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Abstract— Monte-Carlo Tree Search (MCTS) algorithms,
including upper confidence Bounds (UCT), have very good
results in the most difficult board games, in particular the
game of Go. More recently these methods have been successfully
introduce in the games of Hex and Havannah. In this paper we
will define decisive and anti-decisive moves and show their low
computational overhead and high efficiency in MCTS.

I. I NTRODUCTION

MCTS[10], [8] and UCT[18] are now well established
as strong candidates for planning and games, in particular
when (i) the dimensionality is huge (ii) there’s no efficient
handcrafted value function. They provided impressive results
in the game of Go[20], in connection games[6], [29], and
in the important problem of general game playing[28]; this
suggests the strong relevance of MCTS and UCT for general
purpose game tools. These techniques were also applied
to Partially Observable Markov Decision Processes derived
from fundamental artificial intelligence tasks [25], [3] that
were unsolvable by classical Bellman-based algorithms, and
related techniques also provided some world records in
one-player games[26], [5]. An industrial application was
successful in a difficult context in which the baseline was
heavily optimized[14].

A complete introduction to UCT and MCTS is beyond the
scope of this paper; we essentially recall that:

• following [4], MCTS is a Monte-Carlo approach, i.e.
it is based on many random games simulated from the
current board;

• following [10], [8], these random games are progres-
sively biased toward better simulations; this bias follows
a “bandit” formula, which can be Upper Confidence
Bounds[19], [2], [30], [1] (like in UCT[18]), or more
specialized formulas[20] combining offline learning and
online estimates; the general idea is presented in Alg.
1 for the UCT version. Bandits formulas are formulas
aimed at a compromise between exploration (analyzing
moves which have not yet been sufficiently analyzed)
and exploitation (analyzing moves which are better and
therefore more likely).

• when the time is elapsed, then the most simulated move
from the current board is chosen.

This simple algorithm is anytime[33] in the sense that it
is reasonably efficient whatever may be the computational
power per move, with better and better results as long as
the computational power per move increases. It outperforms
many algorithms and in particular the classicalα − β

Algorithm 1 The UCT algorithm in short.nextState(s,m)
is the implementation of the rules of the game, and the
ChooseMove() function is defined in Alg. 2. The constant
k is to be tuned empirically.

d =UCT(situations0, time t)
while Time left > 0 do

s = s0 // start of a simulation
while s is not terminaldo

m =ChooseMove(s)
s =nextState(s,m)

end while
// the simulation is over

end while
d = most simulated move froms0 in simulations above

Algorithm 2 The ChooseMove function, which chooses a
move in the simulations of UCT.

ChooseMove(situations)
if There’s no statistics from previous simulations ins then

Return a move randomly according to some default
policy

else
for Each possible movem in s do

compute a score(m) as follows:

average reward when choosingm in s +
√

k. log(nb of simulations ins)
nb of simulations ofm in s

. (1)

end for
Return the move with highest score.

end if

approach in many difficult games. It can be implemented
provided that:

• the rules are given (function nextState(state,move));
• a default policy is given (a default solution is the use

of a pure uniform random move).

A main advantage is therefore that we don’t need/don’t use
an evaluation function. This is obviously a trouble when
very efficient value functions exist, but it is great for games
in which no good value function exist. Also, we can use
offline learning for improving the bandit formula 1, or rapid-
action-value-estimates[16]. When an evaluation function is
available, it can be used by cutting the Monte-Carlo part



and replacing the end of it by the evaluation function; this
promising technique has shown great results in [21].

However, a main weakness is the handcrafting in the
Monte-Carlo part. The default uniform policy is not satis-
factory and strong results in the famous case of the game
of Go appeared when a good Monte-Carlo was proposed.
How to derive a Monte-Carlo part, i.e. a default policy ?
It is known that playing well is by no mean the goal of the
default policy: one can derive a much stronger default policy
than those used in the current best implementations, but the
MCTS algorithm built on top of that is indeed much weaker!

The use of complex features with coefficients derived
from databases was proposed in [11], [9] for the most
classical benchmark of the game of Go, but the (tedious)
handcrafting from [31] was adopted in all efficient imple-
mentations, leading to sequence-like simulations in all strong
implementations for the game of Go. Also, some very small
modifications in the Monte-Carlo part can have big effects, as
the so-called “fillboard” modification proposed in [7] which
provides a 78 % success rate against the baseline with a not-
so-clear one-line modification. A nice solution for increasing
the efficiency of the Monte-Carlo part is nested Monte-
Carlo[5]; however, this technique has not given positive
results in two-player games. We here propose a simple and
fast modification, namely decisive moves, which strongly
improves the results.

Connection games (Fig. 3) are an important family of
board games; using visual features, humans are very strong
opponents for computers. Connection games like Hex (in-
vented by John Nash as a development around the game of
Go), Y (invented by Claude Shannon as an extension of Hex),
Havannah (discussed below), TwixT, *Star have very simple
rules and huge complexity; they provide nice frameworks for
complexity analysis:

• no-draw property, for Hex [22] and probably Y (a first
flawed proof was published and corrected);

• first player wins in case of perfect play, for Hex, when
no pie-rule is applied (otherwise, the second player
wins). This is proved by the strategy-stealing argument:
if the second player could force a win, then the first
player could adapt this winning strategy to his case and
win first.

• Many connection games are PSPACE as they proceed
by adding stones which can never been removed and are
therefore solved in polynomial space by a simple depth-
first-search (Hex, Havannah, Y, *Star and the versions
of Go with bounded numbers of captures like Ponnuki-
Go); most of them are indeed proved or conjectured also
PSPACE-hard (they’re therefore proved or conjectured
PSPACE-complete); an important result is the PSPACE-
completeness of Hex[23].

They are also classical benchmarks for exact solving (Jing
Yang solved Hex for size 9x9) and artificial intelligence[29],
[6]. The case of Go is a bit different as there are captures;
some variants are known EXPTIME-complete[24], some
other PSPACE-hard[13], and some cases are still unknown;

as there are plenty of families of situations in Go, some
restricted cases are shown NP-complete as well [12]. In
all the paper,[a, b] = {x; a ≤ x ≤ b} and [[a, b]] =
{0, 1, 2, . . . }∩ [a, b]. log ∗(n) (sometimes termed the iterated
logarithm) is defined aslog ∗(1) = 0, log ∗(2) = 1 and
log ∗(n) = 1+log ∗(log(n)/ log(2)); log ∗(n) increases very
slowly to ∞ and in particularlog ∗(n) = o(log(n)), so that
complexities inT log(T ) are bigger than complexities in
T log ∗(T ).

Section II introduces the notion of decisive moves (i.e.
moves which conclude the game), and anti-decisive moves
(i.e. moves which avoid decisive moves by the opponent one
step later). Then section III then presents connection games,
in the general case (section III-A), in the case of Hex and
Havannah (section III-B), and then the data structure (section
III-C) and a complexity analysis of decisive moves in this
context (section III-D). Section IV presents experiments.

II. D ECISIVE MOVES AND ANTI-DECISIVE MOVES

In this section, we present decisive moves and their
computational cost. When a default policy is available for
some game, then it can be rewritten as a version with decisive
moves as follows:

• If there is a move which leads to an immediate win,
then play this move.

• Otherwise, play a move (usually randomly) chosen by
the default (Monte-Carlo) policy.

This means that the ChooseMove function from the UCT
algorithm (see Alg. 2) is modified as shown in Alg. 3.
Yet another modification, termed “anti-decisive moves”, is

Algorithm 3 ChooseMove() function, with decisive moves.
To be compared with the baseline version in Alg. 2.

ChooseMoveDM (situation s)
// version with decisive moves

if There is a winning movethen
Return a winning move

else
ReturnChooseMove(s)

end if

presented in Alg. 4.
This can be related to the classical quiescent search[17]

in the sense that it avoids to launch an evaluation (here a
Monte-Carlo evaluation) in an unstable situation.

III. C ONNECTION GAMES, AND THE CASE OFHAVANNAH

In order to have a maximal generality, we first give the
general conditions under which our complexity analysis ap-
plies. We will then make things more concrete by considering
Hex and Havannah; the section below can be skipped in first
reading.



Algorithm 4 ChooseMove() function, with decisive moves
and anti-decisive moves. To be compared with the baseline
version in Alg. 2 and the version with decisive moves only
in Alg. 3.

ChooseMoveDM+ADM (situation s)
// version with decisive and
// antidecisive moves

if There is a winning movethen
Return a winning move

else
if My opponent has a winning movethen

Return a winning move of my opponent
else

ReturnChooseMove(s)
end if

end if

A. Connection games

We will consider here the complexity of decisive moves in
an abstract framework of connection games; more concrete
examples (Hex and Havannah) are given in the section and
the current section can therefore be skipped without trouble
by people who want to focus on some clear examples first.
We consider the complexity for a machine which contains
integer registers of arbitrary size, and random access to
memory (O(1) cost independently of the location of the
memory part). Games under consideration here are as follows
for some data structure representing the board:

• The game has (user chosen) sizeT in the sense that
there areT locations and at mostT time steps.

• The data structuredt at time stept contains

– the current statedt.s of the board;
– for each locationl, some informationdt.s(l) which

is sufficient for checking inO(1) whether playing
in l is an immediate win for the player to play at
situationdt.s;

– for each locationl, the list of dt.s(l).ntimeSteps,
supposed to be at mostO(log(t)) time steps at
which the local informationdt.s(l) has changed;

– for each location l and each time stepu ∈
[[1, dt.s(l).ntimeSteps]], the local information at
time stepu, i.e. du.s(l).

• “Monotonic” games: one more stone for a given player
at any given location can change the situation into a
win, but can never replace a win by a loss or a draw;
when a stone is put on the board, it is never removed.

• The update of the data structure is made in time
O(T log(T )) for a whole game, for any sequence of
moves.

We also assume that the Monte-Carlo choice of a move can
be made in timeO(1) for the default (Monte-Carlo) policy;
this is clearly the case

• with the uniform Monte-Carlo thanks to a list of empty
locations;

• for local pattern-matching like in [31].

We also assume that the initial state can be built in memory
in time O(T ). As this is somehow abstract, we will give a
concrete example for Hex and/or Havannah in next section.

B. Rules of Hex and Havannah

The rules of Hex are very simple: there’s a rhombus (with
sides A,B,C,D) (Fig. 3) equipped with an hexagonal grid;
each player, in turns, fill an empty location with a stone of
his color. Player 1 wins if he connects sides A and C, player
2 wins if he connects sides B and D. The game of Havannah
is a board game, recently created by Christian Freeling [27],
[32]. In this game, two players (black and white) put in an
empty location of the board. This is an hexagonal board of
hexagonal locations, with variable sizes (most popular sizes
for humans are 8 or 10 hexes per side).
The rules are very simple:

• White player starts.
• Each player put a stone on one empty cell. If there is

no empty cell and if no player has won yet, then the
game is a draw (this almost never happens).

• To win the game, a player has to realize one of the three
following structures:

– A ring, which is a loop around one or more
cells. These surrounded cells can be black or white
stones, or empty cells.

– A bridge, which is a continuous string of stones
connected to two of the six corners.

– A fork, which is a continuous string of stones
connected to three of the six sides. Corner cells
do not belong to a side.

These three winning positions are presented in Fig. 1.
For classic board sizes, the best computers in Havannah

are weak compared to human experts. To show that, in 2002,
Christian Freeling, the game inventor, offered a prize of 1000
euros, available through 2012, for any computer program that
could beat him one game of a ten game match.
The main difficulties of this game are :

• There’s almost no easy to implement expert knowledge;
• No natural evaluation function;
• No pruning rule for reducing the number of possible

moves;
• Large action space. For instance, the first player, on an

empty board of size 10 has 271 possible moves.

MCTS has been recently introduced for the game of
Havannah in [29].

C. Data structures for Hex and Havannah

The data structure and complexities above can be realized
for Hex and Havannah (and more generally for many games
corresponding to the intuitive notion of connection games)
as follows:

• For each locationl, we keep as information in the state
dt for time stept the following dt.s(l):

– the color of the stone on this location, if any;



Ring (black) Bridge (white)

Fork (black)

Fig. 1. Three finished Havannah games: a ring (a loop, by black), a bridge
(linking two corners, by white) and a fork (linking three edges, by black).

– if there is a stone, a group number; connected
stones have the same group number;

– the time stepsu ≤ t at which the local information
du.s(l) has changed; we will see below why this
list has sizeO(log(T )); the group information and
the connections for all stones in the neighborhood
of l are kept in memory for each of these time steps.

• For each group number, we keep as information:
– the list of edges/corners to which this group is

connected (in Hex, corners are useless, and only
some edges are necessary);

– the number of stones in the group;
– one location of a stone in this group.

• For each group number and each edge/corner,
– the time step (if any) at which this group was

connected to this edge.
• At each move, all the information above is updated.

The important thing for havingO(T log(T )) overall
complexity in the update is the following: whenk
groups are connected, then the local information should
be changed for thek − 1 smallest groups and not for
the biggest group (see Fig. 2). This implies that each
local information is updated at mostO(log(T )) times
because the size of the group, in case of local update,
is at least multiplied byk.

Checking a win inO(1) is easy by checking connections of
groups modified by the current move (for fork and bridge)
and by checking local information for cycles:

• a win by fork occurs if the new group is connected to
3 edges;

• a win by bridge occurs if the new group is connected
to 2 corners;

• a win by cycle occurs when a stone connects two stones
of the same group, at least under some local conditions
which are tedious but fast to check locally.
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Fig. 2. An example of sequence ofΘ(T ) moves for one of the players
which cost highly depends on the detailed implementation. Theimportant
feature of this sequence of moves is that (i) it can be extendedto any
size of board (ii) the size of the group increases by1 at each move of
the player. In this case, if the biggest group has its information updated at
each new connection, then the total cost isΘ(T 2); whereas if the smallest
group is updated, the total cost isΘ(T ) for this sequence of moves, and
Θ(T log(T )) in all cases. Randomly choosing between modifying the 1-
stone group and the big group has the same expected costΘ(T 2) as the
choice of always modifying the big group (up to a factor of 2).

D. Complexity analysis

Under conditions above, we can:

• initialize the state (O(T ));
• T times,

– randomly choose a move (cumulated costO(T ));
– update the state (cumulated costO(T log(T )));
– check if this is a win (cumulated costO(T ) - exit

the loop in this case).

therefore we can perform one random simulation in time
O(T log(T )). This is not optimal, as union/find algorithms
[15] can reachO(T log ∗(T )); but the strength of this data
structure is that we can switch to decisive moves with no
additional cost (except within a constant factor). This is
performed as follows:

• initialize the state (O(T ));
• T times,

– randomly choose a move (cumulated costO(T ));
– update the state (cumulated costO(T log(T )));



– check if this is a win (cumulated costO(T )) (exit
the loop in this case).

• let firstWin =time step at which the above game was
won (+∞ in case of draw).

• let winner =the player who has won.
• for each time locationl, (O(T ) times)

– for each time stept (there are at mostO(log(T ))
such time steps by assumption on the data structure)
at whichdt.s(l) has changed, (O(log(T )) times)

∗ check if dt.s(l) was legal and a win for the
playerp to play at time stept; (O(1))

∗ if yes, if t < firstWin then winner = p and
firstWin = t; (O(1))

∗ check if dt+1.s(l) was legal and a win for the
playerp to play at time stept + 1; (O(1))

∗ if yes, if t + 1 < firstWin then winner = p
andfirstWin = t + 1. (O(1))

The overall cost isO(T log(T )). We point out the following
elements:

• The algorithm above consists in playing a complete
game with the default policy, and then, check if it was
possible to win earlier for one of the players. This is
sufficient for the proof, but maybe it is much faster
(at least from a constant) to check this during the
simulation.

• We do not prove that it’s not possible to reach
T log ∗(T ) with decisive moves in Hex or Havannah;
just, we have not found better thanT log(T ).

IV. EXPERIMENTS

We perform our experiments on Havannah; the game
of Havannah is a connection game with a lot of inter-
est from the computer science community (see [27], [29],
littlegolem.net and boardgamegeek.net). It in-
volves more tricky elements than Hex and it is therefore a
good proof of concept. Please note that we do not imple-
mented the complete data structure above in our implemen-
tation, but some simpler tools which are slower but have the
advantage of covering anti-decisive moves as well. We have
no proof of complexity for our implementation and no proof
that theT log(T ) can be reached for anti-decisive moves.

We implement the decisive moves and anti-decisive moves
in our Havannah MCTS-bot for measuring the corresponding
improvement. We can see in Table I that adding decisive
move can lead to big improvements; the modification scales
well in the sense that it becomes more and more effective as
the number of simulations per move increases.

V. D ISCUSSION

We have shown that (i) decisive moves have a small com-
putational overhead (T log(T ) instead ofT log ∗(T )) (ii) they
provide a big improvement in efficiency. The improvement
increases as the computational power increases.

Anti-decisive moves might have a bigger overhead, but
they are nonetheless very efficient as well even with fixed
time per move. A main lesson, consistent with previous

TABLE I

SUCCESS RATES OF DECISIVE MOVES. BL IS THE BASELINE (NO

DECISIVE MOVES). DM CORRESPONDS TOBL PLUS THE ” DECISIVE

MOVES” ( IF THERE EXISTS A WINNING MOVE THEN IT IS PLAYED). DM

+ ADM, IS THE DM VERSION OF OUR BOT, PLUS THE ” ANTIDECISIVE

MOVES” IMPROVEMENT: IN THAT CASE, IF PLAYER p IS TO PLAY, IF p

HAS A WINNING MOVE m THEN p PLAYS m; ELSE, IF THE OPPONENT

HAS A WINNING MOVE m′ , THEN p PLAYS m′ .

Number of 100 250 500 1000 30s
simulations

DM 98.6% 99.1% 97.8% 95.9%

vs BL ±1.8% ±1.1% 1.6% ±1.5%

DM + ADM 80.1% 81.3% 82.4 85% 83.2%

vs BL ±1.2% 2% ±1.7% ±1.4% ±4%

DM + ADM 49.3% 56.1% 66.6% 78.1% 90.2%

vs DM ±1.5% ±1.9% ±1.9% ±1.1% ±2%

works in Go, is that having simulations with a better scaling
as a function of the computational power, is usually a good
idea whenever these simulations are more expensive.

The main limitation is that in some games, decisive moves
have a marginal impact; for examples, in the game of Go,
only in the very end of “Yose” (end games) such moves
might occur (and resign usually happens much before such
moves exist).

Further work

Extending decisive moves to moves which provide a sure
win within M moves, or establishing that this is definitely
too expensive, would be an interesting further work. We have
just shown that forM = 1, this is not so expensive if we
have a relevant data structure (we keep theO(T log(T ))).

A further work is the analysis of the complexity of anti-
decisive moves, consisting in playing a move which forbids
an immediate victory of the opponent. Maybe backtracking
when a player wins and the loss was available would be a
computationally faster alternative to antidecisive moves.

Decisive moves naturally lead to proved situations, in
which the result of the game is known and fixed; it would
be natural to modify the UCB formula in order to reduce the
uncertainty term (to0 possibly) when all children moves are
proved, and to propagate the information up in the tree. To
the best of our knowledge, there’s no work around this in
the published literature and this might extend UCT to cases
in which perfect play can be reached by exact solving.
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