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Abstract

We explore various ways to implement (very) light weight concurrency in OCaml, in both
direct and indirect style, and compare them to system and VM threads approaches. Three simple
examples allow us to examine both the coding style and the performances. The cost of context
switching, thread creation and the memory footprint of a thread are compared. The trampolined
style of programming seems to be the best both at CPU and memory demands.

1 Introduction

Concurrency is a property of systems in which several computations are executing “simultaneously”,
and potentially interacting with each other. Concurrency doesn’t imply that some hardware par-
allelism be available but just that the computations (that we’ll call “threads” in this text) are “in
progress” at the same time, and will evolve independently. Of course, threads also need to be able to
exchange data.

Besides making potentially easier the exploitation of hardware parallelism,1 threads allow overlap-
ping I/O and computation (while a thread is blocked on an I/O operation, other threads may proceed)
and support a concurrent programming style. Many applications can be expressed more cleanly with
concurrency.

Operating systems provide concurrency by time sharing of the CPU between different processes or
threads. Scheduling of such threads is preemptive, i.e. the system decides when to suspend a thread to
allow another to run. This operation, called a context switch, is relatively costly [15]. Since threads can
be switched at any time, synchronisation tools such as locks must generally be used to define atomic
operations. Locks are low level objects with ugly properties such as breaking compositionnality [20].

Threads can also be implemented in user-space without support from the operating system. Either
the language runtime [1] or a library [5, 4] arranges to schedule several “threads” running in a single
system thread. In such a setting, scheduling is generally cooperative: threads decide themselves when
to suspend to let others execute. Care must be taken in handling I/O since if one such thread blocks
waiting for an I/O operation to finish the whole set of threads is blocked. The solution is to use only
non blocking I/O operations and switch to another thread if the operation fails. This approach:

• removes the need for most locks (since context switches can only occur at predefined places, race
conditions can (more) easily be avoided),

• allows systems with very large numbers of potentially tightly coupled threads (since they can
be very light weight both in terms of memory per thread and computation time per context
switch),

• can be used to give the application control on the scheduling policy [16].

On the other hand the programmer has to ensure that threads indeed do yield regularly.
In this paper we study several ways to implement very light weight cooperative threads in OCaml

without any addition to the language. We first describe thread operations in Section 2. Three

1Which OCaml threads currently can’t because of the non concurrent garbage collector, by the way.
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example applications making heavy use of concurrency are then presented in Section 3. The various
implementations are described in Sections 4 and 5. Performance comparisons based on the example
applications are given in Section 6. The paper closes with a conclusion and perspectives (Section 7).

2 Principles

2.1 Basic operations

All implementations will provide the following operations :

spawn takes a thunk and creates a new thread for executing it. The thread will actually start running
only when the start operation is invoked.

yield suspends the calling thread, allowing other threads to execute.

halt terminates the calling thread. If the last thread terminates, start returns.

start starts all the threads created by spawn , and waits.

stop terminates all the threads. start returns, that is, control returns after the call to start .

Most systems providing threads do not include something like the start operation: threads start
running as soon as they are spawned. In our model, the calling (“main”) code is not one of the threads
but is suspended until all the threads have completed. It is then easy to spawn a set of threads to
handle a specific task and resume to sequential operations when they are done. However, this choice
has little impact on most of what we say in the following.

2.2 Thread communications

We allow threads to communicate through MVars and synchronous FIFOs. Introduced in Haskell
[18], MVars are shared mutable variables that provide synchronization. They can also be thought as
one-cell synchronous channels. An MVar can contain a value or be empty. A tentative writer blocks
if it already contains a value, otherwise it writes the value and continues. A tentative reader blocks if
it is empty, otherwise it takes (removes) the value and continues. Of course blocked readers or writers
should be waken up when the MVar is written to or emptied.

We define α mvar as the type of MVars storing a value of type α. The following operations are
defined:

make mvar creates a fresh empty MVar.

put mvar puts a value into the MVar.

take mvar takes the value out of the MVar.

In the following we assume that only one thread wants to write and only one wants to read in a
given MVar. This is not a necessary restriction, though. Roughly, MVars will be defined as a record
containing three mutable fields:

• v of type α option: contains the stored value if any,

• read of some option type: contains information on the blocked reader if any,

• write of some option type: contains information on the blocked writer and the value it wants to
write, if any,

but the details will vary with each implementation.
Contrary to an MVar, a synchronous FIFO can store an unlimited amount of values. Adding a

value to the FIFO is a non blocking operation while taking one (the one at the head of queue) is
blocking if the queue is empty. Operations are similar to MVar’s:
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make fifo creates a fresh empty FIFO.

put fifo adds a value into the FIFO.

take fifo takes the first value out of the FIFO.

3 Three example applications

We now describe three example applications that will allow us to get a feel of the programming style
required by our model, and to collect some performance data on the various implementations. All
three examples are process networks.

3.1 Kpn

We consider a problem treated by Dijkstra, and solve it by a Kahn process network, as described
in [10]. One is requested to generate the first n elements of the sequence of integers of the form
2a3b5c (a, b, c ≥ 0) in increasing order, without omission or repetition. The idea of the solution is to
think of that sequence as a single object and to notice that if we multiply it by 2, 3 or 5, we obtain
subsequences. The solution sequence is the least sequence containing 1 and satisfying that property
and can be computed as illustrated on Figure 1. The thread merge assumes two increasing sequences
of integers as input and merges them, eliminating duplications on the fly. The thread times multiplies
all elements of its input FIFO by the scalar a. Finally the thread x prints the flow of numbers and
put them in the three FIFOs.2

All threads communicate and synchronize through MVars, except that the x thread itself writes
its data in three FIFOs for the times threads to take it. The computation is initiated by putting the
value 1 in the m235 MVar so that x starts running. Such a computation can be expressed as a list
comprehension in some languages, such as Haskell3 [19].

m2

m3

times 2f2

times 5

times 3f3

f5
m35

merge

x

m235

merge

m5

1

Figure 1: Kpn (threads are circles, MVars squares, FIFOs rectangles)

3.2 Eratosthene sieve

Our second example is Eratosthene sieve. The sieve as a set of concurrent threads is also described
in [10] (where it is said to appear the very first time in [17]). A variant can also be found in [9]. The
program is structured as a chain of threads exchanging messages.

integers is the generator, it sends out all integers starting from 2,

filter n transmits only the numbers it receives if they are not multiple of its n parameter,

sift creates and inserts a new filter in the chain, for each number received,

2This description is borrowed from the cited article.
3The Haskell code could be s = 1:merge [ x*2 | x <- s ] (merge [ x*3 | x <- s ] [ x*5 | x <- s ]) with

merge defined appropriately.
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output prints the numbers it receives.

sift outputfilter 2integers sift output integers

Figure 2: Sieve as a chain of concurrent threads

Thus the sieve builds as a chain of filter threads with a generator (integers) on the left and an
expander (sift) preceding the consumer (output) on the right. Figure 2 shows the threads at startup
and after the number 2 has been found to be a prime.

The communication channels between the threads will be implemented by MVars. The code is
particularly simple.

3.3 Concurrent sort

Our last example is a concurrent sort described in [9]. As pointed out by the authors, both bubble
sort and insertion sort are sequentialized versions of this concurrent algorithm.

This sorting algorithm is made of a network of simple comparator threads, each of which is used
to sort a pair of values from two input MVars to two output MVars. Such a comparator with inputs
x and y and outputs hi and lo is shown on Figure 3(a). Figure 3(b) shows a network for sorting a
group of 4 values.

x

y

hi

lo

(a) Comparator

x0

x1

x2

x3

y0 y1 y2 y3

(b) Sorting network

Figure 3: Concurrent sort

MVars will be used to store the initial and final values, as well as for the communication between
the comparators.

4 Direct style implementations

When programming in direct style the primitives will have the signatures shown on Figure 4. Note
that some of the operations are potentially blocking. The source code for the examples is given in
appendix B. In the following we’ll see direct style implementations providing primitives with these
exact signatures.
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val yield : unit → unit
val spawn : (unit → unit) → unit
val halt : unit → unit

val start : unit → unit
val stop : unit → unit

(a) Basic primitives

type α mvar
val make mvar : unit → α mvar
val take mvar : α mvar → α
val put mvar : α mvar → α → unit

type α fifo
val make fifo : unit → α fifo
val take fifo : α fifo → α
val put fifo : α fifo → α → unit

(b) MVars and FIFOs

Figure 4: Direct style signatures for the thread primitives

4.1 preempt Source code in Section A.1 page 17

We start with a heavyweight version making use of preemptive scheduling as provided by the
OCaml Thread module. This program can be compiled to use system (ie kernel managed) threads or
VM threads, this last choice being available only for bytecode executables.

MVars are implemented as a record containing the value (v field) as an option type, a CML-like
[21] channel for synchronous events (provided by the Event OCaml module) and two booleans read
and write indicating if a thread is blocked on an operation on this MVar. Additionnaly, each MVar
has its own lock l (from the Mutex module) to ensure MVar manipulations are atomic.

A global lock gl is also used to ensure threads do no start doing their job before start is called.
The possible number of such threads is quited limited. On a “small” machine (running Linux kernel

2.6.24 i686 with 256 MB of memory) thread creation fails around the 381th one. This limit is much
higher on the machines where the measurements presented in Section 6 were conducted. Hopefully
the limits are much higher for VM threads. Of course we don’t expect this implementation to be very
efficient on our examples.

4.2 callcc Source code in Section A.2 page 18

Since we want to be able to suspend a running thread and activate it again later we need some
way to save the current thread state, or rather continuation. The continuation of a computation at
some point is what remains to be done at this point, in other words the rest of the computation. It
is represented by the context of the computation [3]. The control flow of a program can be treated in
terms of continuations.

The call − with − current − continuation primitive (often abreviated as call/cc) was first defined
in Scheme [11]. It captures (that is, makes a copy of) the current continuation and reifies4 it into a
value of type α cont . Thus, continuations, which in most languages are implicit, can be explicitly
captured and manipulated (passed as parameters, saved in data structures etc) like any other value.
These “first class continuations” can also be thrown (and given a parameter of type α), meaning that
the current continuation is discarded and replaced with the thrown one, so that execution resumes at
the point where the continuation was captured5. Continuations can be used to implement all sorts of
manipulations of the control flow, including multi-threading.

This implementation is designed along the lines described in [7]. There is no scheduler proper,
rather each yielding thread enqueues its continuation before dequeueing and throwing the next one.
The queue (of type queue t) also stores distinctively the initial continuation e (of the call to start) to
be thrown when the queue becomes empty so that control returns after the call to start .

We could also use a scheduler by letting each yielding thread throw the scheduler continuation,
which would consist in dequeuing the next thread and storing back its own continuation before throw-
ing it, but we feel it would be more complex, slow, and offers no advantage.

4That is, makes it available in the program.
5There are some variations. In Scheme, for example, captured continuations are reified into functions. Thus there is

no explicit throw operation, the continuation is thrown when the function is applied.
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When an operation blocks on an MVar, the continuation of the thread is captured with callcc and
is stored in the appropriate field.

Callcc for OCaml is provided by a library with a “very naive implementation” whose “performance
is terrible” (it copies the whole stack) so that “use in production code is not advised”[14]. Last, it
is only available for bytecode. It does work rather well for one of our simple examples, but performs
very badly on the others, as we’ll discuss later.

Note that we have to fool the typechecker with Obj .magic in take mvar and take fifo to ensure
these functions are polymorphic. Otherwise, the call to halt makes it decide the function must return
unit and the MVars loose their polymorphism.

4.3 dlcont Source code in Section A.3 page 19

This version uses delimited continuations provided by the caml-shift library [22]. This is only
available for bytecode executables (as it manipulates the VM stack). A delimited continuation (also
called partial, composable, or sub continuation), is a prefix of the rest of the computation, represented
by a delimited part of the context of the computation. Unlike regular continuations, delimited con-
tinuations return a value, and thus may be reused and composed. Delimited continuations have been
introduced initially as a way to express the semantics of continuations in a denotational setting [6].

Several slightly different operators have been proposed in the litterature but the general idea is
that such a continuation is delimited by first pushing a delimiter (often called a prompt) on the stack,
and later capturing the continuation, up to the first prompt.

In this library, push prompt pushes a prompt on the stack, marking the delimitation, while
take subcont turns the part of the stack up to (and not including) the first prompt into a (α, β) subcont
value and removes it (including the prompt) from the stack.6 Here α is the type of values that must
be given when throwing the continuation, and β is the type of values returned by the continuation.
push subcont pushes (i.e. throw) a delimited continuation on the stack.

So our plan is:

• the scheduler pushes the prompt and starts a thread (either by calling a function or pushing the
corresponding subcont),

• when yielding, the thread uses take subcont to return its current continuation to the scheduler,

• the scheduler queues the subcont, dequeues the next one, pushes the prompt and the new subcont

• and so on...

Alternatively, when yielding, the thread could package the captured subcont into a function pushing
it. The scheduler thus does not need to make a difference between “first time” threads (represented
as functions) and “already running” threads (represented as subconts). It will just have to push the
prompt and call the function. This is alright but it turns out that it’s much more efficient to push
the prompt and the continuation at the same time (the library provides the push prompt subcont
function for that). So, rather than pushing the prompt inside the scheduler we will use a function
that captures the subcontinuation delimited by the passed prompt and builds a function that pushes
the prompt and this continuation. This happens to be the behavior of the shift0 [12] operator (that
removes the prompt from the stack and encloses the captured continuation with a prompt).

let shift0 p f = take subcont p (fun sk () →
(f (fun c → push prompt subcont p sk (fun () → c))))

which is an optimized7 version of

6This is the behavior of the operator know as control0 [12].
7Actually, the first version has a subtle memory leak, as explained in Appendix B of [13].
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let shift0 p f = take subcont p (fun sk () →
(f (fun c → push prompt p

(fun () → push subcont sk (fun () → c)))))

Since the prompt is pushed by the thread functions themselves rather than by the scheduler, we
also need the “initial” functions to push it. We simply make the spawn function (that adds a thread
in the queue) insert the push prompt call at the beginning of the function. It also adds a call to halt
at the end so that the prompt is removed when the thread terminates.

5 Indirect style implementations

The basic idea of indirect style is to write the threads so that the continuations are made explicit (as
closures) at each potentially blocking point. This way, the continuation can be manipulated without
the need for any continuation-capture primitive.

For example, taking a value out of an MVar, which in direct style is written:

let v = take mvar m in ...

can instead be written as:

take mvar m >>= fun v → ...

where >>= (pronounced bind) is the thread sequential composition operator.8 This operator
appears at cooperation points, between a potentially blocking operation and its continuation. The
continuation is a closure that will be executed when the blocking operation will have completed. The
parameter of the continuation will receive the result of the operation. Imperative loops must be turned
into (tail-) recursive functions if they contain a blocking operation. One more operation is useful in
indirect style : skip, the no-op. It is used in kpn and sieve whose source code (along with the one for
sorter) is shown in appendix B.

Trampolined style (derived from continuation passing style), monadic style, event-based program-
ming are all variants of the indirect style. We study them in the following.

5.1 tramp Source code in Section A.4 page 20

Trampolined style [8] is a simple way to provide application level concurrency through cooperative
scheduling. The idea is that the code is written so that a function is given explicitly its continuation
as a closure. It can then manipulate it just like the direct style continuation-capture based versions.
The code must be written in a way similar to continuation passing style [24], but the continuations
need to be made explicit only at cooperation points.

Figure 5 shows the signature of the operations. As we can see, each potentially blocking operation
is given (as an additional parameter) the (continuation) function to run when the operation has been
performed. Note that put fifo does not take such a continuation parameter since this operation never
blocks.

For example the yield instruction can be used as

...
print string "hoho";
yield (fun () →

print string "haha";
yield (fun () →

print string "hihi"

...
))

where the argument is the continuation, i.e. the function to be executed when the thread will be
resumed. The “bind” infix operator noted >>= can be used as syntactic sugar to obtain a arguably

8This is borrowed from monad syntax but does not necessarily represent here “the” bind operator from monads.
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val yield : (unit → unit) → unit
val spawn : (unit → unit) → unit
val halt : unit → unit

val start : unit → unit
val stop : unit → unit

val skip : (unit → unit) → unit
val ( >>= ) : ((α → unit) →
unit) → (α → unit) → unit

(a) Basic primitives

type α mvar
val make mvar : unit → α mvar
val take mvar : α mvar → (α → unit) → unit
val put mvar : α mvar → α → (unit → unit) →
unit

type α fifo
val make fifo : unit → α fifo
val take fifo : α fifo → (α → unit) → unit
val put fifo : α fifo → α → unit

(b) MVars and FIFOs

Figure 5: Trampolined style signatures for the thread primitives

more pleasant syntax. >>= takes two arguments and applies its second argument (the continuation)
to the first one. Adopting an indentation more fitted to the intended “sequential execution” semantics,
the above code is now written:

...
print string "hoho";
yield >>= fun () →
print string "haha";
yield >>= fun () →
print string "hihi"

...

Since a potentially blocking function, such as yield or take mvar , takes its continuation as an
additional parameter, it can execute it immediately or, if it needs to block, store it for later resuming
before returning to the scheduler. Also note that this continuation can receive a value if the blocking
operation produces a value (as take mvar does).

Writing code so that continuations are explicit is often not as intrusive as one may feel initially. As
the code of our example applications show, continuations often do not even appear explicitly. The only
case of use in our examples is print list in sorter. Actually, only when using procedural abstractions to
build complex blocking operations do we need to manipulate explicitly the extra parameter. Even then
it can be easy, as the following two functions show. The first one abstracts the operation of yield ing
three times and the second one the reading of the value of an MVar by takeing it and reputting it
immediately (the correctness of this code is not obvious but the implementation of take mvar ensures
the continuation of the take is executed before any other thread once the value is removed from the
MVar, so the operation is indeed atomic):

let yield3 k =
yield >>= fun () →
yield >>= fun () →
yield >>=
k

let read mvar mv k =
take mvar mv >>= fun v →
put mvar mv v >>= fun () →
k v

5.2 monad Source code in Section A.5 page 21

This implementation uses monads [18] and is heavily inspired by Lwt (light weigth threads) [25],
a cooperative thread library for OCaml. Monads are useful in a variety of situations for dealing with
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effects in a functional setting. The code is written in monadic style which is actually quite close to
the trampolined style.

Here’s a brief description of the implementation. α thread is the type of threads returning a
value of type α. It is a record with one mutable field denoting the current thread state, the state
being a sum type. The three cases correspond respectively to a completed computation, a blocked
computation with a list of thunks to execute when it will be completed, and a computation connected
to another one (that means it will behave the same, being just a Link to it).

As can be seen on Figure 6, blocking operations return a value of type α thread and are thus easily
recognized. Also, one more primitive is provided: return turns a value of type α in a value of type
α thread .

type α thread
val return : α → α thread
val ( >>= ) : α thread → (α → β thread ) →
β thread

val skip : unit thread
val yield : unit → unit thread
val halt : unit → unit thread
val spawn : (unit → (unit thread )) → unit
val stop : unit → unit thread
val start : unit → unit

(a) Basic primitives

type α mvar
val make mvar : unit → α mvar
val put mvar : α mvar → α → unit thread
val take mvar : α mvar → α thread

type α fifo
val make fifo : unit → α fifo
val take fifo : α fifo → α thread
val put fifo : α fifo → α → unit

(b) MVars and FIFOs

Figure 6: Monadic style signatures for the thread primitives

Consider the evaluation of t >>= f , following the code for >>=. The first argument, not being
a function, is evaluated immediately (the operations are executed). If it has completed it is of the
form Return v , the value v is passed to f . If t has blocked, its value is Sleep w . A new sleeping
thread res is created, a thunk is added to the w list, then res is returned. The thunk connects res to
the value of bind t f .

Thus, when t finally completes, the thunk is executed. bind t f is evaluated again with t being
Return v so f is executed with v as argument and returns a value of type β thread to which res
becomes Linked.

As bind provides the waking-up of threads, they do not need to be put in runq , except those
yield ing, since they explicitly give back control to the scheduler.

Also, we don’t want spawned threads to start executing before start is invoked, so spawn makes
them wait for completion of a sleeping thread (start wait) that will be woken up by start . Threads
spawned later will start running immediately since start wait state will then be Return ().

The usage of bind also suppresses the need to explicitly manage continuations when composing
thread fragments:

let yield3 () =
yield () >>= fun () →
yield () >>= fun () →
yield ()

let read mvar mv =
take mvar mv >>= fun v →
put mvar mv v

For this reason the code for the print list function of sorter differs slightly from the code shown
in Section B.6. Here it is:

9



let print list mvs () =
let rec loop mvs acc =

match mvs with

| [ ] → return acc
| h :: t → take mvar h >>= fun v → loop t (v :: acc)

in

loop mvs [ ] >>= fun l →
List .iter (fun n → Printf .printf "%i " n) (List .rev l); halt ()

5.3 lwt Source code in Section A.6 page 23

The previous implementation is basically a stripped down version of Lwt, which is much more
elaborate, handling exceptions (mainly by adding a Fail state to the sum type), I/O etc. We thus
provide an implementation based on Lwt where we only need to add the implementation of MVars
and FIFOs.

As in monad, spawn threads wait for the start wait thread waken-up by start . finish is a thread
doing nothing, it just waits to be waken up and then terminates immediately. The Lwt unix module
provides a scheduler as the run function. It arranges for threads to be scheduled and executed until
the passed thread terminates, at which point all the threads are terminated and the function returns.

We cannot stop the scheduler by simply raising an exception since uncaught exceptions in threads
are ignored by Lwt. Instead, we wakeup the finish thread. However, the scheduler has no knowledge
of the threads blocked on MVars or FIFOs. So the stop operation, in addition to waking up finish,
sets the do stop bool ref to true. The MVar and FIFO blocking operations check its value. If it is
set, the thread terminates immediately with a Fail state. Yes, this is not very elegant.

There’s one pitfall: the system doesn’t stop (start does not return) after all threads have called
halt . So, in sorter we make print list call stop rather than halt . But the point is to compare Lwt

performance to the other ones.

5.4 equeue Source code in Section A.7 page 24

A popular paradigm supporting user level concurrency is event-driven programming. The OCaml-
Net library [23] provides an equeue (for event queue) module in which handlers9 are set up to process
events.

We describe it briefly. First an event system (called esys here) must be created. Events are
generated by an event source (here it is the function fun → () that generates none) but can also
be added by the handlers themselves. Each event in presented to each handler, in turn, until one
accepts it (or it is dropped if no handler accepts it). An handler rejects an event by raising the Reject
exception. Otherwise the event is accepted. In case the handler, having accepted the event, wants to
remove itself it must raise the Terminate exception.

The event system is activated by the Equeue.run function. The function returns when all events
have been consumed and the event source does not add any.

In our implementation, handlers will always be “one shot”, so they will always raise Terminate after
having accepted an event. But before to do that, they will have registered a new handler representing
the thread continuation.

A thread blocked on a MVar waits for a unique event allowing it to proceed. Blocked writers
create a new eventid that they register in the control information of the MVar, along with the value
they want to write. They then wait for a Written event with the correct id. Such an event will be
generated when the value will have been actually put in the MVar, operation triggered by the takeing
of the current MVar value by another thread. Blocked readers create a new eventid and wait for the
Read event that will carry the value taken from the MVar. Again, this event will be generated when
some thread puts a value in the MVar.

9
Callbacks is another popular name for these.
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The same applies for taking a value out of an empty FIFO. For yield ing, a thread creates a new
eventid , registers its continuation as a handler to the Go event with the correct id, and adds this
precise event to the system.

Since each blocking operation (in case it actually blocks) registers a new handler and then raises
Terminate , threads must be running as handlers from the very beginning (for the Terminate exception
to be catched by the event system). To ensure this, spawn registers the thread as a handler for a new
Go event, then adds the event to the system.

There’s one pitfall with this implementation: MVar operations are not polymorphic due to the
event system being a monomorphic queue:

val esys : ’ a Equeue.t = < abstr >

Thus, all MVars are required to store the same type of value, which is a serious limitation.
The code for the applications is strictly the same as for the previous implementation. Indeed, the

threads are written in trampolined style and the event framework is used to build the scheduler. This
implementation can be seen more as a exercise in style10.

6 Performance

We have measured the time and memory needs for these implementations. The execution times are
given by the Unix .times function, while the memory usage is measured as the top heap words given
by the quick stat function if the OCaml Gc module.

All the programs were run on a PC running the linux kernel version 2.6.24 with x86-64 architecture,
powered by an Intel Core 2 Duo CPU clocked at 2.33 GHz with 2 GB of memory. Software versions
are OCaml 3.10.2., Lwt 1.1.0, caml-shift july 2008, equeue 2.2.9.

All three examples are made of very simple threads that cooperate heavily. Since there’s a fixed
number of tightly coupled threads, kpn will give us indications on the cost of “context switching”
between the threads. sieve is interesting because it constantly creates new threads. sorter has both
a number of threads (created from the start) and a number of operations depending on the problem
size. Moreover, its number of threads can easily be made huge (for sorting a list of 3000 numbers,
there’re about 4.5 million threads). To measure thread creation time alone, we will also run it with a
parameter that terminates the program as soon as the sorting network has been set up.
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Figure 7: kpn, execution time

Execution time Figure 7 shows the execution time for kpn, on a log-log graph. Callcc is notably
slow. Even heavy-weight sys is much faster, vm being ten times faster. The other implementations
are rather similar, tramp being slightly better in the bytecode version.

10But one could argue that all our implementations are!
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Figure 8: sieve, execution time
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Figure 9: sorter, execution time

It has been noted [2] that continuations used for implementing threads are one shot continuations
and are thus amenable to particular optimized implementations. No such implementation currently
exists for OCaml. We note that dlcont performance is on par with lwt and monad. VM threads are
much better than system threads and are only slightly slower than the light weigth implementations.

Figure 8 shows the execution times for the sieve. Equeue performance is terrible (much worse
than sys) both for sieve and sorter. The problem is in the implementation of the Equeue module.
As we said, events are presented to each handler in turn until one accepts it. In effect the threads
are performing active wait on the MVars. Thus, equeue does not scale with the number of threads.
Clearly, this module has not been designed with massive concurrency in mind.

As a side note, it seems that a simple change in equeue implementation would dramatically improve
performance for the sieve: events should be presented only to (or starting with) handlers set up after
the handler that generated them, in the order they were set up. This way each event would be presented
immediately to the handler that is waiting for it. This would take advantage of the very particular
communication pattern of the concurrent sieve and is not generally applicable, of course.

vm and sys are both much slower than the light weight implementations, among which tramp is
the faster, callcc being not bad at all.

For sorter (Figure 9), performance for sys is shown only for lists of size 100 and 200. The number
of threads used by sorter is about n × (n − 1)/2 with n the list size, which means 19900 threads for
n=200 and 44850 for 300. We have found experimentally that only about 32000 system threads can
be created on the system used.

callcc performs extremely badly, as does vm. Here again tramp is notably better, while monad
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Figure 10: sorter -d, execution time

and lwt are very similar.
Figure 10 shows the time to set up the sorter network but not running it. The main difference

is callcc being rather good this time (dlcont is better here too). Indeed, since the threads are not
running, no continuation captures are performed...

This is the only figure where the performances for bytecode are (slighlty) better than those for
native code. According to OCaml’s documentation native code executables are faster but also bigger
which can translate into larger startup time but this wouldn’t alone explain what we see here. Memory
allocation may be slower since sorter -d essentially allocates threads and MVars.

Memory usage Figure 11 shows on a log-log graph the memory requirements for the kpn example.
vm, sys,11 lwt and tramp are all identical both in bytecode and native code. Dlcont is a bit (well,
twice) above. The problem with callcc becomes clear: its memory usage grows linearly while no new
threads (or whatever data) are created. There’s a memory leak, but the authors had warned us of
the experimental status of the callcc library. In native code, all the implementations have the same
memory requirements.

The graphs for sieve are shown in Figure 12. tramp is clearly the best. equeue is good too but
values are shown only for the first few points since the program is so slow. . . sys is better than vm but
again we don’t measure the memory used by the operating system itself.

The problem with callcc is again obvious with sorter, on Figure 13: it uses huge amounts of
memory, making the system trash. dlcont is much above the other implementations, and is quite
good with sorter -d since no continuation capture occurs. monad and lwt are very close. Actually
the graph for lwt is hidden under the one for monad on Figure 13(b). We don’t include the graphs for
native code since they don’t show anything particularly interesting.

Finally Figures 14, 15, and 16 present the same data with a different view: they show the memory
requirements per thread. tramp is always under the other implementations. It’s interesting to see on
Figures 15 and 16 that its advantage is much larger when the threads are running. The advantage over
monad and lwt is probably caused by the relative complexity of the thread type (and the associated
bind operator) they are based on.

7 Conclusion and perspectives

We have described, implemented, and tested several ways to implement light weight concurrency
in OCaml. Direct style implementations involve capturing continuations, which is relatively costly
(although much less than what is incurred by VM or system threads). Indirect style implementations
perform better but force the programmer to write in a specific style.

11Of course, one should also consider the memory used by the system to manage threads, but we euh. . . haven’t.
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Figure 11: kpn, memory usage
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Figure 12: sieve, memory usage

As we saw, event-based programming can be seen as a form of trampolined style programming with
an event-based scheduling strategy. We didn’t realize this immediately since event-based programming
is mostly associated with imperative languages while trampolined style is with functional ones.

Apart from callcc that relies on a toy implementation of continuation capture and equeue that
is not designed for massive concurrency, the light weight implementations can easily handle millions
of threads.

The trampolined implementation is the lighter. Monad based ones (monad and lwt) are more
costly due to the more complex implementation. Of course our examples are minimal, and all our
implementations are obviously only skeletons (except Lwt of course), this should be kept in mind when
looking at the performance results.

Realistic libraries should at least deal properly with I/O and exceptions. Concerning exceptions,
OCaml’s callcc is known not to, while dlcont is reported to handle them completely [13]. As we said,
lwt deals with them (altough not with the standard syntax) so it could easily be added to monad.

We are currently developping a library (called µthreads) for light weight concurrency in OCaml.
It is based on the trampolined style. Apart from exceptions and I/O it also implements delays, timed
operations and synchronous events ala CML. More realistic applications, such as an FTP server are
also being developed.
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Figure 13: sorter, memory usage for bytecode
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A Source code of the implementations

A.1 preempt

type α thread = α → unit

let gl = Mutex .create ()

let spawn t = ignore (Thread .create (fun () → Mutex .lock gl ; Mutex .unlock gl ; t ()) ())

let stop event = Event .new channel ()
let start () = Mutex .unlock gl ; Event .sync (Event .receive stop event)
let stop () = Event .sync (Event .send stop event ())

let halt = Thread .exit
let yield = Thread .yield

type α mvar =
{ mutable v : α option; ch : α Event .channel ;

mutable read : bool ; mutable write : bool ; l : Mutex .t }
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let make mvar () =
{ v = None; ch = Event .new channel (); read = false; write = false; l = Mutex .create () }

let put mvar out v =
let ul () = Mutex .unlock out .l in

Mutex .lock out .l ;
match out with

| { v = Some v ′; ch = c; read = ; write =false } → out .write ← true; ul ();
Event .sync (Event .send c v)

| { v = None; ch = c; read =true; write =false } → ul (); out .read ← false;
Event .sync (Event .send c v)

| { v = None; ch = c; read =false; write =false } → out .v ← Some v ; ul ()

let take mvar inp =
let ul () = Mutex .unlock inp.l in

Mutex .lock inp.l ;
match inp with

| { v = Some v ; ch = c; read =false; write =false } → inp.v ← None; ul (); v

| { v = Some v ; ch = c; read =false; write =true } →
inp.write ← false; ul (); let v ′ = Event .sync (Event .receive c) in

Mutex .lock inp.l ; inp.v ← Some v ′; ul (); v

| { v = None; ch = c; read =false; write = } →
inp.read ← true; ul (); Event .sync (Event .receive c)

type α fifo = { q : α Queue.t ; mutable w : α Event .channel option }
let make fifo () = { q = Queue.create (); w = None }

let take fifo f =
if Queue.length f .q = 0 then

let e = Event .new channel () in

f .w ← Some e;
Event .sync (Event .receive e)

else

Queue.take f .q

let put fifo f v =
match f .w with

| None → Queue.add v f .q
| Some e → f .w ← None; Event .sync (Event .send e v )

Mutex .lock gl

A.2 callcc

open Callcc

type α thread = α → unit

type queue t = { mutable e :unit thread ; q :unit thread Queue.t }

let q = { e = (fun()→ ()); q = Queue.create () }

let enqueue t = Queue.push t q.q
let dequeue () = try Queue.take q.q with Queue.Empty → q.e

let halt () = dequeue () ()

let yield () =
callcc (fun k → enqueue (fun () → throw k ()); dequeue () ())

let spawn p = enqueue (fun () → p (); halt ())

exception Stop
let stop () = raise Stop
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let start () =
try

callcc (fun exitk →
q.e ← (fun () → throw exitk ());
dequeue () ())

with Stop → ()

type α mvar = { mutable v : α option;
mutable read : α thread option;
mutable write : (unit thread × α) option }

let make mvar () = { v = None; read = None; write = None }

let put mvar out v =
match out with

| { v = Some v ; read = ; write = None } →
callcc (fun k →

out .write ← Some ((fun () → throw k ()), v); halt ())

| { v = None; read = Some r ; write = None } →
out .read ← None; enqueue (fun () → r v)

| { v = None; read = None; write = None } → out .v ← Some v ; ()

let take mvar inp =
match inp with

| { v = Some v ; read = None; write = None } → inp.v ← None; v

| { v = Some v ; read = None; write = Some(c, v ′) } →
inp.v ← Some v ′; inp.write ← None; enqueue c; v

| { v = None; read = None; write = } →
callcc (fun k →

inp.read ← Some (fun v → throw k v);
Obj .magic halt ())

type α fifo = { q : α Queue.t ; mutable w : α thread option }
let make fifo () = { q = Queue.create (); w = None }

let take fifo f =
if Queue.length f .q = 0 then

Callcc.callcc (fun k → f .w ← Some (fun v → Callcc.throw k v);
Obj .magic halt ())

else

Queue.take f .q

let put fifo f v =
Queue.add v f .q ;
match f .w with

| Some k → enqueue (fun () → k (Queue.take f .q)); f .w ← None
| None → ()

A.3 dlcont

open Delimcc

type α thread = α → unit

let runq = Queue.create ()
let enqueue t = Queue.push t runq
let dequeue () = Queue.take runq

let prompt = new prompt ()

let shift0 p f = take subcont p (fun sk () →
(f (fun c → push prompt subcont p sk (fun () → c))))

let yield () = shift0 prompt (fun f → enqueue f )
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could use abort in halt, we just want to remove the prompt

let halt () = shift0 prompt (fun f → ())

enqueue a new thread

let spawn p = enqueue (fun () → push prompt prompt (fun () → p (); halt ()))

exception Stop
let stop () = raise Stop

let start () =
try

while true do

dequeue () ()
done

with Queue.Empty | Stop → ()

type α mvar = { mutable v : α option;
mutable read : α thread option; (∗ thread blocked on take ∗)
mutable write : (unit thread × α) option } (∗ ... on put ∗)

let make mvar () = { v = None; read = None; write = None }

let put mvar out v =
match out with

| { v = Some v ′; read = ; write = None } →
shift0 prompt (fun f → out .write ← Some (f , v))

| { v = None; read = Some r ; write = None } →
out .read ← None; enqueue (fun () → r v)

| { v = None; read = None; write = None } → out .v ← Some v

let take mvar inp =
match inp with

| { v = Some v ; read = None; write = None } → inp.v ← None; v

| { v = Some v ; read = None; write = Some(c, v ′) } →
inp.v ← Some v ′; inp.write ← None; enqueue c; v

| { v = None; read = None; write = } →
shift0 prompt (fun f → inp.read ← Some((fun i → f i)))

type α fifo = { q : α Queue.t ; mutable w : α thread option }
let make fifo () = { q = Queue.create (); w = None }

let take fifo f =
if Queue.length f .q = 0 then

shift0 prompt (fun k → f .w ← Some k)
else

Queue.take f .q

let put fifo f v =
Queue.add v f .q ;
match f .w with

| Some k → enqueue (fun () → k (Queue.take f .q)); f .w ← None
| None → ()

A.4 tramp

type α thread = α → unit

let runq = Queue.create ()
let enqueue t = Queue.push t runq
let dequeue () = Queue.take runq

let skip k = k ()
let yield k = enqueue k
let halt () = ()
let spawn t = enqueue t
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exception Stop
let stop () = raise Stop

let start () =
try

while true do

dequeue () ()
done

with Queue.Empty | Stop → ()

let (>>=) inst (k : α thread) : unit = inst k

type α mvar = { mutable v : α option;
mutable read : α thread option;
mutable write : (unit thread × α) option }

let make mvar () = { v = None; read = None; write = None }

let put mvar out v k =
match out with

| { v = Some v ′; read = ; write = None } → out .write ← Some (k , v)

| { v = None; read = Some r ; write = None } →
out .read ← None; spawn (fun () → r v); k ()

| { v = None; read = None; write = None } → out .v ← Some v ; k ()

let take mvar inp k =
match inp with

| { v = Some v ; read = None; write = None } → inp.v ← None; k v

| { v = Some v ; read = None; write = Some(c, v ′) } →
inp.v ← Some v ′; inp.write ← None; spawn c; k v

| { v = None; read = None; write = } → inp.read ← Some(k)

type α fifo = { q : α Queue.t ; mutable w : α thread option }
let make fifo () = { q = Queue.create (); w = None }

let take fifo f k =
if Queue.length f .q = 0 then

f .w ← Some k
else

k (Queue.take f .q)

let put fifo f v =
Queue.add v f .q ;
match f .w with

| Some k → enqueue (fun () → k (Queue.take f .q)); f .w ← None
| None → ()

A.5 monad

type α state =
| Return of α
| Sleep of (α thread → unit) list ref
| Link of α thread

and α thread = { mutable st : α state }

let rec repr t =
match t .st with

| Link t ′ → repr t ′

| → t

let wait () = { st = Sleep (ref [ ]) }
let return v = { st = Return v }
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let wakeup t v =
let t = repr t in

match t .st with

| Sleep w →
t .st ← Return v ;
List .iter (fun f → f t) !w

| → failwith "wakeup"

let connect t t ′ =
let t ′ = repr t ′ in

match t ′.st with

| Return v → wakeup t v
| Sleep w ′ →

let t = repr t in

match t .st with

| Sleep w → w := !w @ !w ′; t ′.st ← Link t
| → failwith "connect"

let rec (>>=) t f =
match (repr t).st with

| Return v → f v
| Sleep w → let res = wait () in

w := (fun t → connect res (t >>= f )) :: !w ;
res

let runq = Queue.create ()
let enqueue t = Queue.push t runq
let dequeue () = Queue.take runq

let skip = return ()
let yield () = let res = wait () in enqueue res; res
let halt () = return ()

let wait start = wait ()

let spawn t = wait start >>= t ; ()

exception Stop
let stop () = raise Stop

let start () =
try

wakeup wait start ();
while true do

wakeup (dequeue ()) ()
done

with Queue.Empty | Stop → ()

type α mvar = { mutable v : α option;
mutable read : α thread option;
mutable write : (unit thread × α) option }

let make mvar () = { v = None; read = None; write = None }

let put mvar out v =
match out with

| { v = Some v ′; read = ; write = None } →
let w = wait () in out .write ← Some (w , v); w

| { v = None; read = Some r ; write = None } →
out .read ← None; wakeup r v ; return ()

| { v = None; read = None; write = None } → out .v ← Some v ; return ()

let take mvar inp =
match inp with

| { v = Some v ; read = None; write = None } →
inp.v ← None; return v
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| { v = Some v ; read = None; write = Some(c, v ′) } →
inp.v ← Some v ′; inp.write ← None; wakeup c ();
return v

| { v = None; read = None; write = } →
let w = wait () in inp.read ← Some(w); w

type α fifo = { q : α Queue.t ; mutable w : α thread option }
let make fifo () = { q = Queue.create (); w = None }

let take fifo f =
if Queue.length f .q = 0 then

let k = wait () in (f .w ← Some k ; k)
else

return (Queue.take f .q)

let put fifo f v =
Queue.add v f .q ;
match f .w with

| Some k → f .w ← None; wakeup k (Queue.take f .q)
| None → ()

A.6 lwt

type α thread = α Lwt .t

let (>>=) = Lwt .bind

let wait start = Lwt .wait ()

exception Stop
let do stop = ref false

let spawn t = (wait start >>= t); ()
let finish = Lwt .wait () >>= fun () → Lwt .fail Stop
let start () = Lwt .wakeup wait start (); Lwt unix .run finish
let stop () = do stop := true; Lwt .wakeup finish (); Lwt .return ()
let halt () = Lwt .return ()
let return a = Lwt .return a
let skip = Lwt .return ()
let yield = Lwt unix .yield

type α mvar = { mutable v : α option;
mutable read : α Lwt .t option;
mutable write : (unit Lwt .t × α) option }

let make mvar () = { v = None; read = None; write = None }

let put mvar out v =
if !do stop then Lwt .fail Stop else

match out with

| { v = Some v ′; read = ; write = None } →
let w = Lwt .wait () in out .write ← Some (w , v); w

| { v = None; read = Some r ; write = None } →
out .read ← None; Lwt .wakeup r v ; Lwt .return ()

| { v = None; read = None; write = None } → out .v ← Some v ; Lwt .return ()

let take mvar inp =
if !do stop then Lwt .fail Stop else

match inp with

| { v = Some v ; read = None; write = None } →
inp.v ← None; Lwt .return v

| { v = Some v ; read = None; write = Some(c, v ′) } →
inp.v ← Some v ′; inp.write ← None; Lwt .wakeup c ();
Lwt .return v
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| { v = None; read = None; write = } →
let w = Lwt .wait () in inp.read ← Some(w); w

type α fifo = { q : α Queue.t ; mutable w : α thread option }
let make fifo () = { q = Queue.create (); w = None }

let take fifo f =
if !do stop then Lwt .fail Stop else

if Queue.length f .q = 0 then

let k = Lwt .wait () in (f .w ← Some k ; k )
else

Lwt .return (Queue.take f .q)

let put fifo f v =
Queue.add v f .q ;
match f .w with

| Some k → f .w ← None; Lwt .wakeup k (Queue.take f .q)
| None → ()

A.7 equeue

let skip k = k ()

let (>>=) inst k = inst k

type eventid = unit ref
type α event = Written of eventid | Read of eventid × α | Go of eventid

let make eventid () = ref ()

let esys : int event Equeue.t = Equeue.create (fun → ())

let yield k =
let id = make eventid () in

Equeue.add handler esys (fun esys e →
match e with

| Go id ′ when id ′ ≡ id → k ()
| → raise Equeue.Reject);

Equeue.add event esys (Go id);
raise Equeue.Terminate

let spawn t =
let id = make eventid () in

Equeue.add handler esys (fun esys e →
match e with

| Go id ′ when id ′ ≡ id → t ()
| → raise Equeue.Reject);

Equeue.add event esys (Go id)

let halt () = raise Equeue.Terminate

exception Stop
let stop () = raise Stop

let start () =
try

Equeue.run esys
with Stop → ()

type α mvar = { mutable v : α option;
mutable read : eventid option;
mutable write : (eventid × α) option }

let make mvar () = { v = None; read = None; write = None }
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let put mvar out v k =
match out with

| { v = Some v ′; read = ; write = None } →
let id = make eventid () in out .write ← Some (id , v );
Equeue.add handler esys (fun esys e →

match e with

| Written id ′ when id ′ ≡ id → k ()
| → raise Equeue.Reject);

raise Equeue.Terminate

| { v = None; read = Some id ; write = None } →
out .read ← None;
Equeue.add event esys (Read(id , v));
k ()

| { v = None; read = None; write = None } → out .v ← Some v ; k ()

let take mvar inp k =
match inp with

| { v = Some v ; read = None; write = None } → inp.v ← None; k v

| { v = Some v ; read = None; write = Some(id , v ′) } →
inp.v ← Some v ′; inp.write ← None;
Equeue.add event esys (Written id); k v

| { v = None; read = None; write = } →
let id = make eventid () in

inp.read ← Some id ;
Equeue.add handler esys (fun esys e →

match e with

| Read(id ′, arg) when id ′ ≡ id → k arg
| → raise Equeue.Reject);

raise Equeue.Terminate

type α fifo = { q : α Queue.t ; mutable w : eventid option }
let make fifo () = { q = Queue.create (); w = None }

let take fifo f k =
if Queue.length f .q = 0 then

let id = make eventid () in

f .w ← Some id ;
Equeue.add handler esys (fun esys e →

match e with

| Read(id ′, arg) when id ′ ≡ id → k arg
| → raise Equeue.Reject);

raise Equeue.Terminate
else

k (Queue.take f .q)

let put fifo f v =
Queue.add v f .q ;
match f .w with

| Some id → Equeue.add event esys (Read(id , Queue.take f .q)); f .w ← None
| None → ()

B Source code of the examples

B.1 KPN, direct style

open Lwc
open Big int

let (<) = lt big int
let (>) = gt big int

let ( × ) = mult big int

Merge thread

let rec mergeb q1 q2 qo v1 v2 =
let v1 , v2 =

if v1 < v2 then begin

25



put mvar qo v1 ;
(take mvar q1 , v2 )

end

else if v1 > v2 then begin

put mvar qo v2 ;
(v1 , take mvar q2 )

end

else begin

put mvar qo v1 ;
(take mvar q1 , take mvar q2 )

end

in

mergeb q1 q2 qo v1 v2

Initializer for merge thread

let merge q1 q2 qo () =
let v1 = take mvar q1
and v2 = take mvar q2 in

mergeb q1 q2 qo v1 v2

Multiplier thread

let rec times a f qo () =
let v = take fifo f in

put mvar qo (a × v );
times a f qo ()

The x thread itself

let rec x mv f2 f3 f5 () =
let v = take mvar mv in

if v > !last then stop ();
if !print then

Printf .printf "%s " (string of big int v);
put fifo f2 v ;
put fifo f3 v ;
put fifo f5 v ;
x mv f2 f3 f5 ()

Set up and start

let main () =
(∗ fifo + times = mult ∗)
let make mult a =

let f = make fifo ()
and mv = make mvar () in

let t = times a f mv
in

spawn t ; (f , mv)
in

let make merge q1 q2 =
let qo = make mvar () in

let m = merge q1 q2 qo
in

spawn m; qo
in

let f2 , m2 = make mult (big int of int 2)
and f3 , m3 = make mult (big int of int 3)
and f5 , m5 = make mult (big int of int 5) in

let m35 = make merge m3 m5 in

let m235 = make merge m2 m35
in

spawn (x m235 f2 f3 f5 );
put mvar m235 unit big int ; start ()

B.2 KPN, indirect style

open Lwc
open Big int

let (<) = lt big int
let (>) = gt big int
let ( × ) = mult big int

Merge thread

let rec mergeb q1 q2 qo v1 v2 =
if v1 < v2 then begin

put mvar qo v1 >>= fun () →
take mvar q1 >>= fun v1 →
mergeb q1 q2 qo v1 v2

end

else if v1 > v2 then begin

put mvar qo v2 >>= fun () →
take mvar q2 >>= fun v2 →
mergeb q1 q2 qo v1 v2

end

else begin

put mvar qo v1 >>= fun () →
take mvar q1 >>= fun v1 →
take mvar q2 >>= fun v2 →
mergeb q1 q2 qo v1 v2

end

Initializer for merge thread

let merge q1 q2 qo () =
take mvar q1 >>= fun v1 →
take mvar q2 >>= fun v2 →
mergeb q1 q2 qo v1 v2

Multiplier thread

let rec times a f qo () =
take fifo f >>= fun v →
put mvar qo (a × v) >>=
times a f qo

The x thread itself

let rec x mv f2 f3 f5 () =
take mvar mv >>= fun v →
if v > !last then stop ()
else skip >>= fun () →

if !print then

Printf .printf "%s " (string of big int v);
put fifo f2 v ;
put fifo f3 v ;
put fifo f5 v ;
x mv f2 f3 f5 ()

Set up and start
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let main () =
(∗ fifo + times = mult ∗)
let make mult a =

let f = make fifo ()
and mv = make mvar () in

let t = times a f mv
in

spawn t ; (f , mv)
in

let make merge q1 q2 =
let qo = make mvar () in

let m = merge q1 q2 qo
in

spawn m; qo
in

let f2 , m2 = make mult (big int of int 2)
and f3 , m3 = make mult (big int of int 3)
and f5 , m5 = make mult (big int of int 5) in

let m35 = make merge m3 m5 in

let m235 = make merge m2 m35
in

spawn (x m235 f2 f3 f5 );
spawn (fun () → put mvar m235 unit big int >>=

halt);
start ()

B.3 Sieve, direct style

open Lwc

let rec integers out i () =
put mvar out i ;
integers out (i + 1) ()

let rec output inp () =
let v = take mvar inp in

if !print then (Printf .printf "%i " v ; flush stdout);
if v < !last then output inp () else stop ()

let rec filter n inp out () =
let v = take mvar inp in

if v mod n 6= 0 then put mvar out v ;
filter n inp out ()

let rec sift inp out () =
let v = take mvar inp in

put mvar out v ;
let mid = make mvar () in

spawn (filter v inp mid);
sift mid out ()

let sieve () =
let s1 = make mvar () in

let s2 = make mvar () in

spawn (integers s1 2);
spawn (sift s1 s2 );
spawn (output s2 );
start ()

B.4 Sieve, indirect style

open Lwc

let rec integers out i () =
put mvar out i >>= integers out (i + 1)

let rec output inp () =
take mvar inp >>= fun v →
if !print then (Printf .printf "%i " v ; flush stdout);
if v < !last then output inp () else (stop (); halt())

let rec filter n inp out () =
take mvar inp >>= fun v →
(if v mod n 6= 0 then put mvar out v else skip) >>=
filter n inp out

let rec sift inp out () =
take mvar inp >>= fun v →
put mvar out v >>= fun () →
let mid = make mvar () in

spawn (sift mid out);
filter v inp mid ()

let sieve () =
let s1 = make mvar () in

let s2 = make mvar () in

spawn (integers s1 2);
spawn (sift s1 s2 );
spawn (output s2 );
start ()

B.5 Sorter, direct style

open Lwc

let minmax a b =
if a < b then (a , b) else (b, a)

let rec comparator x y hi lo =
let a = take mvar x
and b = take mvar y in

let (l , h) = minmax a b
in

put mvar lo l ;
put mvar hi h;
comparator x y hi lo

let make list n fct =
let rec loop n acc =

if n = 0 then acc
else

loop (n − 1) (fct n :: acc)
in

loop n [ ]

let make n mvars n =
make list n (fun → make mvar ())

let rec iter4 fct l1 l2 l3 l4 =
match (l1 , l2 , l3 , l4 ) with

| [ ], [ ], [ ], [ ] → [ ]
| l1 :: l1s , l2 :: l2s , l3 :: l3s , l4 :: l4s →

fct (l1 , l2 , l3 , l4 );
iter4 fct l1s l2s l3s l4s

| → failwith "iter4"

27



let column (i :: is) y =
let n = List .length is in

let ds = make n mvars (n − 1) in

let os = make n mvars n
in

iter4
(fun (i , di , o, od) →

spawn (fun () → comparator i di o od))
is (i :: ds) os (ds @ [y ]);

os

let sorter xs ys =
let rec help is ys n =

if n > 2 then

let os = column is (List .hd ys) in

help os (List .tl ys) (n − 1)
else

spawn (fun () → comparator
(List .hd (List .tl is)) (List .hd is)
(List .hd (List .tl ys)) (List .hd ys))

in

help xs ys (List .length xs)

let set list ms l () =
List .iter (fun (mv , v) → put mvar mv v)

(List .map2 (fun a b → (a, b)) ms l);
halt ()

let print list ms () =
List .iter (fun n → Printf .printf "%i " n)

(List .map take mvar ms);
flush stdout ; stop ()

let sort l =
let n = List .length l in

let xs = make n mvars n
and ys = make n mvars n
in

sorter xs ys ;
spawn (set list xs l);
spawn (print list ys);
if ¬ !dont then start ()

let doit () =
let l = make list !last (fun →

Random.int 999) in

sort l

B.6 Sorter, indirect style

open Lwc

let minmax a b =
if a < b then (a, b) else (b, a)

let rec comparator x y hi lo () =
take mvar x >>= fun a →
take mvar y >>= fun b →
let (l , h) = minmax a b
in

put mvar lo l >>= fun () →
put mvar hi h >>=
comparator x y hi lo

let make list n fct =
let rec loop n acc =

if n = 0 then acc
else

loop (n − 1) (fct n :: acc)
in

loop n [ ]

let make n mvars n =
make list n (fun → make mvar ())

let rec iter4 fct l1 l2 l3 l4 =
match (l1 , l2 , l3 , l4 ) with

| [ ], [ ], [ ], [ ] → [ ]
| l1 :: l1s , l2 :: l2s , l3 :: l3s , l4 :: l4s →

fct (l1 , l2 , l3 , l4 );
iter4 fct l1s l2s l3s l4s

| → failwith "iter4"

let column (i :: is) y =
let n = List .length is in

let ds = make n mvars (n − 1) in

let os = make n mvars n
in

iter4
(fun (i , di , o, od) →

spawn (comparator i di o od))
is (i :: ds) os (ds @ [y]);

os

let sorter xs ys () =
let rec help is ys n =

if n > 2 then

let os = column is (List .hd ys) in

help os (List .tl ys) (n − 1)
else

spawn (comparator
(List .hd (List .tl is)) (List .hd is)
(List .hd (List .tl ys)) (List .hd ys))

in

help xs ys (List .length xs)

let rec set list mvs l () =
match mvs , l with

| [ ], [ ] → halt ()
| m :: r , h :: t → put mvar m h >>= set list r t

let print list mvs () =
let rec loop mvs acc k =

match mvs with

| [ ] → k acc
| h :: t → take mvar h >>= fun v →

loop t (v :: acc) k
in

loop mvs [ ] >>= fun l →
List .iter (fun n → Printf .printf "%i " n) (List .rev l);
halt ()

let sort l =
let n = List .length l in

let xs = make n mvars n
and ys = make n mvars n
in

sorter xs ys ();
spawn (set list xs l);
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spawn (print list ys);
if ¬ !dont then start ()

let doit () =

let l = make list !last (fun →
Random.int 999) in

sort l
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