving meaningful objects on the water (L = 15,

λ̂N = 3.72). Another comparison with other competitive change detection methods
on image pair taken from [41, 33] is shown in Fig. 7.16.

In Fig. 7.18, we compare our results to those obtained by Zivkovic & van der
Heijden [109] and Pilet et al. [79] on three images taken from an image sequence
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image 1 image 2 ground truth

dissimilarity (2.4) dissimilarity (2.3) dissimilarity (2.3) dissimilarity (2.3)
(ρ = 100) (ρ = 10) (ρ = 1)

recall = 0.617 recall = 0.561 recall = 0.515 Recall = 0.595
precision = 0.542 precision = 0.166 precision = 0.242 precision = 0.482

Fig. 7.12. Robustness to sudden illumination changes with two different dissimilarity
measures and different values of ρ (ε = 100) (see [100, 46, 79] for comparison).

image 1 image 2 ground truth

L2 dissimilarity (2.5) dissimilarity (2.3) (ρ = 10) dissimilarity (2.3) (ρ = 1) dissimilarity (2.4)

recall = 0.815 recall = 0.618 recall = 0.761 recall = 0.742
precision = 0.384 precision = 0.532 precision = 0.739 precision = 0.840

Fig. 7.13. Robustness to shadows and specularities with the dissimilarity measures (2.3)
(ε = 10) and (2.5) and (2.4) (ε = 1.) (see [100, 46] for comparison).

from the PETS 2006 dataset. Unlike these two methods, our method exploits only
the reference image shown on top row of Fig. 7.18. The persons are reliably detected
and the results are very similar to those obtained in [79]. Finally, we compared our
method to the three layer MRF method [9, 10] applied to an image pair for which the
ground truth is available. In Fig. 7.17, our algorithm missed mainly a non-contrasted
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dissimilarity (2.3) (ρ = 1.) L2 dissimilarity (2.5)

L = 10 L = 15 L = 7

recall = 0.595 recall = 0.761 recall = 0.968
precision = 0.482 precision = 0.739 precision = 0.906

L = 40 L = 15

recall = 0.909 recall = 0.575
precision = 0.951 precision = 0.816

Fig. 7.14. Change detection masks computed by the proposed method for the image pairs
tested in [100, 46] (see also [79]). Two first rows : image pairs ; third row : ground truths ;
fourth row : our detection results with the dissimilarity measures (2.3) and (2.5).

vehicle and detected a pair of crosses as expected.

The experiments we presented demonstrate that our multiscale method works
well for tested image pairs. Intuitively, the number of scales is related to the area of
missing objects or occlusions in the image pairs. The next experiments will verify the
potential of the method for other applications given an image pair.

7.3. Occlusion and discontinuity detection. Additional experiments have
been carried by running the change detection algorithm on more challenging test
images. Results in Figs. 7.19-7.20 focus on the problem of detecting space-time occlu-
sions in consecutive frames as in [64, 108, 52]. On the classic “flower garden” sequence,
where the large camera pan generates occlusions around the tree in the foreground,
our detector extracted most of these occlusions without using color information or
motion information. In this scenario, if many patches similar to the first one can be
found (at a distance parametrized by the size

√
N ×

√
N of B(x)), no change is de-

tected. As shown in examples in Figs. 7.19-7.20, detected locations can be interpreted
as meaningful changes in the scene corresponding to : 1) appearance or disappearance
of scene parts ; 2) occlusions ; 3) motions of amplitude larger than

√

N/2 pixels. If
B(x) is large enough, the detector is potentially invariant to a wide range of move-
ments, including those caused by camera displacement, to the extent of only detecting
the two first types of events. In this example, the input images are highly redundant.
Then, it makes sense to examine the situation with 3 × 3 search windows B(x). A
limited number of patch sizes (L = 3) is more suitable since occluded areas are small.
Similar textured patches are actually found in the second image because of texture
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image pair difference image

multiscale detection − log(PFA(x, L))

Elgammal et al. [41] Stauffer et al. [93] Bugeau and Perez [26]

Fig. 7.15. Comparison of background subtraction methods with our approach that utilizes
a single reference frame showing the background with no moving object.

image 1 image 2 our multiscale method

Stauffer & Grimson [93] Elgammal et al. [41] Crivelli et al. [33]

Fig. 7.16. Comparison with three background subtraction methods using several frames
from the analyzed image sequence [41, 33] and our multiscale change detection method that

uses only a single reference frame shown on top left (L2 dissimilarity measure : L = 5, λ̂N =
0.1).
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image # 1 image # 2 difference image

multiscale detection ground truth − log(PFA(x, L))

Fig. 7.17. Occlusion detection in a traffic scene using 3 × 3 search windows
(L = 12, recall = 0.759, precision = 0.616) (http ://web.eee.sztaki.hu/bcsaba/
aerialObjectMotionBenchmark.htm) (see [9, 10]).

redundancy. If B(x) is larger, several patches along discontinuities may be found in
the second image and the set of occluded pixels would be smaller. This phenomena is
related to the so-called “aperture problem” which is well known in motion estimation.
Another critical issue we did not address in this paper is the capture of the camera
motion amplitude. Larger search windows must be considered in that case. An alter-
native is to compensate the camera motion in a pre-processing step. The remaining
detected regions correspond to occluded regions.

7.4. Comparison with global cost functionals. In order to demonstrate the
benefits of the change detection method, we compare the results with more conven-
tional techniques. As baseline algorithms and for the sake comparison, we chose to
minimize two cost functionals, with a min-cut/max-flow algorithm, in the spirit of
most approaches for change detection. Each studied energy is the combination of two
terms, each of them corresponding to a precise property which must be satisfied by
the optimization solution.

Let Θ the set of configurations θ = (θ(x))x∈Ω with θ(x) ∈ {0, 1} for all x ∈ Ω.
First, we consider the following cost functional [104] :

Jentropy
uv (θ) =

∑

x∈Ω

c(x)(te − u(x) + v(x)) +
∑

<x,y>

ψ(θ(x), θ(y)).(7.1)

where c(x) = (2 × 1[θ(x) = 1] − 1) ∈ {−1, 1}. The first term measures the distance
between (u(x)−v(x)) and a threshold te and weights the distances at each location x
by plus or minus one according to whether θ(x) = 1 or θ(x) = 0 as proposed in [104].
Thus, pixels where θ(x) = 1 but (u(x) − v(x)) < te will contribute positively to the
global energy. The value te is the prior threshold automatically found according to the
(entropy-based) Kapur’s method [53] but other methods (EM algorithms) could be
also investigated. The second term takes the form of an Ising MRF (Markov Random
Field) model. It is defined on pairs < x,y > of neighboring pixels (with respect to
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reference image

image # 99 image # 299 image # 799

our multiscale approach

Pilet et al. [79]

Zivkovic & van der Heijden [109]

Fig. 7.18. Detection on three images from the PETS 2006 dataset. The methods [109, 79]
exploit the image sequence unlike our method which uses only a single reference image (top
row).
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frame #8 frame #7 thresholded difference

multiscale detection − log(PFA(x, L)) difference image

Fig. 7.19. Detection of spatio-temporal discontinuities in “flower garden” (3×3 neighbor-
hoods, 3 × 3 search windows, L = 3). The discontinuity areas (superimposed on the original
frame #7) correspond to the highest level set of the image − log(PFA(x, L)).

frame # 1 frame # 5 frame # 10

frame # 15 frame # 20 frame # 25

Fig. 7.20. Space-time discontinuities in “flower garden”.

4-neighborhood system) as

ψ(θ(x), θ(y)) =

{

β if θ(x) = θ(y)
0 otherwise

(7.2)

where β > 0 is the balance parameter manually adjusted. This parameter has signif-
icant effects on the qualitative properties of the minimizer as shown in Fig. 7.23.

For more objective comparisons, we also consider the following patch-based cost
functional [57] :

Jcount
uv (θ) =

∑

x∈Ω

L
∑

ℓ=1

aℓ

∣

∣

∣

∣

1

N
SN,ℓ(x) − θ(x)

∣

∣

∣

∣

+
∑

<x,y>

ψ(θ(x), θ(y))(7.3)
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multiscale detection entropy thresholding
of absolute difference image

Fig. 7.21. Our multiscale detector (L = 11) applied to the image pair shown in Fig. 7.1.

β = 10−6 β = 0.1 β = 1.0 β = 2.5

Fig. 7.22. Detection results for different values of β which controls the patch-based energy
functional Jcount

uv (θ) (image pair shown in Fig. 7.1). First and second rows : a′
ℓ = 1, ℓ =

1, · · · , L ; third and fourth rows : a′
ℓ = (2ℓ + 1)−1, ℓ = 1, · · · , L.

where the first terms tends to label a pixel as subject to change if the number of
positive decisions (when u is compared to v) is high for a large number of patch

sizes and aℓ =
a′

ℓ
P

L
ℓ=1

a′
ℓ

with either a′ℓ = 1 to consider equally the maps {SN,ℓ} or

a′ℓ = (2ℓ+ 1)−1 to give more weights to maps {SN,ℓ} obtained with small patch sizes
as it may be recommended in specific applications. In our experiments, we evaluated
these two arbitrary weights but other rules to combine the maps {SN,ℓ} can be found.
The second term is similar to the regularization term (Ising model) introduced in
Jcount

uv (θ).

On the image pair shown in Fig. 7.1, we present the detection results obtained
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β = 0.5 β = 1. β = 5. β = 10.

Fig. 7.23. Detection results for different values of β which controls the entropy-based
energy functional (7.1) (image pair shown in Fig. 7.1).

respectively by automatic thresholding of the absolute image difference (Fig. 7.21
(right)) and by MRF-based labeling and graph cut minimization [21] of the afore-
mentioned energy (Fig. 7.23). In this experiment, the threshold te is over-estimated
and the expected and meaningful occluded objects are not recovered. In the two
other studied examples, it was not possible to find appropriate thresholds (even set
manually) to extract the occluded regions. Accordingly, we focused on the second
cost functional Jcount

uv (θ) since it exploits equally the counting maps {SN,ℓ} obtained
for different patch sizes nℓ, l = 1, · · ·L. In Fig. 7.22, more regular masks are esti-
mated by increasing β but small undesirable objects are also extracted for all tested
β values. Moreover, rough blobs are generally isolated as it is confirmed on additional
examples and applications shown in Figs. 7.25-7.27. The object boundaries are better
delineated using our multiscale framework (Figs. 7.24-7.26). Actually imposing more
regularity by increasing β tends to simultaneously decrease the perimeter of number
of connected components and the number of connected components. Intuitively β is
an hyperparameter which can be thought as controlling the number of false alarms.

Nevertheless, a compromise is not easily achieved to produce results visually simi-
lar to those obtained using our testing method which globally analyzes the occurrence
of dependent counts for different patch sizes (see Figs. 7.26, 7.24 and 7.27). It turns
out that the cost functional (7.3) is not equivalent to our probabilistic detection ap-
proach. In addition, a reliability measure expressed in terms of false alarm rates is
provided by using our approach unlike the energy-based counterpart. To overcome
these difficulties, more sophisticated cost functionals and Conditional Random Fields
(CRF) models including edge terms could be designed as proposed in [59, 96, 52, 97].
Considering the maps of probability of false alarm within a CRF framework (see for
instance [33]) is also an opportunity we plan to investigate in future work.

7.5. Asymmetry detection. The algorithm has been also applied to a single
2D MRI image where a tumor is observed on the left hand side of the brain (Fig. 7.28).
In this experiment, we flipped one original image at its vertical axis to get a second
image. We run the detector on the left half of the original image. In Fig. 7.28, the
detected pixels on the left image correspond to regions with no correspondence on
the right hand side on the original image. We tested several search window sizes in
order to extract the meaningful regions (Fig. 7.29). The algorithm given in Fig. 5.1 is
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multiscale detection entropy thresholding
of absolute difference image

Fig. 7.24. Our multiscale detector (L = 3) applied to the image pair shown in Fig. 7.6.

β = 0.1 β = 0.5 β = 1. β = 2.0

Fig. 7.25. Detection results for different values of β which controls the patch-based energy
functional Jcount

uv (θ) (image pair shown in Fig. 7.6). First and second rows : a′
ℓ = 1, ℓ =

1, · · · , L ; third and fourth rows : a′
ℓ = (2ℓ + 1)−1, ℓ = 1, · · · , L.

modified using (5.2) to analyze the dissimilarity in both directions. In this experiment
|b(x)| = 3×3 and |B(x)| varies from 3×3 to 15×15. It is worth noting that the human
brain is only approximatively symmetric, and point-to-point comparisons between the
left and right hand sides dot not yield satisfactory results ; many occluded pixels are
detected because of asymmetry/deformation. In Fig. 7.29, our approach produces
similar detection masks if the search windows is higher than 5 × 5 pixels. In future
work, we plan to compare these results to those obtained by more dedicated methods
[88, 90] in medical imaging.
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multiscale detection entropy thresholding of difference image
of absolute difference image

Fig. 7.26. Our multiscale detector (L = 3) applied to the image pair (“flower garden”)
shown in Fig. 7.19.

β = 10−6 β = 0.1 β = 1.0 β = 2.5

Fig. 7.27. Detection results for different values of β which controls the patch-based energy
functional Jcount

uv (θ) (image pair shown in Fig. 7.19). First and second rows : a′
ℓ = 1, ℓ =

1, · · · , L ; third and fourth rows : a′
ℓ = (2ℓ + 1)−1, ℓ = 1, · · · , L.

8. Conclusion. In this apper, we have described a non-parametric multiscale
change detector and we have presented a theoretical study of its statistical proper-
ties. The method robustly detects areas in images where the redundancy property
captured by image patches does not hold. It is in particular robust to many types of
variations, such as local appearance changes, residual motions and scale variations. In
this approach, local and independent decisions for nearby patches are collected and a
decision is made for a change detection if the number of dissimilar patches exceeds a
given threshold. This procedure is performed for different patch sizes and a multiscale
fusion decision rule is used for final change detection. This approach is capable of
extracting clean occlusion/change masks.

An important feature of the approach is that image motion does not have to
be computed explicitly. Applied to the specific problem of foreground detection in
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image and mirror image difference image

change detection masks − log(PFA(x, L))

Fig. 7.28. Asymmetry detection in a MRI image (L = 10, 15 × 15 search windows).

an image sequence with static camera, our method, using only two input images,
does as well as and sometimes better than methods [93, 41, 2, 79] which require a
long image sequence as input. We demonstrated on real and complex image pairs the
ability of this unified approach to detect appearance/disappearance of objects, motion
occlusions, and blotches in old movies. We explored the estimation of the patch size
and of the search window size and addressed the robustness to global illumination
changes. To our knowledge, no previous method addressed all these variations at
the same time and fuse multiple decisions as we did. In all experiments, gray level
intensity values are used for matching although color images could be considered in
future work. We did not address the stereo problem yet since the displacements are
traditionally large.

We are convinced that all these technical contributions are meaningful in detection
theory and image analysis. In future works, we plan to adapt this framework to the
comparison of several images instead of two images.
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