
A case for coordinated resource management in heterogeneous multicore
platforms

Priyanka Tembey
Georgia Institute of Technology

Ada Gavrilovska
Georgia Institute of Technology

Karsten Schwan
Georgia Institute of Technology

Abstract
Recent advances in multi- and many-core architectures
include increased hardware-level parallelism (i.e., core
counts) and the emergence of platform-level heterogene-
ity. System software managing these platforms is typi-
cally comprised of multiple independent resource man-
agers (e.g., drivers and specialized runtimes) customized
for heterogeneous vs. general purpose platform ele-
ments. This independence, however, can cause per-
formance degradation for an application that spans di-
verse cores and resource managers, unless managers co-
ordinate with each other to better service application
needs. This paper first presents examples that demon-
strate the need for coordination among multiple resource
managers on heterogeneous multicore platforms. It then
presents useful coordination schemes for a platform cou-
pling an IXP network processor with x86 cores and run-
ning web and multimedia applications. Experimental ev-
idence of performance gains achieved through coordi-
nated management motivates a case for standard coor-
dination mechanisms and interfaces for future heteroge-
neous many-core systems.

1 Introduction

Islands of cores. Recent advances in multi- and
many-core architectures include increased hardware-
level parallelism (i.e., core counts) and the emergence
of platform-level heterogeneity. Examples include the
AMD Opteron [25] and Intel Nehalem [22] processors
with NUMA-based memory hierarchies, high-core count
processors like Intel’s recently announced ‘single-chip
cloud computer’ [14], purposefully heterogeneous sys-
tems like Intel’s Larrabee [19] or IBM’s Prism [15] pro-
cessors, or general-purpose (i.e., x86) cores tightly in-
tegrated with specialized accelerators, enabled by ad-
vances in on-chip interconnection technology [9, 26].

These hardware developments force re-consideration
of the design and implementation of the underlying sys-

tems software supporting future many-core applications,
since management by a single monolithic system and ap-
plication stack would likely result in limited scalability
and unnecessary software complexity. Instead, and in or-
der to address the heterogeneous nature of future many-
core systems, this paper presents an outlook in which
(1) platforms are partitioned into multiple ‘islands’ of re-
sources [14, 23], and (2) each island can run its own sys-
tem and application stacks, customized to better exploit
island resouces (e.g., stacks focused on storage vs. com-
munication [1] resources). Island boundaries may be
established based on types of cores on multi-ISA plat-
forms (e.g., an island with x86 vs. GPU cores), on
their cores’ distances from memory modules (e.g., on
NUMA architectures) or on coherence domains, or based
on the functional semantics of how its cores are used.
For instance, an island of cores focused on communica-
tion tasks may export a real-time scheduling policy [20],
whereas another may export a scheduling policy opti-
mized for server tasks, etc.

‘Islands’ of cores is not a new notion, in that previous
research has already established the utility of partition-
ing platforms and higher level systems stacks into sets
of tiles, clusters, or cells [5, 23, 10, 16, 14], demonstrat-
ing that this approach can help improve scalability and
isolation. This paper’s new contribution, however, is to
identify and address two key problems with islands and
their independent resource managers:

1. Maintaining global properties. With multiple re-
source managers, it becomes difficult to attain desired
platform-level or end-to-end properties. For example,
when an application spans multiple islands whose inter-
nal resource managers make their own scheduling deci-
sions, how do we provide it with appropriate levels of
end-to-end service performance?

2. Dealing with heterogeneous abstractions. The
managers present in multiple islands will each use and
support different sets of resource abstractions, an exam-
ple being virtual machines or processes supported for

45

sets of x86 cores and communication queues and mes-
sages managed in the ixp network processor. In the pres-
ence of such diversity, are there standard communication
and coordination interfaces that abstract heterogeneity
while still allowing managers to share and act on rele-
vant resource management state?

Next, we first motivate and demonstrate the need for
coordinated management, followed by second, a state-
ment of requirements for coordination mechanisms and
methods.
Need for management coordination in heterogeneous
systems. With reference to problems 1. and 2. above,
we next describe compelling use-cases for heterogeneous
multicore platforms for which coordination between in-
dependent resource managers is an essential feature of
future systems software.

1. Meeting application requirements. Consider a pro-
totype heterogeneous platform comprised of a general
purpose set of x86 processors connected over PCIe to
an IXP Network processor [1]. The platform is used to
run the RUBiS web application, which is an eBay-like
auction website benchmark (see Figure 1). The x86 pro-
cessors are managed by the Xen hypervisor [4], where
RUBiS is run by placing its three major components,
namely the Web, Application and database servers, into
separate virtual machines. Requests issued by exter-
nal clients are handled by the IXP platform component,
which acts as a programmable network interface that
sends and receives RUBiS traffic between our prototype
host and clients. Previous work [3, 27, 2] has shown
that the resource usage of multi-tier applications is gov-
erned by incoming client requests and their types. Ex-
ploiting this fact, a request classification engine perform-
ing deep packet inspection and running on the IXP pro-
cessor can be used to better manage the CPU resource
allocations given to individual RUBiS components run-
ning on the x86 processors. Needless to say, the per-
formance improvements sought in this fashion cannot be
realized unless there are well-defined and efficient inter-
faces between the message-centric resource management
methods existing on the IXP (e.g., the priorities used for
servicing different message queues) and the process- or
VM-centric management methods used on the x86 plat-
forms. This is demonstrated in Figure 2, which shows
the minimum and maximum end-to-end response time
latencies for various RUBiS request types, as observed
by the client in this setup. These measurements show
substantial variation in the minimum and maximum re-
sponse time latencies of requests, which as shown in Sec-
tion 3, are due to the fact that there is no coordination be-
tween the IXP’s queue-centric and the x86’s VM-centric
resource management actions. We also note that there
are additional examples that demonstate the need for co-
ordinated resource management, including recent work

IXP x86

RUBiS
Request
Classifier

Web
Server

App
 Server

DB
Server

Client
requests

PCIe

Figure 1: RUBiS Components on IXP and x86 systems
and their Interactions on Receive Path.

Figure 2: RUBiS: Variation in minimum-maximum re-
sponse latencies.

in which performance improvements are gained by bet-
ter co-scheduling tasks on graphics vs. x86 cores to attain
desired levels of parallelism [12, 13].

2. Platform-level power management. While power
budgeting can be performed on a per tile-basis (e.g., in
the upcoming Intel chip [14])), it is well-known that
properties like caps on total power usage must be ob-
tained at platform level. This is because turning off or
slowing down processors in certain tiles may negatively
impact the performance of application components ex-
ecuting on others. Maintaining desired global platform
properties, therefore, implies the need for coordination
mechanisms [17, 28], which at the same time, act to pre-
serve application-level quality of service or performance
constraints.

Remainder of paper. The remainder of the paper is or-
ganized as follows. Section 2 explains our current im-
plementation of coordination for the prototype heteroge-
neous platform used in this research. This is followed
by experimental evaluations in Section 3 demonstrating
the value of coordinated resource management. Section
4 takes a look at related work relevant to our research.
Conclusions and future work appear at the end.

46

IXP

IXP Messaging
Driver

IXP ViF ViF -1 ViF -3ViF -2

Rx/ Tx
Message
channels

IXP
Network

Interfaces

Xen Bridge

Dom 0 Dom 1 Dom 2 Dom 3

Rx Rx Tx Tx Rx

PCI Rx PCI Tx

Rx
Classifier

Rx
Scheduler

Tx
Classifier

Tx
Scheduler

IXP Functional Internals

Figure 3: Execution model: x86-IXP prototype.

2 Implementation

Section 1 explained the need for coordination mecha-
nisms in heterogeneous systems. As an example two-
island heterogeneous setup, we have developed an exper-
imental prototype using a general purpose x86 platform
connected over PCIe to an IXP network processor [1]
(see Figure 3). There are two scheduling islands in our
setup:

(1) an island consisting of x86 cores, managed by the
Xen hypervisor (not shown in the figure for clarity) and
the privileged controller domain Dom0, and (2) an is-
land consisting of specialized communication cores on
the IXP, managed by the IXP-resident runtime and via a
device-driver interface embedded in the Dom0 kernel.

All communication to and from the x86 (i.e., the VMs)
is performed via a virtual interface (ViF), implemented
on top of a vendor-provided messaging driver. The IXP
ViF interfaces with the Linux TCP/IP network stack.
It receives packets from the messaging driver interface,
converts them to valid socket buffers, and sends them to
the kernel network stack. Packet transmission from the
host is handled in a similar way. The IXP ViF first con-
verts the socket buffers into valid packet buffers for the
messaging driver. These are later dispatched to the IXP
via DMA. Using the Xen bridge tools, we make this IXP
ViF the primary network interface for network commu-
nication between Xen DomUs and the outside world.

2.1 The IXP island of cores.
IXP Architecture. The IXP 2850 used in our research
is a programmable network processor with 16 8-way
hyper-threaded RISC microengines running at 1.4 GHz

clock frequency. The instruction set supported by the
microengines is optimized for packet processing-related
tasks, thereby making these cores suitable for commu-
nications. The platform has a deep memory hierarchy,
with increasing access latencies at each level. Closest to
each processing core, each microengine has 640 words of
local memory and 256 general purpose registers. Next,
there are 16KB of shared scratchpad memory, 256 MB
of external SRAM (used primarily for packet descriptor
queues), and 256MB of external slower DRAM memory
(used for packet payload), all of which can be used for
inter-microengine communication. The external mem-
ories are also mapped into host memory and accessible
from the host. In addition, the hardware supports signals,
which can be used for inter-thread signaling within a mi-
croengine, as well as externally between micro-engines.
An ARM XScale core, used for control and manage-
ment purposes, runs Montavista Linux. Communica-
tion with the host is performed via one or more mes-
sage queues between Dom0 and the IXP. The message
queues contain descriptors to locations in a buffer pool
region where packet payloads reside. Both, the mes-
sage queues and the buffer pool region are part of re-
served memory in the host physical address space. The
buffer pool management and message descriptor transfer
on the host side is managed by a messaging driver in the
Dom0 kernel. On the IXP end, two micro-engines, la-
beled PCI-Rx and PCI-Tx in Figure 3, manage the same
functions for the IXP processor and IXP DRAM packet
rings. The messaging driver handles packet-receive by
periodic polling. The IXP can be programmed to inter-
rupt the host at a user-defined frequency. Every time this
interrupt is serviced by the messaging driver, the host-
IXP message queues are checked for any outstanding de-
scriptors which are then dequeued and passed to upper
layers in the network stack.
IXP as a scheduling island. The IXP microengine
threads, except for those designated for PCIe-related op-
erations, are programmed to execute one of the follow-
ing tasks: packet receipt (Rx), packet transmission (Tx),
or classification (on the Rx or Tx flows). By default,
the scheduling of these threads is round-robin, purely
managed by hardware, with context switches occurring
on each memory reference. We implement scheduler-
like functionality on top of this round-robin switching
for the Rx- and Tx-related tasks. These schedulers use
in-memory data structures and signals to notify threads
to explicitly yield or to start executing, and to schedule
the receipt/transmit operations and packet enqueue/de-
queue on the IXP-host messaging interface. This helps in
achieving ‘weighted’ scheduling/resource management
for packet Rx and Tx operations, where quality of service
for classified flows can be managed by tuning the num-
ber of threads assigned to each flow. For instance, if the

47

classification engine classifies incoming packets into per
VM flow queues, then by tuning the number of dequeu-
ing threads per queue and their polling intervals, we can
control the ingress and egress network bandwidth seen
by the VM. Our goal is, then, to coordinate these thread
scheduling and queue management actions with the x86
scheduler.

2.2 The x86 island of cores.
The second scheduling island in our x86-IXP prototype
consists of an x86 multicore platform, virtualized with
the Xen hypervisor. The island’s resource management
is performed by the Xen credit scheduler and the privi-
leged controller domain, Dom0. Virtual machines upon
creation are assigned weights that are translated inter-
nally by Xen into credits and are allocated CPU re-
sources in proportion to their weights according to the
credit scheduling algorithm [8]. The controller domain
hosts a user-space utility ‘XenCtrl interface’ to tune the
credit scheduler behavior and adjust processor allocation
to individual guest VMs.

2.3 x86-IXP coordination.
In order to coordinate resource management across the
x86 and IXP scheduling islands, we need to identify first,
the islands in our system and then, the processes that
will execute in one or part of both islands (e.g., the IXP
needs to know of guest VMs on the x86 island that will
send and receive network traffic through it). At system
initialization time, all scheduling islands register with a
global controller (i.e., the first privileged domain to boot
up and have complete knowledge of the system platform,
in our prototype, this function is a part of Xen Dom0).
When guest VMs containing application components are
deployed across the platform’s scheduling islands, they
register with Dom0. In this way, identifier information
about VMs using the IXP as a network interface will be
coordinated with the IXP island through its device driver
interface in Dom0. Part of the PCI configuration space
of the IXP device is used to setup a coordination channel
between the IXP and the x86 host, used for exchanging
messages between the two islands which drive various
coordination schemes, further discussed in Section 3.

3 Evaluation

We next experimentally demonstrate the feasibility and
the importance of coordinating resource management ac-
tions across scheduling islands. Experiments are con-
ducted on our x86-IXP prototype described in Section 2.
It consists of a Netronome i8000 communications ac-
celerator based on the Intel IXP2850 network processor

Figure 4: RUBiS Min-Max Response Times. Coordina-
tion helps in peak response latency alleviation.

connected via PCIe to a dual-core 2.66GHz Intel Xeon
processor. The host processor runs Xen with a Linux
2.6.30 Dom0 kernel. Experimental analyses are con-
ducted using two widely-used benchmarks: (a) RUBiS
– a multi-tier auction website modeling eBay, and (b)
MPlayer – a media player benchmark.

3.1 RUBiS
The RUBiS setup consists of an Apache web-server fron-
tend, a Tomcat Servlets application server, and a MySQL
Database server backend, all deployed in separate Xen
hardware virtual machines running Kubuntu 8.04 Hardy
2.6.24 kernel (see Section 1 Figure 1). Each virtual ma-
chine is single VCPU and has 256 MB of RAM. Dom0,
however, has unpinned VCPUs and can execute on all
CPUs. All VMs’ network communication is relayed via
the Xen bridge interface to the IXP accelerator. The IXP
runtime acts as a front-end to all network-related activ-
ity of Xen VMs and is responsible for relaying packets
to and from the wire and external RUBiS clients to the
host. A RUBiS client is deployed on a separate x86 dual-
core host, running Kubuntu Hardy 2.6.24 kernel with 384
MB physical RAM. The RUBiS server-side network in-
terfaces and the client interface are on the same network
subnet.
Analyses of requests’ resource requirements.

We use offline profiles of behavior of the RUBiS com-
ponents for various workloads to actuate coordination.
Profiles are based on two client workloads available with
the standard RUBiS benchmark: browsing (read) mix

48

Request Type Base(ms) coord-ixp-
dom0(ms)

Register 1447 1015
Browse 922 461
BrowseCategories 1896 1242
SearchItems-
InCategory

1085 788

BrowseRegions 1491 1490
BrowseCategories-
InRegion

1068 927

SearchItems-
InRegion

590 530

ViewItem 2147 1944
BuyNow 551 292
PutBidAuth 1089 867
PutBid 1528 538
StoreBid 3366 1421
PutComment 4186 721
Sell 720 490
SellItemForm 351 188
AboutMe(authForm) 1154 546

Table 1: RUBiS - Average Request Response Times.

and bid/browse/sell (read-write) mix. Request traffic
from the client follows probabilistic transitions emulat-
ing multiple user browsing sessions, and consists of ap-
proximately twenty basic request types (see Table 1). Of-
fline profiling establishes relationships between the prop-
erties of the incoming request types and the resulting
inter-VM communications: (1) for the browsing (read
only) mix, static content like HTML pages and images
need to be served for the client, resulting in a large
amount of webserver-application server interactions, and
practically no database server processing; (2) for the
bid/browse/sell (read-write) mix, dynamic content us-
ing servlets, reads, and writes to and from the back-
end database generate a large number of application –
database server interactions. In addition, the application
server utilizes the CPU more heavily, as it is also serv-
ing dynamic content by running Java servlets. These
observations are consistent with results from previous
work [3, 27].
Coordination scheme. Based on insights into the rela-
tionships between request types and the resulting com-
ponent interactions and resource requirements, coordina-
tion needs to use the application-level knowledge (about
client request types) on the IXP island to possibly change
scheduling of the RUBiS VMs in the x86 island. The
goal is to maintain the following performance properties:
• low response-time variability – end-user experience

depends on how ‘responsive’ the website appears to
be, which requires not simply low average response

time, but rather a tolerable standard deviation limit
across multiple requests of the same type;

• high request throughput rate – resulting in higher
scalability of the RUBiS server;

• low average session time – affecting both end-user
experience and server scalability; and

• high platform efficiency – a measure of the average
request throughput (i.e., application performance)
over the mean CPU utilization (i.e., resource uti-
lization), since the use of only a system-level metric
like CPU utilization does not provide sufficient in-
sight into how that utilization is translated into bet-
ter application performance.

To obtain these properties, the IXP scheduling domain
requests weight adjustments to be applied to RUBiS
VMs in the remote x86 scheduling domain. Browsing
related requests result in sending ‘weight increase’ mes-
sages for the web VM and ‘weight decrease’ message
for the database server, whereas servlet versions will cor-
respond to ‘weight increase’ messages for the database
server domains. Given that the application server sees
increased activity for processing both request types, its
weight is increased in accordance with web server weight
for read requests, and with database server weight for
write requests.

We compare this coordinated case against the baseline
case when there is no coordination across the IXP and
x86 scheduling domains.
Benefits of coordination. Experimental results presented
in the remainder of this section demonstrate the bene-
fits of coordination for achieving improvements in each
of the aforementioned metrics for the RUBiS overlay.
Figure 4 shows the min-max response times for serving
different RUBiS requests in a read-write browsing mix
workload. We observe that the coordinated case results
in reduced standard deviation for every request type ser-
viced, sometimes by up to 50%. The use of our coordi-
nation results only in slight overheads by increasing the
minimum response time latency by up to tolerable 3%.

We do not currently incorporate any mechanisms for
predicting frequent transitions amongst read and write
requests or to recognize oscillations in client request
streams and all our coordination actions are applied on
a per-request basis. Another issue is the relatively large
latency of the PCIe-based messaging channel in our
current prototype. Both combined sometimes lead to
the incorrect application of our coordination algorithm
when managing resources (e.g., the maximum response
time for ‘BrowseCategoriesInRegion’, a browsing re-
quest type is higher for the coordinated case). The cor-
rectness of this interpretation of results is demonstrated
by another run of a purely “Browsing” related mix that
does not have the read-write transitions. Here, our ap-

49

Base
(req/s)

coord-ixp-dom0
(req/s)

Throughput 68
req/s

95 req/s

Sessions completed 6 11
Avg session Time 103s 73s

Platform Efficiency 51.28 58.20

Table 2: RUBiS – Throughput Results.

 0

 20

 40

 60

 80

 100

 120

 140

 160

no-coord coord-ixp-dom0

c
p
u
-u

ti
liz

a
ti
o
n
(%

)

Web-Server
App-Server
DB-Server

Figure 5: RUBiS CPU Utilization.

proach always performs better than the baseline case for
all request types.

The results in Table 1 show a similar trend with re-
spect to the average response times for the same read-
write workload. Our coordination algorithm significantly
reduces response times for all categories of requests (in-
cluding by over 60% for ‘PutBid’ requests), Table 2
shows additional performance metrics for the RUBiS
benchmark, where the use of coordination clearly results
in improved performance and more efficient utilization
of platform resources. Concerning ‘raw’ resource uti-
lization, Figure 5 shows small increases in CPU utiliza-
tion in the event of using coordination. These results are
gathered for the same read-write request mix as above,
for which there is higher application and database server
activity, justifying the higher weights (i.e., resource al-
locations) for these components. We also observe that
with coordination, the user space CPU utilization within
the guest domain is increased, while iowait and the sys-
tem CPU utilization values decrease. This is advanta-
geous, as it means the application receives more CPU
time to run. The platform efficiency metric in Table 2
justifies the resulting higher CPU utilization with a larger

improvement in application performance (e.g., through-
put), thus demonstrating the importance of coordinated
resource management.

3.2 MPlayer Benchmark

Mplayer is an open-source movie player benchmark.
It plays most video formats and supports a variety of
codecs including the h.264 high definition codec. Re-
trieving video streams and playing them requires de-
coding the codec used by the stream. This is a fairly
high CPU-intensive task. The amount of CPU usage
necessary to provide a desired viewing experience de-
pends on certain stream characteristics, such as the type
of codec, resolution, frame- and bit-rate. Higher bit-
rate and higher frame-rate video guarantees better video
quality and smoother viewing. However, decoding these
streams is more CPU-intensive.

We use the IXP-based testbed with two Mplayer
clients inside two virtual machines, both 256 MB, single
VCPU, running Kubuntu 8.04 2.6.24 kernel. A Darwin
Quicktime streaming server is deployed on an external
machine, serving video streams over RTSP and UDP. All
network communication between the client and server is
directed through the IXP interface. The IXP processor
classifies incoming streams based on virtual machine IP
address that hosts the MPlayer client. Mplayer supports a
benchmark option that plays out the streams at the fastest
frame rate possible and we also disable video output for
all our tests, just focusing on the decoded frames/sec out-
put as our application-level quality of service metric.
Coordination schemes.
1. Using application knowledge. In order to drive coor-
dination, we devise a coordination scheme that leverages
the incoming stream properties and hence application
knowledge to drive coordination between the IXP and
the x86 scheduling domain. To do this, when an RTSP
session is established, the IXP maintains bit- and frame-
rate state on a per guest virtual machine basis that hosts
the MPlayer client. The actual incoming stream is classi-
fied based on the destination (i.e., guest) IP address. The
IXP sends an ‘Increase weight’ message for a high bit-
rate, high frame-rate stream, whereas ‘Decrease weight’
message is sent when servicing low bit-rate, low frame-
rate streams. The results in Figure 6 show that this coor-
dination results in an improved overall frame rate. In this
experiment, we first start the guests with default weights
of 256 each. Domain-1 plays a lower frame-rate (20
frames/sec) 300 kbps stream, while Domain-2 plays a
higher frame-rate (25 frames/sec) 1Mbit stream. With
default weights, neither guest domain is able to meet the
required frame-rate guarantees. When we increase their
weights due to their high bit-rate detection, Domains 1
and 2 report output frame rates of 22 and 25.7 frames/sec,

50

 5

 10

 15

 20

 25

 30

256-256 384-512 384-640

Fr
am

es
/s

ec

Domains

Dom1
Dom2

Figure 6: Mplayer: Video-stream Quality of Service.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100 120 140 160 180
 0

 100000

 200000

 300000

 400000

 500000

 600000

cp
u-

ut
ili

za
tio

n(
%

)

ix
p

bu
ffe

r
IN

 (
by

te
s)

Time (secs)

No-coord
Coord-trigger

ixp-buffer

Figure 7: Mplayer: Tuning Credit Adjustments using IXP
Buffer Monitoring.

Guest Domain Baseline
Frames/s

With
Co-ord
Frames/s

%
change

Domain-1 24.0 26.6 +9.77
Domain-2 80.0 75.0 -6.25

Table 3: MPlayer – Trigger Interference.

respectively, which means that both meet their required
frame-rate values. If we now further increase Domain-
2’s weight because it has a higher frame-rate require-
ment and also increase the number of IXP threads ser-
vicing Domain-2 receive queue in tandem, we see that
Domain-2 achieves still better frame-rates, but Domain-
1’s frame rate is reduced in proportion to Domain-2’s in-
creased weight. It still remains above the 20 frames/sec
limit, however. Hence coordination helps us to translate
stream-level properties into appropriate CPU resource al-
location for MPlayer.
2. Using system buffer monitoring. In the previous ex-
ample, we apply higher-level application properties to
drive coordination. We next actuate coordination, which
does not rely on application-level knowledge but solely
system-level monitoring insights. To demonstrate such
a use-case and its benefits, we monitor network-buffer
lengths in the IXP DRAM which correspond to packet
queues for the host VMs. If the packet-rate increases
like it may for streaming applications (e.g., in UDP bulk
transfers with no flow-control), such a change will be no-
ticed at the first stage of the pipeline – the IXP schedul-
ing domain. This information can be used to inform
later stages that they will need additional processing
power, thereby anticipating or avoiding potential bottle-
necks. Such actions are time-critical because if not de-
queued in time, the frontend buffer could overflow, lead-

ing to lost packets. In our streaming case, whenever the
buffer-length goes above a defined threshold, an imme-
diate trigger notification is sent to the x86 host, which
should boost the dequeuing guest VM’s position in the
runqueue. As can be seen from Figure 7, we see spikes
in CPU utilization for the boosted domain whenever a
buffer-threshold of 128Kbytes is reached on the IXP. The
outcome is an increased frame-rate of 26.6 frames/sec as
compared to the baseline case of 24.0 frames/sec – a near
10% improvement.
Trigger overheads. Finally, we also evaluate the impact
of such trigger coordinations on other VMs running in
the target scheduling island. Towards this end, we de-
ploy a second MPlayer VM – Dom-2, which rather than
playing video from the network, plays it from its own lo-
cal disk. Therefore, this VM does not use any resources
of the IXP island. Our measurements, shown in Table 3,
show that Dom-2’s performance degrades by only 6%.
While there is still an overall net gain in platform ef-
ficiency, we believe that on more tightly coupled next
generation manycores, the overheads generated by such
triggers will be substantially reduced.

3.3 Discussion of results – a case for coor-
dination.

From the experimental evaluations described above, we
observe that coordination helps improve the performance
of applications spanning heterogeneous islands, and it
also leads to more efficient use of platform resources
(i.e., through increased CPU usage efficiency). Given
these encouraging results, we believe that there exists a
set of low-level coordination mechanisms that should be
an essential feature in the design of future system soft-
ware for heterogeneous manycore platforms. For the co-

51

ordination schemes in our evaluation use-cases, we iden-
tify two such mechanisms that can effectively be used to
implement more versatile and complex higher-level co-
ordination algorithms.
1. Tune – is a mechanism used by an island to re-
quest fine-grained resource adjustment of a particular
entity (e.g., process or VM) in a remote island. This
mechanism corresponds to the ‘Weight increase’ and
‘Weight decrease’ messages used in our evaluated coor-
dination algorithms. Messages containing a process or
VM identifier and a +/- numerical value can be used to
request resource adjustment that, at the remote island,
will get translated into corresponding weight or priority
adjustments, depending on the remote island’s schedul-
ing algorithm (e.g., credit adjustments in Xen scheduler
or poll time adjustments in an I/O scheduler).
2. Trigger – is an immediate notification, like an interrupt
between two islands. It is a mechanism that lets an island
request resource allocation for a particular process in a
remote island as soon as possible, and therefore has more
preemptive semantics.
Hardware considerations. Future platforms [14] may
have non-cache coherent memory between islands of
cores, and therefore supporting these mechanisms via
message-based communication [5] contributes to the
generality of the approach.

In addition, although we discuss the integration of
such coordination mechanisms into system software
for heterogeneous many-cores, their realizations can be
made more efficient through use of adequate hardware
support. First, by leveraging advanced interconnection
technologies (e.g., QPI, HTX), more tighly coupled het-
erogeneous multicores can be realized, which will elimi-
nate the latency concerns, as observed in our experiments
due to the use of a PCIe interconnect.

Next, inter-processor interrupts and, for some archi-
tectures, the monitor and mwait instructions, are the
only relatively primitive inter-core communication meth-
ods present in current platforms. The presence of fact
core-core hardware-level signalling support, which can
also carry the small additional amounts of information
as required by the coordination mechanisms described
above, can further eliminate some of the observed soft-
ware overheads.

Finally, use of hardware-supported queues, or use of
fast on-chip shared memory with explicit message pass-
ing semantics [14] for the inter-island coordination chan-
nels can result in improved performance and scalability
of such mechanisms.

4 Related Work

Scheduling islands. The concept of scheduling islands
introduced in Helios [23] has its roots in earlier work that

includes Cellular-Disco [10], Hive [7], K42 [16], and [6].
While Helios uses satellite kernels to build distributed
systems in the small and has a notion of heterogeneous
runtimes, the Hive system uses resource-partitions for
fault-containment, and K42 uses them to exploit local-
ity. The implementation of scheduling islands via virtual
machines used in this paper is similar to the approach fol-
lowed in Cellular-Disco, which uses virtual machines to
run as domains in ‘cell’ partitions. We wish to extend the
notion of islands by encouraging coordination mecha-
nisms to be exported directly at the system software layer
for better platform resource management, something we
believe has not been looked at in previous work.

Concerning scheduler coordination, there is recent
work on scheduler optimizations that enhance I/O per-
formance in virtualized environments [11, 24]. Opti-
mizations are obtained by coordinating VCPU schedul-
ing with virtual machine I/O, but the solutions provided
rely on a centralized controller domain (Dom0) to pro-
vide the scheduler with necessary hints. With our pro-
posed coordination mechanisms we wish to distribute
such control across scheduling domains. Further, we ex-
plore more complex and richer relationships across mul-
tiple domains, based on application-level data flow and
control dependences.

Application monitoring. Some of our coordination
policy models in Section 3 use application-level depen-
dencies to drive coordination. However application pro-
filing to discover these component dependencies during
runtime is not a part of our current work, and so we
rely on previous research and our own offline profiling to
learn them. For instance, for one of our multi-tier bench-
marks, RUBiS, we use insight from previous work [3, 27]
to understand the work-flow in such applications based
on incoming requests and then use this understanding to
drive coordination. Other research conducted in our own
group and elsewhere [2, 18], has developed methods for
automated discovery of inter-component dependencies in
large scale distributed applications, which can be used in
conjunction with our coordination schemes.

5 Conclusions and Future Work

This paper presents a case for coordination in hetero-
geneous multicore platforms. In order to deal with the
increased parallelism and heterogeneity on next gener-
ation multicores, we rely on platform partitioning into
multiple scheduling islands – sets of resources under the
control of a single resource manager. The challenge
then is how to maintain global, platform-wide proper-
ties and how to deal with the end-to-end SLA require-
ments of applications deployed across multiple, inde-
pendently managed domains. Experimental evaluations
for web and for multimedia applications using a proto-

52

type x86-IXP two-island heterogeneous multicore plat-
form demonstrate that coordination methods can help ap-
plications achieve their end-to-end SLAs (with increased
throughput, more predictable and lower response times).
Based on these encouraging results, we argue that coor-
dination between distributed islands on future platforms
needs to be exported as a set of standard mechanisms and
new interfaces at the system software layer itself. We
identify two such mechanisms in this paper.

Our ongoing work concerns exploring additional use-
cases (e.g., memory, power [21] and I/O coordination
policies along with CPU scheduling) to better delineate
required mechanisms and their functionality. Also on-
going are evaluations of the scalability of such mecha-
nisms to large-scale multicore platforms, part of which
involve the use of distributed coordination algorithms
across multiple island resource managers.

References

[1] ADILETTA, M., ROSENBLUTH, M., ET AL. The next
generation of intel ixp network processors. Intel Technol-
ogy Journal (2002).

[2] AGARWALA, S., ALEGRE, F., SCHWAN, K., ET AL.
E2eprof: Automated end-to-end performance manage-
ment for enterprise systems. In DSN (2007).

[3] BARHAM, P., DONNELLY, A., ISAACS, R., AND

MORTIER, R. Using magpie for request extraction and
workload modelling. In OSDI (2004).

[4] BARHAM, P., DRAGOVIC, B., FRASER, K., ET AL. Xen
and the art of virtualization. In SOSP (2003).

[5] BAUMANN, A., BARHAM, P., ET AL. The multikernel:
a new os architecture for scalable multicore systems. In
SOSP (2009).

[6] BUTRICO, M., DA SILVA, D., KRIEGER, O., ET AL.
Specialized execution environments. SIGOPS Oper. Syst.
Rev. (2008).

[7] CHAPIN, J., ROSENBLUM, M., DEVINE, S., ET AL.
Hive: fault containment for shared-memory multiproces-
sors. SIGOPS Oper. Syst. Rev. (1995).

[8] CHERKASOVA, L., GUPTA, D., AND VAHDAT, A. Com-
parison of the three cpu schedulers in xen. SIGMETRICS
Perform. Eval. Rev. (2007).

[9] http://bit.ly/7fA5sb. AMD Fusion Processors.

[10] GOVIL, K., TEODOSIU, D., ET AL. Cellular disco:
resource management using virtual clusters on shared-
memory multiprocessors. ACM Trans. Comput. Syst.
(2000), 229–262.

[11] GOVINDAN, S., CHOI, J., NATH, A. R., ET AL. Xen and
co.: Communication-aware cpu management in consoli-
dated xen-based hosting platforms. IEEE Transactions on
Computers (2009).

[12] GUPTA, V., GAVRILOVSKA, A., SCHWAN, K., ET AL.
Gvim: Gpu-accelerated virtual machines. In HPCVirt
(2009).

[13] HONG, S., AND KIM, H. An analytical model for a
gpu architecture with memory-level and thread-level par-
allelism awareness. In ISCA (2009).

[14] HOWARD1, J., DIGHE1, S., ET AL. A 48-core ia-32
message-passing processor with dvfs in 45nm cmos. In-
ternational Solid State Circuits Conference (2010).

[15] IBM. A wire-speed power processor: 2.3 ghz 45 nm soi
with 16 cores and 64 threads. International Solid State
Circuits Conference (2010).

[16] KRIEGER, O., AUSLANDER, M., ET AL. K42: building
a complete operating system. In EuroSys (2006).

[17] KUMAR, S., TALWAR, V., ET AL. vmanage: loosely
coupled platform and virtualization management in data
centers. In ICAC (2009).

[18] KUMAR, V., SCHWAN, K., ET AL. A state-space ap-
proach to sla based management. In NOMS (2008).

[19] http://bit.ly/5sgX8T. Larrabee: An x86 many-
core architecture for visual computing.

[20] LEE, M., KRISHNAKUMAR, A. S., KRISHNAN, P.,
SINGH, N., AND YAJNIK, S. Supporting soft real-time
tasks in the xen hypervisor. In VEE (2010).

[21] NATHUJI, R., SCHWAN, K., ET AL. Vpm tokens: virtual
machine-aware power budgeting in datacenters. Cluster
Computing (2009).

[22] http://bit.ly/5eNDKy. Intel Nehalem Processors.

[23] NIGHTINGALE, E. B., HODSON, O., ET AL. Helios:
heterogeneous multiprocessing with satellite kernels. In
SOSP (2009).

[24] ONGARO, D., COX, A. L., AND RIXNER, S. Scheduling
i/o in virtual machine monitors. In VEE (New York, NY,
USA, 2008).

[25] http://bit.ly/8oe8uU. AMD Opteron six-core
rocessors.

[26] http://bit.ly/5OYmVP. Intel QuickPath Intercon-
nect.

[27] STEWART, C., KELLY, T., ZHANG, A., AND SHEN, K.
A dollar from 15 cents: cross-platform management for
internet services. In ATC’08: USENIX Annual Technical
Conference (2008).

[28] ZHU, X., YOUNG, D., ET AL. 1000 islands: Integrated
capacity and workload management for the next genera-
tion data center. In ICAC (2008).

53

