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ABSTRACT. Tree Regular model checking is the name of a family of techniques for analyzing infinite-
state systems in which states are represented by trees and sets of states by tree automata. From the
verification point of view, the central problem is to compute the set of reachable states providing a
given transition relation. A main obstacle is that this set is in general not computable in a finite time.
In this paper, we propose a new CounterExample Guided Abstraction Refinement technique that
can be used to check whether a set of state can be reached from the initial set. Contrary to existing
techniques, our approach relies on equational abstraction to ease the definition of approximations
and on a specific model of tree automata to avoid heavy backward refinement steps.

1 Introduction

At the heart of all the techniques that have been proposed for exploring infinite state spaces,

is a symbolic representation that can finitely represent infinite sets of states.

In this paper, we assume that states of the system are represented by trees (terms) and

set of states by tree automata. In this context, the transition relation of the system is naturally

represented by a set of rewriting rules. It is well-known that this Tree Regular Model Checking

framework is expressive enough to describe communication protocols [1] as well as a wide

range of cryptographic protocols [18, 20, 2] and JAVA applications [5].

In Tree Regular Model Checking, the main objective is to compute an automaton repre-

senting the set of states of the system. As we are dealing with infinite-state systems, the

problem remains undecidable and only partial solutions can be proposed. Among theses

solutions, we find the predicate abstraction methodology that was promoted by Bouajjani et

al. [7, 8]. The idea behind abstract Tree Regular Model Checking consists in computing the

automata obtained after successive applications of the rewriting relation and then use tech-

niques coming from the predicate abstraction area in order to over-approximate the set of

reachable states. If the property holds on the abstraction, then it also holds on the concrete

system. If a counter-example is found on the abstraction, then one has to check if it is in-

deed a counter-example to the real system. If not, this spurious counter-example must be

used to refine the abstraction. Bouajjani’s algorithm, which may not terminate, proceeds by

successive abstraction/refinement until a decision can be taken.

Independently, Genet et al. [16, 15, 19] proposed completion that is another technique

to compute an over-approximation of the set of reachable states. The main difference with

the work in [7] is that completion techniques use equations to compute the abstraction [19].

Equations gives a simple and formal semantics to abstractions on trees [22]. Contrary to
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2 FAST EQUATIONAL ABSTRACTION REFINEMENT FOR REGULAR TREE MODEL CHECKING

the work in [7, 8], completion techniques have been applied to very complex case studies

such as the verification of (industrial) cryptographic protocols [18, 20, 2] and Java bytecode

applications [5]. Unfortunately, these completion techniques do not embed any notion of

counter-example based refinement.

The objective of this paper is to overcome the above mentioned problem and propose

a CounterExample Guided Abstraction Refinement procedure for completion algorithms. Our

contribution is in two steps. First, we propose R/E-automaton, that is a new extension of

tree automata. A R/E-automaton keeps trace of the equations and rewriting rules applied

to the initial automaton. The automaton can be used to decide whether a term t (or a set

of terms) is reachable from the set of initial states. If the procedure concludes positively,

then the term is indeed reachable. If the procedure concludes negatively, then one has to

refine the R/E-automaton and restart the process. Our second contribution is to propose a

procedure that refines a R/E-automaton in an efficient manner.

Related work. Regular model checking was first apply to compute the set of reachable

states of systems whose configurations are represented by words [10, 6]. The approach was

then extended to trees and first applied to very simple case studies [1]. In [9], Bouajjani et

al. introduced the first Counterexample abstraction techniques for regular model checking

and extended it to trees in [7]. One of the main difference with our work is that they have

to record all the intermediary automata to decide whether the counter-example is spurious,

while we avoid this enumeration by synthetizing the information in a single and hopefully

more compact R/E-automaton. Their technique also requires to apply the reverse of the

transition relation in a successive manner. This operation, which involves determinization

and inclusion checks, may be computationally expensive. Moreover, in their work, they rep-

resent the relation with a tree transducer. This automaton, which encodes the full transition

relation in a whole, may be huge, while rewriting systems are generally compact. Finally,

their abstractions are defined using automata-based predicates which are less declarative

than equations. In [4], the authors use rewriting rules instead of transducers, but interme-

diary steps are still recorded. Moreover, we shall see that our approach is potentially more

general than the one in [4]. Finally, our work extends equational abstractions [22, 23] with

counterexample detection and refinement.

2 Definitions

In this section, we introduce some definitions and concepts that will be used through the

rest of the paper (see also [3, 14, 21]). Let F be a finite set of symbols, each associated with

an arity function, and let X be a countable set of variables. T (F ,X ) denotes the set of terms

and T (F ) denotes the set of ground terms (terms without variables). The set of variables of a

term t is denoted by Var(t). A substitution is a function σ from X into T (F ,X ), which can be

uniquely extended to an endomorphism of T (F ,X ). A position p for a term t is a word over

N. The empty sequence λ denotes the top-most position. The set Pos(t) of positions of a

term t is inductively defined by Pos(t) = {λ} if t ∈ X and Pos( f (t1, . . . , tn)) = {λ} ∪ {i.p |
1 ≤ i ≤ n and p ∈ Pos(ti)} otherwise. If p ∈ Pos(t), then t|p denotes the subterm of t at

position p and t[s]p denotes the term obtained by replacement of the subterm t|p at position

p by the term s.
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A term rewriting system (TRS) R is a set of rewrite rules l → r, where l, r ∈ T (F ,X ),
l 6∈ X , and Var(l) ⊇ Var(r). A rewrite rule l → r is left-linear if each variable of l occurs

only once in l. A TRS R is left-linear if every rewrite rule l → r of R is left-linear. The TRS

R induces a rewriting relation →R on terms as follows. Let s, t ∈ T (F ,X ) and l → r ∈ R,

s →R t denotes that there exists a position p ∈ Pos(t) and a substitution σ such that s|p = lσ

and r = s[rσ]p. The reflexive transitive closure of →R is denoted by →∗
R and s →!

R t denotes

that s →∗
R t and t is irreducible by R. The set of R-descendants of a set of ground terms

I is R∗(I) = {t ∈ T (F ) | ∃s ∈ I s.t. s →∗
R t}. An equation set E is a set of equations

l = r, where l, r ∈ T (F ,X ). For all equation l = r ∈ R and all substitution σ we have

lσ =E rσ. The relation =E is the smallest congruence such that for all substitution σ we

have lσ = rσ. Given a TRS R and a set of equations E, a term s ∈ T (F ) is rewritten modulo

E into t ∈ T (F ), denoted s →R/E t, if there exist s ∈ T (F )′ and t′ ∈ T (F ) such that

s =E s′ →R t′ =E t. Thus, the set of R-descendants modulo E of a set of ground terms I is

R/E
∗(I) = {t ∈ T (F ) | ∃s ∈ I s.t. s →∗

R/E t}.

We now define tree automata that are used to recognize possibly infinite sets of terms.

Let Q be a finite set of symbols with arity 0, called states, such that Q ∩F = ∅. T (F ∪ Q) is

called the set of configurations. A transition is a rewrite rule c → q, where c is a configuration

and q is state. A transition is normalized when c = f (q1, . . . , qn), f ∈ F whose arity is n, and

q1, . . . , qn ∈ Q. A ε-transition is a transition of the form q → q′ where q and q′ are states.

DEFINITION 1.[Bottom-up nondeterministic finite tree automaton] A bottom-up nondeter-

ministic finite tree automaton (tree automaton for short) over the alphabet F is a tuple

A = 〈F , Q, QF, ∆〉, where QF ⊆ Q, ∆ is a set of normalized transitions and ε-transitions.

The transitive and reflexive rewriting relation on T (F ∪ Q) induced by all the transitions of

A is denoted by →∗
A. The tree language recognized by A in a state q is L(A, q) = {t ∈

T (F ) | t →∗
A q}. The language recognized by A is L(A) =

⋃

q∈QF
L(A, q).

3 The Tree Regular Model Checking Problem

Our objective is to verify properties of a given system. We will focus on models of systems

whose set of reachable states may be, for modeling reasons, infinite [24] – but our solu-

tion also works for huge finite-state systems. Our first problem is to provide a symbolic

representation to represent and manipulate possibly infinite sets of states. The problem is

undecidable and only partial solutions exist. Here, we will use Tree Regular Model Checking

(TRMC) [1]. In TRMC, a program is a tuple (F , I, Rel), where

• F is an alphabet on which a set of terms T (F ) can be defined;

• I is a set of initial configurations represented by a tree automaton A, i.e. L(A) = I;

• Rel is a transition relation represented by a set of left-linear rewriting rules R.

In our setting, a program will thus be represented by the tuple (F , A,R). It has been shown

that the above framework can be used to represent a wide range of applications going from

cryptographic protocols to JAVA applications. We consider reachability problems.

DEFINITION 2.[Reachability problem] Consider a program (F , A,R) and Bad a set of for-

bidden terms Bad. The reachability problem consists in checking whether there exists terms

of R∗(L(A)) that belong to Bad.
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For finite-state systems, computing the set of reachable terms (R∗(L(A))) reduces to enu-

merate the terms that can be reached from the initial set of configurations. Unfortunately,

for infinite-state systems, this enumeration may never terminate. There is thus also a need

to “accelerate” the search through the state space in order to reach, in a finite amount of

time, states at unbounded depths. Among the existing algorithms used to compute a tree

automaton representing the set of reachable terms of a system, one finds completion algo-

rithm. A completion algorithm is a semi-algorithm that computes an automaton A∗
R that is

possibly an over-approximation of the set of reachable terms. In the rest of this section we

introduce the principle of completion and point its current limits.

We say that a tree automaton B is R-closed if for all terms s, t such that s →R and s is rec-

ognized by B into state q then so is t. The situation is represented with the following graph.
It is easy to see that L(B) ⊇ R∗(L(A)) if B is R-closed and L(B) ⊇
L(A) [12]. From an algorithmic point of view, building a R-closed A∗

R

from A consists in completing A with new transitions. The completion

algorithm computes successive automata A1
R, A2

R, . . . that represent the

effect of applying the set of rewriting rules to the initial automaton.

s
R

//

∗B
��

t

∗

Bppq

Each application of R is called a completion step and consists in searching for critical pairs

〈t, q〉 where the above diagram is not closed, i.e. s →R t, s →∗
A q and t 6→∗

A q. The idea being

that the algorithm solves the critical pair by constructing from A, a new tree automaton A1
R

with the additional transitions needed to obtain t →∗
A1
R

q, representing the effect of applying

R. Then a similar algorithm is applied on A1
R to obtain A2

R, and so on until a fixpoint A∗
R is

reached.

As the language recognized by A may be infinite, it is not possible to find all the critical

pairs by enumerating the terms that it recognizes. The solution that was promoted in [16]

consists in applying sets of substitutions σ : X 7→ Q mapping variables of rewrite rules

to states representing infinite sets of (recognized) terms. Given a tree automaton Ai
R and

a rewrite rule l → r ∈ R, to find all the critical pairs of l → r on Ai
R, completion uses a

matching algorithm [15] that produces the set of substitutions σ : X 7→ Q and states q ∈ Q

such that lσ →∗
Ai
R

q and rσ 6→∗
Ai
R

q. Solving critical pairs thus consists in adding new

transitions: rσ → q′ and q′ → q. Those transitions may have to be normalized to respect

the definition of transitions of tree automata. As it was shown in [16], this operation may

add not only new transitions but also new states to the automaton. In the rest of the paper,

the completion-step operation will be represented by C, i.e., the automaton obtained by

applying the completion step to Ai
R is denoted C(Ai

R).

The problem is that, except for particular classes [15, 17], the automaton representing

the set of reachable terms cannot be obtained from A by applying a finite number of com-

pletion steps and the process thus needs to be accelerated. For doing so, one can uses an

approximation technique based on a set of equations E and produce an over-approximation

of the set of reachable terms, i.e., a tree automaton A∗
R,E such that L(A∗

R,E) ⊇ R∗(L(A)).

To produce such an automaton, each automaton Ai
R obtained by applying i completion

steps to A is approximated using a widening function W parametrized by E. An equation

u = v is applied to a tree automaton A as follows: for all substitution σ : X 7→ Q and

distinct states q1 and q2 such that uσ →∗
A q1 and vσ →∗

A q2, states q1 and q2 are merged.
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Completion and widening steps can be linked, i.e. A0
R,E = A and Ai+1

R,E = W(C(Ai
R,E)), until

a R-closed fixpoint A∗
R,E is found. In [19], it has been shown that, under some assumptions,

the obtained automaton recognizes no more that terms reachable by rewriting with R mod-

ulo E. As a result, the approximation framework and methodology is close to equational

abstractions of [22].

EXAMPLE 3. Let R = { f (x) → f (s(s(x)))}, E = {s(s(x)) = s(x)}, A = 〈F , Q, QF, ∆〉 be a

tree automaton such that QF = {q0} and ∆ = {a → q1, f (q1) → q0}, i.e. L(A) = { f (a)}.
The first completion step finds the following critical pair: f (q1) →

∗
A

q0 and f (s(s(q1))) 6→∗
A q0. Hence, the completion algorithm pro-

duces A1
R = C(A) having all transitions of A plus {s(q1) →

q2, s(q2) → q3, f (q3) → q4, q4 → q0} where q2, q3, q4 are new states

produced by normalization of f (s(s(q1))) → q0. Applying W with

the equation s(s(x)) = s(x) on A1
R merges the states q3 and q2.

s(s(q1))

A1
R ∗

��

s(q1)

∗ A1
R

��
q3 q2

In [19], A1
R,E = W(A1

R) is built from A1
R by renaming q3 by q2. The set of transi-

tions of A1
R,E is thus ∆ ∪ {s(q1) → q2, s(q2) → q2, f (q2) → q4, q4 → q0}. Completion

stops on A1
R,E because it is R-closed, thus A∗

R,E = A1
R,E. Now, let us assume that Bad =

{ f (s(a)), f (s(s(a)))}. The first term is not in R∗(L(A)) but the second is. However, those

two terms are recognized by A∗
R,E and there is no way to distinguish between the two: no

way to detect that the second is really reachable nor to automatically refine the abstraction

so as to reject the first one.

If the intersection between A∗
R,E and Bad is not empty, then it does not necessarily mean

that the system does not satisfy the property. There is thus the need for techniques to decide

whether a counter-example is indeed a reachable term that does not satisfy the property or

if it is a term added by the abstraction and that cannot be reached from the set of initial

states. If the latter case occurs, one has to propose a refinement technique that will remove

the false-positive from the abstraction. Studying such techniques for completion automata

is the main objective of this paper.

4 R/E-Automaton for refining

In this section, we propose to extend the completion technique with a counter-example

based procedure. Contrary to existing approaches that have to perform a backward prop-

agation from the bad term to the set of initial state, we propose to extend the transition re-

lation of tree automata with information about the rewriting rules and equations that have

been applied to the initial automaton.

More precisely, we use the set εR to distinguish a term from its successors that has been

obtained by applying one or several rewriting rules. Instead of merging states according to

the set of equations, our model link them with transitions that belongs to the set ε=.

DEFINITION 4.[R/E-automaton] Given a TRS R and a set E of equations, a R/E-automaton

A is a tuple 〈F , Q, QF, ∆ ∪ εR ∪ ε=〉. ∆ is a set of normalized transitions. ε= is a set of ε-

transitions. εR is a set of ε-transitions labeled by ⊤ or conjunctions over predicates of the

form Eq(q, q′) where q, q′ ∈ Q, and q → q′ ∈ ε=.
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EXAMPLE 5. Let A be the R/E-automaton recognizing the program where I = f (a), R =
{ f (c) → g(c), a → b} and E = {b = c}.

In A, the equality b = c is denoted by two transitions qc → qb and

qb → qc of ε=, assuming that b, c are recognized into qb, qc, respec-

tively. For the state qc, the transition qb → qc indicates that the term

b is obtained from the term c by equality. Transitions qg → q f and

qb → qa denote rewriting steps. Those transitions allow us to deduce

f (a) →∗
R/E

g(c) and, a →∗
R/E

b. To have f (a) →R f (b) =E f (c) →R

g(c), which is indeed f (a) →∗
R/E

g(c) unfolded, we use the equality

b = c to obtain c from b, relation denoted by the by the transition

qc → qb. Thus, we label the transition qg → q f with the formula

Eq(qc, qb) to save this information, whereas the transition qb → qa is

labeled with ⊤ which means a →∗
R b.

qf qg

f ( qa ) g( qc )

qa qb qc

a b c

Eq(qc, qb)

⊤

=

=

In what follows, we use →∗
∆ to denote the transitive and reflexive closure of ∆. Given a

set ∆ of normalized transitions, the set of representatives of a state is defined by Rep(q) =
{t ∈ T (F )|t →∗

∆ q}. We now formally describe the runs of a R/E-automaton.

DEFINITION 6.[Run of a R/E-automaton A]

• t|p = f (q1, . . . , qn) and f (q1, . . . , qn) → q ∈ ∆ then t
⊤
−→A t[q]p

• t|p = q and q → q′ ∈ ε= then t
Eq(q,q′)
−−−−→A t[q′]p

• t|p = q and q
α
−→ q′ ∈ εR then t

α
−→A t[q′]p

• u
α
−→A v and v

α′
−→A w then u

α∧α′
−−→A w

A run
α
−→ abstracts a rewriting path of →R/E. If t

α
−→ q, then there exists a term s ∈ Rep(q)

such that s →∗
R/E t. The formula α denotes the subset of transitions of ε= needed to recog-

nize t into q.

EXAMPLE 7. Consider the R/E-automaton A of Example 5 and let g(b)
Eq(qb,qc)∧Eq(qc,qb)
−−−−−−−−−−→ q,

we know that there exists a rewriting path of →R/E from f (a), the unique term of Rep(q) to

g(b). The formula indicates that this rewriting path uses the equivalence relation induced

by b = c in both directions (transitions qb → qc and qc → qb).

The relation
α
−→ corresponds to the standard rewriting relation (see Section 2) of a tree-

automaton instrumented with logical formulas.

THEOREM 8. ∀t ∈ T (F ∪ Q), q ∈ Q, t
α
−→A q ⇐⇒ t →∗

A q

We now introduce well-defined R/E-automata. The well-defined property will be used

in the refinement procedure to distinguish between counter-examples and false positives.

DEFINITION 9.[A well-defined R/E-automaton] A is a well-defined R/E-automaton, if :

• For all state q of A, and all term v such that v
⊤
−→A q, there exists u a term representative

of q such that u →∗
R v

• If q
φ
−→ q′ is a transition of εR, then there exist terms s, t ∈ T (F ) such that s

φ
→A q,

t
⊤
→A q′ and t →R s.
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The first item in the definition 9 guarantees that every term recognized by using transitions

labeled with the formula ⊤ is indeed reachable from the initial set. The second item is used

to refine the automaton. A rewriting step of →R/E denoted by q
φ
−→ q′ holds thanks to some

transitions of ε= that occurs in φ. If we remove transitions in ε= in such a way that φ does

not hold, then the transition q
φ
−→ q′ should also be removed.

According to the above construction, a term t that is recognized by using at least a

transition labeled with a formula different from ⊤ can be removed from the R/E-automaton

by removing some transitions in ε=. This “pruning” operation is illustrated hereafter.

EXAMPLE 10. We consider the R/E-automaton A of Example 5. This automaton recognizes

the term g(c). Indeed, by Definition6, we have g(c)
Eq(qc,qb)
−−−−→ q f . Consider now the rewriting

path f (a) →R f (b) =E f (c) →R g(c). We can see that if the step f (b) =E f (c) denoted by

the transition qc → qb is removed, then g(c) becomes unreachable. The first step in pruning

A consists thus in removing this transition. In a second step, we propagate the information

by removing all transition of εR labeled by a formula formed with Eq(qc, qb). This is done to

remove all terms obtained by rewriting with the equivalence b =E c. After having pruned

all the transitions, we observe that the terms recognized by A are given by the following set

{ f (a), f (b)}.

5 On solving the reachability using R/E-automaton

In this section, we extend the completion and widening principles introduced in Section 3

to R/E−automata. We consider an initial set I that can be represented by a tree automaton,

and transition relation represented by a set of rewriting rules R. We compute successive ap-

proximations Ai
R,E from A0

R,E using Ai+1
R,E = W(C(Ai

R,E)). We define A0
R,E = 〈F , Q0, QF, ∆0〉

that the language of A0
R,E is the terms in I. Observe that A0

R,E is well-defined as the sets ε
0
R

or ε0
= are empty. We now detail the completion and widening steps i.e. C and W.

The completion step C. Consider a R/E-automaton Ai
R,E = 〈F , Qi, Q f , ∆i ∪ ε

i
R ∪ ε

i
=〉, the

completion steps consists in computing an automaton C(Ai
R,E) that is obtained from Ai

R,E

by applying R. As already explained in Section 3, this is done by finding and resolving

all critical pairs. A critical pair for a R/E-automaton is a triple 〈rσ, α, q〉 such that lσ → rσ,

lσ
α
−→Ai

R,E
q and there is no formula α′ such that rσ

α′
−→Ai

R,E
q. Resolution of such a critical pair

consists of adding to C(Ai
R,E) the transitions to obtain rσ

α
−→

C(Ai
R,E)

q. This is followed by a

normalization step where Qnew is a set of new states s.t. Qnew∩ = ∅.

DEFINITION 11.[Normalization] The normalization is done in two mutually inductive steps

parametrized by the configuration c to recognize, and by the set of transitions ∆ to extend.














Norm(c, ∆) = Slice(d, ∆) c →!
∆ d, and c, d ∈ T (F ∪ Q)

Slice(q, ∆) = ∆ q ∈ Q

Slice( f (q1, . . . , qn), ∆) = ∆ ∪ { f (q1, . . . , qn) → q} qi ∈ Q and q ∈ Qnew

Slice( f (t1, . . . , tn), ∆) = Norm( f (t1, . . . , tn), Slice(ti, ∆)) ti ∈ T (F ∪ Q) \ Q

We thus add transitions such that there exists a state q′ with rσ
⊤
−→Ai+1

R,E
q′ and q′

α
−→ q ∈ ε

i+1
R .
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We are now ready to define the resolution of a critical pair p = 〈rσ, α, q〉.

DEFINITION 12.[Resolution of a critical pair] Given a R/E-automaton A = 〈F , Q, Q f , ∆ ∪
εR ∪ ε=〉 and a critical pair p = 〈rσ, α, q〉, the resolution of p on A is the R/E-automaton

A′ = 〈F , Q′, Q f , ∆′ ∪ ε
′
R ∪ ε=〉 where

• ∆′ = ∆ ∪ Norm(rσ, ∆ \ ∆0)

• ε
′
R = εR ∪ {q′

α
−→ q} where q′ is the state such that rσ →!

∆′\∆0
q′

• Q′ is the union of Q and the set of states occurring in ∆′

Note that ∆0, the set of transitions of A0
R, is never used for normalization of all rσ. This

is needed to preserve the well-defidness of A′. The R/E-automaton C(Ai
R,E) is obtained

by recursively applying the above resolution principle to all critical pairs p of the set of

critical pairs between R and Ai
R,E. The set of all critical pairs is obtained by solving matching

problems l E q for all rewrite rule l → r ∈ R and all state q ∈ Ai
R,E. Solving the matching

problem l E q consists of computing S that is the set of all couples (α, σ) such that α is a

formula, σ is a substitution of X 7→ Qi, and lσ
α
−→ q. Each configuration lσ corresponds to

a subset of terms of L(Ai
R,E, q) that can be rewritten by l → r. The terms characterized by

lσ are defined as lσσ′ where σ′ : Q 7→ T (F ) is a substitution, which maps each state q to

a term σ′(q) ∈ L(Ai
R,E, q). Definition 13 introduces the matching algorithm to compute the

set S, which is denoted by the statement l E q ⊢Ai
R,E

S. Note that when S is empty, there is

no term to rewrite by l → r.

DEFINITION 13.[Matching Algorithm]
Assuming the matching problem l E q for a R/E-automaton Ai

R,E. S is the solution of the
matching problem, if there exists a derivation of the statement l E q ⊢Ai

R,E
S using the rules:

(Var)
x E q ⊢A {(αk, {x 7→ qk}) | qk

αk−→A q}
(x ∈ X )

(Delta)
t1 E q1 ⊢A S1 . . . tn E qn ⊢A Sn

f (t1, . . . , tn)⊳ q ⊢A
⊗n

1 Sk

(

f (q1, . . . , qn) → q ∈ ∆
)

∗

(Epsilon)
t ⊳ q ⊢A S0 t ⊳ q′1 ⊢A S1 . . . t ⊳ q′n ⊢A Sn

t E q ⊢A S0 ∪
⋃n

k=1{(φ ∧ αk, σ) | (φ, σ) ∈ Sk}

(

{(qk, αk) | qk
αk−→ q}n

1
t /∈ X

)

Observe that, by definition, the matching problem considers possibly infinite runs of

the form lσ
α
−→ q. Indeed, transitions in ε

i
R ∪ ε

i
= can produce loops. In the matching algo-

rithm, we exclude such runs. This is done to keep a finite set of rewriting path, which is

computable in a finite amount of time. It is worth mentioning that removing loops does

not remove any important information. Consider the automaton A of Example 5. We ob-

serve that f (b)
Eq(qb,qc)∧Eq(qc,qb)
−−−−−−−−−−→A q f uses the loop f (b) =E f (c) =E f (b). This loop can be

removed as f (a) →∗
R f (b) can be obtained by f (b)

⊤
−→A q f , which does not contain any

loops.

PROPERTY 14. Let A be a R/E−automaton, q one of its states, l ∈ T (F ,X ) the linear left

member of a rewriting rule and a substitution σ : X 7→ Q whose domain is range-restricted

to V(l). Assuming that S is the solution of the matching problem lσ E q, for all (α, σ) such

that lσ
α
−→A q, a loop free run, then we have (α, σ) ∈ S.

∗using
⊗n

1 Sj = {(⊤, id)⊕ (φ1, σ1)⊕ · · · ⊕ (φn, σn) | (φj, σj) ∈ Sj}, and (φ, σ)⊕ (φ′, σ′) = (φ ∧ φ′, σ ∪ σ′).
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After computing S for l E q, we identify its elements that correspond to critical pairs.

By definition of S, we know that there exists a transition lσ
α
−→Ai

R,E
q for (α, σ) ∈ S. If there

exists a transition rσ
α′
−→Ai

R,E
q, then rσ has already been added to Ai

R,E. It is thus sufficient

to deduce that all terms lσσ′ of the set represented by the configuration lσ are rewritten into

terms rσσ′ represented by the configuration rσ. In the case where there exists no transition

rσ
α′
−→Ai

R,E
q, then 〈rσ, α′, q〉 is a critical pair to solve on Ai

R,E. The following theorem shows

that our methodology is complete.

THEOREM 15. If Ai
R,E is well-defined then so is C(Ai

R,E), and ∀q ∈ Qi, ∀t ∈ L(Ai
R,E, q),

∀t ∈ T (F ), t →R t′ =⇒ t′ ∈ L(C(Ai
R,E), q).

EXAMPLE 16. Let R = { f (x) → f (s(s(x)))} and A0
R,E = 〈F , Q, QF, ∆0〉 be a tree automaton

such that QF = {q0} and ∆0 = {a → q1, f (q1) → q0}. Following Definition 13, the solution

S of the matching problem f (x)E q0 is S = {(σ, φ)} with σ = {x → q1} and φ = ⊤. Hence,

〈 f (s(s(q1))),⊤, q0〉 is the only critical pair to solve, since f (s(s(q1))) 6
⊤
−→A0

R,E
q0. So, C(A0

R,E)

is a R/E−automaton such that C(A0
R,E) = 〈F , Q1, QF, ∆1 ∪ ε

1
R ∪ ε

0
=〉 with:

∆1 = Norm( f (s(s(q1))), ∅) ∪ ∆0 = {s(q1) → q2, s(q2) → q3, f (q3) → q4} ∪ ∆0,

ε
1
R = {q4

⊤
−→ q0}, since f (s(s(q1))) →

!
∆1\∆0 q4,

ε
0
= = ∅ and Q1 = {q0, q1, q2, q3, q4}.

Observe that if C(Ai
R,E) = Ai

R,E, then we have reached a fixpoint.
The Widening W. Consider a R/E-automaton A = 〈F , Q, Q f , ∆ ∪ εR ∪ ε=〉, the widening

operation consists in computing a R/E-automaton W(A) that is obtained from A by using

the set of equations E.
For each equation l = r in E, we consider all pair (q, q′) of distinct

states of Qi such that there exists a substitution σ to have the follow-

ing diagram. Observe that →=
A is the transitive and reflexive rewrit-

ing relation induced by ∆ ∪ ε=.

lσ
E

=A
��

rσ

A=
��

q q′

Intuitively, if we have u →=
A q, then we know that there exists a term t of Rep(q)

such that t =E u. The automaton W(A) is 〈F , Q, Q f , ∆ ∪ εR ∪ ε
′
=〉, where ε

′
= is obtained

by adding the transitions q → q′ and q′ → q to ε=, for each pair (q, q′). We also keep ε
′
=

closed by transitivity, but only for pair of distinct states. Roughly, the transitive closure of ε′=
corresponds to propagate explicitly terms that are equivalent by =E. As show in section 6,

this aspect is important to refine with accuracy. Note that W terminates since the number of

states of A is finite and the number of transitions to be added to ε
′
= is finite.

THEOREM 17. Assuming that A is well-defined, we have A syntactically included in W(A),
and W(A) is well-defined.

EXAMPLE 18. Consider the R/E-automaton C(A0
R,E) in Example 16.

We compute A1
R,E = W(C(A0

R,E)) using the equation s(s(x)) = s(x).
We have σ = {x 7→ q1} and the following diagram. Then, we obtain

A1
R,E = 〈F , Q1, Q f , ∆1 ∪ ε

1
R ∪ ε

1
=〉, where ε

1
= = ε

0
= ∪ {q3 → q2, q2 →

q3} and ε
0
= = ∅. Observe that A1

R,E is a fixpoint: C(A1
R,E) = A1

R,E.

s(s(q1)) E

=C(A0
R,E)

��

s(q1)

C(A0
R,E)=

��
q3 q2
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6 Approximation Refinement

Let I be a set of initial terms characterised by the R/E−automaton A0
R,E, R be a TRS, and

Bad the set of forbidden terms represented by ABad a tree automaton. The reachability prob-

lem boils down to check R∗(I) ∩ Bad
?
= ∅. There are classes of systems for which R∗(I)

is regular and can be computed in a finite amount of time (see appendix F) but, in gen-

eral, the computation does not terminate. For such cases, our only hope is to work with

a Counterexample-Guided Abstraction Refinement [13] procedure that computes successive ab-

stractions and successively refine them until the property can be prove correct or not. In the

first part of the paper, we have focused on computing the abstraction. We now propose a

technique that checks whether a term is indeed reachable from the initial set of terms. If the

term is a spurious counterexample, then it has to be eliminated from the approximation. We

then generalize the operation to (possibly infinite) sets of terms.

Let Ak
R,E = 〈F , Qk, Q f , ∆k ∪ ε

k
R ∪ ε

k
=〉 be a R/E-automaton obtained after k steps of

completion and widening from A0
R,E and assume that L(Ak

R,E) ∩ Bad 6= ∅. Let t be a term

of L(Ak
R,E) ∩ Bad. Then, we know that there exists a run t

φ
−→Ak

R,E
q f with q f ∈ Q f . We know

that Ak
R,E is well-defined by construction. It implies that if φ = ⊤, we deduce t ∈ R∗(I).

It means that t is a counter-example, so from a verification point of view, the property is

broken as formulated in Section 3. Otherwise, we have that φ =
∧n

1 Eq(qj, q′j), and t is

possibly a spurious counterexample. We thus decide to remove it from the approximation.

For doing so, we use the pruning methodology that was informally introduced in Example 10.

The pruning step P. As we have seen in Example 10, we compute the pruned R/E-automaton

P(Ak
R,E, φ) in two steps. The first step consists of removing some transitions of εk

= until φ

does not not hold anymore i.e. φ =⊥. Consider the formula φ containing the predicate

Eq(q, q′): we replace this predicate by ⊥ if we decide to remove the transition q → q′ from

ε
k
=. The second step consists in propagating the information. Indeed, we also have to re-

move all transitions q
α
−→ q′ ∈ ε

k
R, where the conjunction α contains some atoms transitions

removed from ε
k
=. The procedure is iterated for each possible reduction of t in Ak

R,E and

thus, we finally get Ak+1
R,E. It is easy to see that, for any φ, there exists no run t

φ
−→Ak+1

R,E
q f .

Observe that, when removing t from the abstraction, our procedure may also remove

other terms that are generated by φ. We now briefly show (see the appendix for details) that

the possibly infinite set of terms that belong to both the abstraction and the set of bad states

can be removed by exploiting the structure of the formula. More precisely, we build a set S

containing triples of the form (q, q′, φ) where q is a state of Ak
R,E, q′ is a state of ABad and φ is

a formula on ε= transitions of Ak
R,E. For all triple (q, q′, φ), the formula φ holds if and only

if L(Ak
R,E, q) ∩ L(ABad, q′) 6= ∅. For all triple (q, q′, φ), where q is final in Ak

R,E, q′ is final in

ABad and φ = ⊤, then some of the terms recognized by q′ in ABad are reachable. Otherwise,

φ is the formula to invalidate, i.e. negate some of its atom so that it becomes ⊥. Starting

from φ, the refinement process is performed using the technique that presented above.

Example. Consider the R/E−automaton A1
R,E given in Example 18. We define ABad to

be the tree automaton whose final state is q′0 and whose transitions are a → q′1, s(q′1) →



BOICHUT, BOYER, GENET, LEGAY FSTTCS 2010 11

q′2, s(q′2) → q′1 and s(q′2) → q0. The forbidden terms that belong to the language of L(ABad)
are of the form f (s2k+1(a)). We observe that L(A1

R,E) ∩ L(ABad) 6= ∅. According to the in-

tersection algorithm sketched above, one can construct a set S of triples (q0, q′0, φ), where φ

is the formula used to prune A1
R,E in order to remove those terms that belong to L(A1

R,E) ∩
L(ABad). Here, S = {(q0, q′0, Eq(q2, q3) ∧ Eq(q3, q2)), (q0, q′0, Eq(q2, q3)), (q0, q′0, Eq(q3, q2))}.

We apply the pruning step for each formula φ in the set. We compute P(A1
R,E, Eq(q2, q3) ∧

Eq(q3, q2)). Removing the transition q2 → q3 from ε
1
= is sufficient to invalidate Eq(q2, q3) ∧

Eq(q3, q2). Moreover, this removing invalidates (q0, q′0, Eq(q2, q3)) too. It remains to prune

with (q0, q′0, Eq(q3, q2)). This is done by removing the transition q3 → q2 from ε
1
=. At

this step, no transition of ε
1
R can be removed anymore. Indeed, all these transitions are

all labeled by ⊤. We thus define A2
R,E = P(P(P(A1

R,E, Eq(q2, q3) ∧ Eq(q3, q2)), Eq(q2, q3)),

Eq(q3, q2)) with ∆2 = ∆1, ε2
R = ε

1
R and ε

2
= = ∅. We observe that A2

R,E is not R−closed

and should be completed. We thus define A3
R,E = W(C(A2

R,E)). We found a new critical pair

for f (x) → f (s(s(x))) and we obtain ∆3 = ∆2 ∪ {(q3) → q5, s(q5) → q6, f (q6) → q7, and

ε
3
R = ε

2
R ∪ {q7

⊤
−→ q4}.

The interesting point concerns the application of W. Observe that the transitions of ε3
=

directly results from the application of the equation s(x) = s(s(x)) i.e. transitions q2 →
q3, q3 → q2, q3 → q5, q5 → q3, q5 → q6, and q6 → q5. After the transitive closure of ε

3
=

has been computed, some new transitions are inferred and added to ε
3
=, i.e., q2 → q5, q5 →

q2, q2 → q6, q6 → q2, q3 → q6 and q6 → q3. We again check the emptiness of L(A3
R,E) ∩

L(ABad). This intersection is still not empty and most of the transitions in ε
3
= can be removed

by the pruning operation. Let A4
R,E be the R/E−automaton obtained by applying P on A3

R,E,

it only remains q3 → q6 and q6 → q3 in ε
4
=. We also observe that no transition of ε3

R are

removed: ε
4
R = ε

3
R. In fact, all the transitions in ε

4
R are labeled by ⊤. Then, we restart

the completion process and we observe that A4
R,E = C(A4

R,E). We have thus reached a fix-

point. There, we observe that L(A4
R,E) ∩ L(ABad) = ∅ and conclude that R∗(I) ∩ Bad = ∅.

Observe that our refinement is accurate in this case. Indeed L(A4
R,E) = f (s2∗k(a)), that is

the exact set of reachable states.

Remarks: The above example cannot be handled with the approach of [4] that also pro-

poses a counterexample guided abstraction technique. Indeed this technique would prove

that a property where the bad terms are bounded: Badk = { f (s2∗i+1(a)) | i < k} Else the

procedure loops, if we consider all the set Bad.

7 Conclusion

We have presented a new CounterExample Guided Abstraction Refinement procedure for

the verification of infinite-state systems whose states are represented by trees. Transitions

are defined using rewriting rules and abstractions using equations. This work equip the

equational abstraction framework [22] with counterexample extraction and automatic re-

finement. Our next objective is to implement and evaluate our approach. Our technique

should be applied to systems that are out of the scope of [4, 7] and should be more effi-

cient as we do avoid intermediary potentially computation intensive determinization and

inclusion checks.
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A challenge in our implementation will be to develop efficient strategies to refine the

abstraction (see the discussion in Section 6). In a second step, we are definitively interested

in extending our theory to more complex properties. As an example, one could consider

special classes of liveness properties that were introduced in [11] for parametric systems.
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A Proof about semantics

THEOREM 5.
∀t ∈ T (F ∪ Q), q ∈ Q, t

α
−→A q ⇐⇒ t →A q

PROOF. The proof is easily done by induction by arguing that it is enough to forget the formulas
manipulated by the definition 6 to have the equivalent step with →A.

B Proofs about C

PROPERTY 19. A0
R,E is well-defined.

PROOF. A0
R,E = 〈F , Q0, Q f , ∆0〉 fits the definition 9, only if the two items of the definition 9 are

verified.
We know that A0

R has no ε-transitions. All terms are recognized using transitions of ∆0. It means
that for all state q the set of terms is defined as {t ∈ T (F )|t →∗

∆0 q} which is equal to Rep(q), the set

of representatives for q. We also remark that for all term t, t →∗
∆0

q implies t
⊤
−→A0

R,E
q: the second and

third point of the definition 6, are not used, since ε
0
R and ε

0
= are empty. The first item of definition 9

is ensured: for all state q, and all term t
⊤
−→ q, we have t ∈ Rep(q), and t →∗

R t by reflexivity.

The second item of 9 holds, since ε
0
R is empty.

LEMMA 20.[Solving one critical pair preserves well-definition] Let A and A′ be two R/E−automaton
such that A′ is obtained from A by solving a critical pair 〈rσ, α, q〉 of A. If A is well-defined then so is
A′.

PROOF. Assume that A = 〈F , Q, Q f , ∆ ∪ εR ∪ ε=〉 and A′ = 〈F , Q′, Q f , ∆′ ∪ ε
′
R ∪ ε

′
=〉. According

to Definition 12, ∆′ = ∆ ∪ Norm(rσ, ∆ \ ∆0), ε′R = {q′
α
−→ q} ∪ εR and ε

′
= = ε=. Following Definition

9, we first show in (1) that for all state q′′ of A′, and all term v such that v
⊤
−→A′ q′′, there exists u a

term representative of q′′ such that u →∗
R v. Then, in (2) we show that if q1

φ
−→ q2 is a transition of

ε
′
R, then there exist terms s, t ∈ T (F ) such that s

φ
→A′ q1, t

⊤
→A′ q2 and t →R s.

1. We prove the property by induction on the height of t. Let us assume that for all term t′ of

height lesser than the height of t and for all q ∈ QA′ , we have t′
⊤
−→A′ q =⇒ ∃u ∈ Rep(q) :

u →∗
R t′. Now let us prove that this is true for t. We prove it by case on q ∈ QA and t

⊤
−→A q:

• If q ∈ QA and t
⊤
−→A q then since A is well defined, we get the representative u ∈ Rep(q)

such that u →∗
R t from well-definition of A.

• If q ∈ QA, t 6
⊤
−→A q and t

⊤
−→A′ q. We prove the property by induction on the height of

t. Now let us consider the term t. Since t is recognized in A′ and not in A, this means

that the run t′
⊤
−→A′ q needs the transitions added by the resolution of a critical pair.

Hence there exists a rewrite rule l → r, a substitution σ : X 7→ QA, a formula α and a

state qc such that lσ
α
−→A qc and 〈rσ, α, qc〉 is the critical pair. Moreover, the resolution

of this critical pair creates ∆A′ = Norm(rσ, ∆A \ ∆0) and ε
A′

R = ε
A
R ∪ {q′c → qc} such

that rσ →!
∆′\∆0

q′c. Recall that t′
⊤
−→A′ q needs transitions not occurring in A. However,

all the new transitions produced by Norm(rσ, ∆A \ ∆0) necessarily range on new states,
i.e. states not occurring in QA. As a result, those transitions cannot be used to get

t′
⊤
−→A′ q with q ∈ QA. This means that the run t

⊤
−→A′ q uses at least once q′c → qc

and α = ⊤ since the whole run is labelled by ⊤. To sum up, we know that there exists
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a ground context C[ ] such that t = C[t′]
⊤
−→A′ C[q′c]

⊤
−→A′ C[qc]

⊤
−→A q. Note that if

q′c → qc the same reasonning can be applied. We start to reason on the occurrence of
q′c → qc that is the closest to q. Now, our objective is to show that there exists u ∈

Rep(q′c) such that u →∗
R t′. If t′

⊤
−→A q′c then since A is well defined we directly have

the result using definition 9. Otherwise this means that q′c is new for A (i.e. q′c 6∈ QA)
and has been added by the resolution of the critical pair, i.e. rσ →!

∆′ q′c. Because of
Theorem 22, we get that there exists a substitution σ′ : X 7→ T (F ) such that t′ = rσ′.

Using the same theorem, from t′ = rσ′ ⊤
−→A′ q′c and rσ

⊤
−→A′ q′c, we get that for all

variable x of r: σ′(x)
⊤
−→A′ σ(x). Note that σ(x) ∈ QA and that σ′(x) are necessarily

terms of height lesser to the height of t. Using the induction hypothesis, we get that
for all state σ(x) there exists a representative ux such that ux →∗

R σ′(x). Let σRep be
the substitution mapping every variable x to ux. We have rσRep ∈ Rep(q′c). Moreover,
rσRep →∗

R rσ′ = t′. Now, our objective is to show that lσRep →R rσRep. This is not
straightforward since Var(l) ⊇ Var(r). However, it is possible to extend σRep into σ′

Rep

where every variable y of Var(l) not occurring in σRep is mapped to a representative of

σ(y). Hence, lσ′
Rep →R rσ′

Rep →∗
R t′. From the critical pair we know that lσ

α
−→A qc and

we found that α = ⊤. Hence lσ′
Rep

⊤
−→A qc. Since A is well-defined, we get that there is

a representative v ∈ Rep(qc) such that v →∗
R lσ′

Rep. By transitivity of →R, we get that

v →∗
R t′. Above, we found that t = C[t′]

⊤
−→A′ C[q′c]

⊤
−→A′ C[qc]

⊤
−→A q. From this and

v ∈ Rep(qc), we get that C[v]
⊤
−→A q. Since A is well defined, we know that there exists

a representative w ∈ Rep(q) such that w →∗
R C[v]. To conclude, we found w ∈ Rep(q)

and w →∗
R C[v] → C[t′] = t.

• If q 6∈ QA (q ∈ Q′
A \ QA), t 6

⊤
−→A q and t

⊤
−→A′ q. Since q ∈ Q′

A \ QA, we know that q has
been added by the resolution of a critical pair. As above, we can deduce that there exists
a rewrite rule l → r, a substitution σ : X 7→ QA, a formula α and a state qc such that

lσ
α
−→A qc and 〈rσ, α, qc〉 is the critical pair. Moreover, the resolution of this critical pair

creates ∆A′ = Norm(rσ, ∆A \ ∆0) and ε
A′

R = ε
A
R ∪ {q′c → qc} such that rσ →!

∆′\∆0
q′c. Since

q is a new state of A′, q has been necessarily used for the normalization of a subterm
of rσ. More precisely, we know that there exists a term s ∈ T (F ,X ) and a context
C[ ] (possibly empty) such that rσ = C[s], C[s]σ →∗

∆′ q′c and sσ →∗
∆′ q. Similarly, we

know that there exists a substitution σ′ : X 7→ T (F ) such that sσ′ = t. We get that

for every variable x of r: σ′(x)
⊤
−→A′ σ(x). Note that σ(x) ∈ QA and that σ′(x) are

necessarily terms of height lesser to the height of t. Using the induction hypothesis, we
get that for every state σ(x) there exists a representative ux such that ux →∗

R σ′(x). Let
σRep be the substitution mapping every variable x to ux. We have sσRep ∈ Rep(q) and
sσRep →∗

R sσ′ = t.

2. Easily, for any transitions q1
φ
→ q2 ∈ εR, the property still holds. Let us focus now on the

transition q′
α
→ q resulting from the resolving of the critical pair 〈rσ, α, q〉. By definition, the

critical pair 〈rσ, α, q〉 results from the application of the matching algorithm of Definition 13.
So there exists a rule l → r ∈ R such that (α, σ) ∈ S with lE q ⊢A S. Moreover, since the critical

pair has to be solved: lσ
α
→ q and there is no formula α′ such that rσ

α′
−→A q. Since R is left-

linear, for each variable x ∈ Var(l), one can define the substitution σ′ : X → T (F ) as follows:
Assuming qs being the state of A such that σ(x) = qs, let σ′(x) = Rep(qs). By definition of

Rep, Rep(qs)
⊤
→ qs. So, there exists a derivation such that lσ′ ⊤

→ lσ and lσ
α
→ q. One can

deduce that rσ′ ⊤
→ rσ. According to Lemma 22, one can deduce that there exists a unique q′
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such that rσ →∗
Norm(rσ,∆\∆0)

q′. If Norm(rσ, ∆ \ ∆0) 6= ∅ then each transition composing it is of

the form f (q′1, . . . , q′n) → q′n+1. Consequently, rσ
⊤
→ q′. Considering the transition q′

α
→ q, one

has rσ′ ⊤
→ rσ

⊤
→ q′

α
→ q. Finally, assuming s = lσ′ and t = rσ′, there exists s, t ∈ T (F ) such

that one has s
α
→ q, t

α
→ q′ and s →R t.

To conclude, A′ is also well-defined.

THEOREM 10. If Ai
R,E is well-defined then so is C(Ai

R,E), and ∀q ∈ Qi, ∀t ∈ L(Ai
R,E, q), ∀t ∈ T (F ),

t →R t′ =⇒ t′ ∈ L(C(Ai
R,E), q).

PROOF.
Let CP be the finite set of critical pairs computed from Ai

R,E to solve. Assume that CP =

{〈r1σ1, α1, q1〉, . . . , 〈r1σm, α1, qm〉}. By definition, considering A0 = Ai
R,E there exists a sequence of

R/E−automata A1, . . . , Am where Aj is obtained from Aj−1 by solving the critical pair 〈rjσj, αj, qj〉 ac-

cording Definition 12. Thus, C(Ai
R,E) = An. For a question of readability and in order to prevent any

confusion between notations, each R/E−automaton Aj is defined as follows: Aj = 〈F , Qn+1, Q f , ∆′j ∪

ε
′j
R ∪ ε

′j
=〉.

First, let us show that C(Ai
R,E) is well-defined if Ai

R,E is well-defined.

C(Ai
R,E) is well-defined: Let Pn be the following proposition: An is well-defined.

• P0: Trivial since A0 = Ai
R,E and AO

R,E is well-defined by hypothesis.

• Pn ⇒ Pn+1: By hypothesis, An+1 is obtained from An by solving the critical pair 〈rn+1σn+1, αn+1,
qn+1〉. Applying Lemma 20, one obtains automatically that An+1 is well-defined.

So, one can deduce that C(Ai
R,E) is well-defined.

C(Ai
R,E) covers terms accessible in one rewrite step from terms of Ai

R,E: Let q be a state of

Ai
R,E and t be a term of L(Ai

R,E, q). Suppose there exist a position p ∈ Pos(t), a rule l → r ∈ R

and a substitution σ′ : X → T (F ) such that t|p = lσ′. Let t′ be the term such that t′ = t[rσ′]p.

Since t ∈ L(Ai
R,E, q), there exists a state q′ of Ai

R,E such that t|p = lσ′ →∗
Ai
R,E

q′ and t[q′]p →∗
Ai
R,E

q. Following Property 14, there exists (α, σ) ∈ S with l E q′ ⊢Ai
R,E

S such that lσ′ →∗
Ai
R,E

lσ and

lσ →∗
Ai
R,E

q′. If 〈rσ, α, q′〉 is already solved then rσ →∗
Ai
R,E

q′. Consequently, rσ′ can also be reduced

to q′ in Ai
R,E. Since t′ = t[rσ′]p →∗

Ai
R,E

q, t′ ∈ L(C(Ai
R,E), q). Suppose now that rσ 6→∗

Ai
R,E

q′. So, there

exists 〈riσi, αi, qi〉 ∈ CP such that 〈riσi, αi, qi〉 = 〈rσ, α, q′〉. By construction, rσ →∗
Ai

q′. Consequently,

rσ′ can also be reduced to q′ in Ai. Since Ai is syntactically included in C(Ai
R,E), one can deduce that

t′ = t[rσ′]p →∗
C(Ai

R,E)
q. Concluding the proof.

C Proofs about W

LEMMA 19.[W preserves well-definition] Let A be a R/E-automaton. If A is well-defined, then so is
W(A).

PROOF. Assume that A = 〈F , Q, Q f , ∆ ∪ εR ∪ ε=〉 is well-defined. We have W(A) = 〈F , Q, Q f , ∆ ∪

εR ∪ ε
′
=〉, where εR ⊇ ε

′
R, since W only adds transitions to the εR. We have to prove the two items of

definition 9.
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• The transitions of ε′= are never used for a run
α
−→ where α = ⊤, thanks to the second point of

the definition 6. It means that for all term t and all state q, t
⊤
−→W(A) q is equivalent to t

⊤
−→A q.

Since A is well-defined, we know that there exists u ∈ Rep(q) such that u →∗
R t. u is also a

representative of W(A), and we deduce that first point of the definition 9 holds for W(A).
• Function W only adds transitions to ε

′
= and do not remove transitions of A. For all transitions

q
α
−→ q′ ∈ ε

′
R we have q

α
−→ q′ ∈ Drw. Since A is well-defined, we know that there exist terms

s, t ∈ T (F ) such that s
φ
−→A q, t

⊤
−→A q′ and t →R s. We also have s

φ
−→W(A) q, t

⊤
−→W(A) q′ and

t →R s.

LEMMA 20. For all R/E-automaton A, L(W(A)) ⊇ L(A).

PROOF. This is easy to see since widening only adds transitions, and thus, does not restrict the
recognized language.

D Proofs about matching

THEOREM 21.[Matching Algorithm is complete] Let A be a R/E−automaton, q one of its states,
l ∈ T (F ,X ) the linear left member of a rewriting rule and σ a Q-substitution with a domain range-

restricted to V(l). If the set S is solution of the matching problem lσE q, then we have ∀(α, σ), lσ
α
−→A

q ⇐⇒ (α, σ) ∈ S

PROOF. Assuming F a set of symbols, X a set of variable and Q a set of states. We define A =
〈F , Q, Q f , ∆ ∪ εR ∪ ε=〉; l ∈ T (F ,X ) and q ∈ Q; σ : Var(l) → Q and α =

∧n
1 Eq(qk, q′k) such that

lσ
α
−→A q.

The proof is done by induction on the term l.

Base case: l is a variable.
In this case, σ must be a Q-substitution of the form σ = {l 7→ q′}. Using this observation and

the hypothesis, we have q′
α
−→A q. The matching problem l E q is solved using Rule (Var). This means

that S = {(αk, {l 7→ qk}) | qk
αk−→A q}. By definition of S we see that S contains (α, σ).

Induction : Assume now l is a linear term of the form f (t1, . . . , tn).

We are going to decompose f (t1, . . . , tn)σ
α
−→A q into sequences of transitions. First observe

that, by splitting σ into σ1 . . . σn, we have that f (t1, . . . , tn)σ is equal to f (t1σ1, . . . , tnσn). Assume
σ = σ1 ⊔ · · · ⊔ σn with dom(σi) = V(ti) and ∀x ∈ dom(σi), σi(x) = σ(x). Since l is linear, each
variable in X occurs at most one time in l. This means that the sets V(ti) are disjoints and so are the
domains of the σi. This ensures that σ is well-defined.

Now, we study the decomposition of f (t1σ1, . . . , tnσn)
α
−→A q to show that transitions of A used

to recognized the term f (t1σ1, . . . , tnσn) are considered by the corresponding steps of the matching
algorithm.

We observe that the term f (t1σ1, . . . , tnσn) is recognized in state q. Indeed, we have f (q1, . . . , qn) →

q′ ∈ ∆, and each subterm tiσi is recognized in state qi such that tiσi
αi−→ qi. Composing recognizing of

each subterm, we obtain the following sequence:

f (t1, . . . , tn)
α1−→ f (q1, t2, . . . , tn)

∧2
1 αi

−−→ f (q1, q2, t3, . . . , tn)
∧3

1 αi
−−→ . . .

∧n
1 αi

−−−→ f (q1, . . . , qn)
∧n

1 αi∧⊤
−−−−→ q′

There are two cases to consider : (1) q = q′ and (2) q 6= q′. (1) If q = q′, the decomposition is complete

and f (t1σ1, . . . , tnσn)
α
−→A q with α =

∧n
1 αi.

f (t1σ1, . . . , tnσn)
∧n

i=1 αi
−−−−→ f (q1, . . . , qn)

∧n
i=1 αi

−−−−→ q
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(2) q 6= q′: f (t1σ1, . . . , tnσn)
α
−→A q holds only if we have a transition q′

α′
−→ q such that α =

∧n
1 αi ∧ α′.

f (t1σ1, . . . , tnσn)
∧n

i=1 αi
−−−−→ f (q1, . . . , qn)

⊤
−→ q′

α′
−→ q

By induction, we know that for each sequence tiσi
αi−→ qi, the matching problem is solved i.e. ti E qi ⊢

Si with Si contains (αi, σi). Rule (Delta) is applied to all premises ti E qi ⊢A Si for the transition
f (q1, . . . , qn) → q′ ∈ ∆. From this, we obtain a set S′ =

⊗n
1 Si. By unfolding the definition of

⊗

, we
have S = {(⊤, id)⊕ (a1, s1)⊕ . . . (an, sn) | (ai, si) ∈ Si}. Since each Si contains (αi, σi), S′ contains
(⊤, id) ⊕ (α1, σ1) ⊕ . . . (αn, σn) which is, by definition of ⊕ equal to (

∧n
1 αi, σ). Thus, we obtain a

intermediate statement f (t1, . . . , tn)⊳ q′ ⊢A S′ such that f (t1, . . . , tn)σ
∧n

1 αi
−−−→ q′, where (

∧n
1 αi, σ) ∈ S′.

This statement must correspond to one of the premises of Rule (Epsilon) to produce the ex-
pected statement f (t1, . . . , tn)E q ⊢A S. There are two cases to consider :q = q′ and q 6= q′.

If f (q1, . . . , qn) → q′ ∈ ∆ is the last transition used to have f (t1, . . . , tn)σ
α
−→A q then we have

α =
∧n

1 αi and we are in the case q = q′: this case corresponds to the premiss 0 of Rule (Epsilon) and
S′ = S0. By definition of Rule (Epsilon), S′ is included in S. This means that (α, σ) ∈ S.

If we have q 6= q′, then it remains a sequence of transitions q′
α′
−→ q to have f (t1, . . . , tn)σ

α
−→A q.

The couple (α′, q′) is in the set {(qk, αk) | qk
αk−→ q}.This means that the statement f (t1, . . . , tn)E q ⊢A

S′ is one the remaining premisses. By definition of Rule (Epsilon), S contains all couple (a ∧ α′, s)
where (a, s) ∈ S′. In particular, S contains (

∧n
1 αi ∧ α′, σ) which concludes the proof.

E Proofs about normalization

To normalize, we assume that ∆, the second argument of Norm, is determinist. It means that if ∆

contains two normalized transitions of the form f (q1, . . . , qn) → q and f (q1, . . . , qn) → q′, then we
have q = q′. It ensures that there exists a normal form for any term which is rewritten by ∆. It is
required by the first step of Norm.

Note that all proofs about Norm are done using the measure µ : T (F ∪ Q) → N that counts
the number of occurences of symbols in F of a configuration. Example : µ( f (q1, g(q2), a)) = 3. We
define it inductively by µ(q) = 0 if q ∈ Q, and µ( f (t1, . . . , tn)) = 1 + ∑

n
1 µ(ti).

LEMMA 22.[Existence of a representative] Assume that AR,E is a R/E-automaton obtained after k
steps of completion from A0

R,E. Let c be a configuration. If ∆′ = Norm(c, ∆ \ ∆0), then there exists a

state q such that c →!
∆′ q.

PROOF.
Assuming F a set of symbols, and Q a set of states. We define AR,E = 〈F , Q, Q f , ∆ ∪ εR ∪ ε=〉;

c ∈ T (F ∪ Q). Assume that ∆1 = ∆ \ ∆0 is determinist.
The first step Norm(t, ∆1) consists in rewriting c by ∆1 in its normal form d
The second step Slice(d, ∆1) returns ∆2 such that there exists a unique state q such that d →!

∆2 q.

The proof is one by induction on the decreasing of µ(d). We consider the 3 cases of Slice(d, ∆1)

1. Slice(q, ∆1) = ∆1. It means that d is the state q. There exists a unique state ,which is q, such
that d →!

∆1 q.

2. Slice( f (q1, . . . , qn), ∆1) = ∆1 ∪ { f (q1, . . . , qn) → q | q ∈ Qnew}. Each qi is a state. The
configuration f (q1, . . . , qn) can be used as the left-member of a normalised ground transition.
We build the new transition f (q1, . . . , qn) → q using a new state q. Adding a such transition
to ∆1 preserves determinism. We know that it is impossible to rewrite more d = f (q1, . . . , qn)
using transitions of ∆1 : the new transition f (q1, . . . , qn) → q is the unique way to rewrite d.
We deduce that ∆2 = ∆1 ∪ { f (q1, . . . , qn) → q | q ∈ Qnew} is deterministic, and d →!

∆2 q.
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3. Slice( f (t1, . . . , tn), ∆1) = Norm( f (t1, . . . , tn), Slice(ti, ∆1) ), ti ∈ T (F ∪ Q) \ Q. Here, we
have the direct subterm ti of d which is not a state. We deduce µ(ti) < µ(d) from the definition
of µ. By induction, ∆ is extended by Slice(ti, ∆1) to obtain ∆2 for which there exists a state q
such that ti →

!
∆2 q. Using this new set ∆2, we unfold Norm( f (t1, . . . , tn), ∆2) which consists in

rewriting f (t1, . . . , tn) using ∆2. We obtain a new configuration f (t′1, . . . , t′n) where we know

at less t′i is equal to q since the direct subterm ti can be rewritten in q using ∆2. Note that if

some subterms of ti are also subterms of some other tj, it will also be rewritten by ∆2 in t′j
until we reach the normal form. Each step of rewriting by ∆2 necessarly replaces a symbol
of F by a state of Q by definition of a normalised transition. This remark allows to prove
that µ( f (t1, . . . , tn) > µ( f (t′1, . . . , t′n). For the direct subterm ti, we know µ(ti) > 0 (ti is not a
state), and µ(t′i) = 0 (t′i is the state q). For all other direct subterm tj with j <> i we deduce

µ(tj) ≥ µ(t′j) from tj →
!
∆2 t′j using ∆2. We have µ( f (t1, . . . , tn) > µ( f (t′1, . . . , t′n) by definition of

µ, and f (t′1, . . . , t′n) is rewritten as most as possible by the deterministic ∆2. Then, we use again

the induction hypothesis to deduce that ∆′ = Slice( f (t′1, . . . , t′n), ∆2) extends ∆2 in order to

have a unique state q such that f (t′1, . . . , t′n) →
!
∆3 q. By transivity, we have d →!

∆′ q using the

deterministic set ∆′ for d which is equal to f (t1, . . . , tn).
Finally, we proved that ∆′ = Slice(d, ∆1) extends ∆1 preserving its determinism such that there
exists a state q for which d →!

∆′ q. We also know that c →!
∆′ d. We can conclude that ∆′ = Norm(c, ∆1)

is determinist, and there exists a state q such that c →!
∆′ q.

Let A = 〈F , Q, Q f , ∆ ∪ εR ∪ ε=〉 be a R/E-automaton, and c ∈ T (F ∪ Q) a configuration of

A. We prove that the ∆1 = ∆ \ ∆0 is injective i.e. for all c, d ∈ T (F ∪ Q), if we have c →∗
∆1 q and

c →∗
∆1 q, then c = d. From this property, we deduce that if we have ∆2 = Norm(rσ, ∆1) all term t such

that t →∗
∆2∪∆

q, then we deduce that t = rσ′ where σ′ : X → T (F ). It is important to ensure that
there is no more term added than terms defined as t, when a critical pair is solved. added

LEMMA 23.[Normalisation and injectivity] If ∆1 is injective, then so is Norm(c | ∆1).

PROOF. Assuming F a set of symbols, and Q a set of states. We define: A = 〈F , Q, Q f , ∆ ∪ εR ∪

ε=〉; c ∈ T (F ∪ Q), and ∆1 = ∆ \ ∆0.
The injectivity of ∆2 = Norm(c, ∆1) holds, if there there is only one transition per state in ∆1.

When function Slice creates new transition, it uses a new state. Assuming that ∆1 has only one
transition per state, so has ∆2. This is enougth to ensure the injectivity of ∆2. Note that all initial
R/E-automaton A0

R,E ensures this property, since the set of transitions used by function Norm is

empty : ∆0 \ ∆0.

F Using R/E-automata completion for exact computation of reach-

able terms

The R/E-completion can be used for regular model-checking for most of the known classes of R for
which R∗(L(A)) is regular. On those classes, completion always stops on a R/E-automaton A∗

R with
an empty set ε=. As a result, all the terms recognized by A∗

R are reachable and all triples (q, q′, φ) ∈ S
are such that φ = ⊤.

THEOREM 24.[Exact computation with completion] If E = ∅ and R is ground [27, 25], right-linear
and monadic [31], linear and semi-monadic [26], linear and inversely growing [29], constructor [30]
or linear generalized finite path overlapping [23], then completion of a tree automaton A terminates
on A∗

R,∅ and L(A∗
R,∅) = R∗(L(A)).

PROOF. When E = ∅, the completion algorithm does not produce any transitions for the ε= set
and, thus, every transition of εR is labelled by ⊤. In other words, in this case, R/E-completion pro-
duces a usual tree automaton instead of a R/E-automaton. As a result, when E = ∅, the algorithm
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proposed in this paper totally coincides with the one of [19] dealing with tree automata. In [17],
it has been shown that the algorithm of [19] terminates with E = ∅ for the above classes (Theo-
rem 114). Furthermore, Theorem 45 and Theorem 49 of [19] guarantee that, in this case, AR,∅ is such
that L(A∗

R,∅) = R∗(L(A)).
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G Algorithms and proofs for emptiness decision of intersection

We define a specific algorithm building the set S of reachable states for the product automaton for
R/E-automaton A and automaton B where each product state is labelled by a formula on states of A.
We first define an order > on formulas.

DEFINITION 25. Given φ1 and φ2 two formulas, φ1 > φ2 iff φ2 |= φ1 and φ1 6|= φ2.

DEFINITION 26.[Reachable states of the product of a R/E-automaton and a tree automaton] Let

A = 〈F , QA, QA
f , ∆A, εR, ε=〉 be a R/E-automaton and B = 〈F , QB, QB

f , ∆B〉 be an epsilon-free tree

automaton. The set S of reachable states of A × B is the set of triples (q, q′, φ) where q ∈ QA, q′ ∈ QB

and φ is a formula. Starting from the set QA × QB × {⊥}, the value of S can be computed using the
following two deduction rules :

{(q1, q′1, φ1), . . . , (qn, q′n, φn)} ∪ {(q, q′, φ)} ∪ P

{(q1, q′1, φ1), . . . , (qn, q′n, φn)} ∪ {(q, q′, φ ∨
∧n

i=1 φi)} ∪ P

{(q1, q, φ1), (q2, q, φ2)} ∪ P

{(q1, q, φ1), (q2, q, (φ1 ∧ φ) ∨ φ2)} ∪ P

if f (q1, . . . , qn) → q ∈ ∆A

and f (q′1, . . . , q′n) → q′ ∈ ∆B

and (φ ∨
∧n

i=1 φi) > φ

if q1
φ
−→ q2 ∈ εR or if q1 → q2 ∈ ε=

and ((φ1 ∧ φ) ∨ φ2) > φ2 and φ = Eq(q1, q2)
and ((φ1 ∧ φ) ∨ φ2) > φ2

With regards to the reachability problem, this definition, provides a way to distinguish between
real counterexamples and terms which can be rejected using abstraction refinement. Indeed, for all
triple (q, q′, φ) ∈ S with q final in A and q′ final in B, if φ |= ⊤ then some of the terms recognized by
q′ in B are reachable. Otherwise, φ is the formula to invalidate, i.e. negate some of its atom so that it
becomes ⊥.
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LEMMA 27.[Emptiness decision of the product of a R/E-automaton and a tree automaton] Let A
be a R/E-automaton and B a tree automaton. Let S be the set of reachable states of A × B defined
according to definition 26. For all final state q of A, all final state q′ of B, all formulas φS 6= ⊥, φ 6= ⊥

and all term t ∈ T (F ), we have t
φ
−→

∗

A q and t →∗
B q′ (i.e. L(A)∩L(B) 6= ∅) if and only if there exists

a triple (q, q′, φS) ∈ S such that φ |= φS.

PROOF. Let A = 〈F , QA, QA
f , ∆A, εR, ε=〉 be the R/E-automaton and B = 〈F , QB, QB

f , ∆B〉 be the

tree automaton. We prove a stronger property on all states q of A and q′ of B (and not only for final
states). First, we prove the ’only if’ part. Let us assume that there exists a term t ∈ T (F ) such that

t
φ
−→

∗

A q, t →∗
B q′. By induction on the height of t we have:

• If t is a constant, since B is an epsilon-free tree automaton, the only way to have t →∗
B q′

is to have t → q′ ∈ B. With regards to A, by definition 6, t
φ
−→

∗

A q means that there exists

states q0, q1, . . . , qn and formulas φ1, . . . , φn such that t →∆A
q0

φ1
−→ q1

φ2
−→ . . . qn with q = qn

and φ = φ1 ∧ . . . ∧ φn.Transitions qi
φi
−→ qi+1 are either transitions of εR or transitions of ε=

with φi = ⊤. Because of transitions t → q0 ∈ ∆A and t → q′ ∈ ∆B, using the first case of
definition 26, we get that (q0, q′,⊤) ∈ S. Similarly, using the second case of the definition, we
obtain that there exists formulas φ′

i with i = 1 . . . n such that (q1, q′, φ1 ∨ φ′
1), (q2, q′, (φ1 ∧ φ2)∨

φ′
2), . . . (qn, q′, (φ1 ∧ . . . ∧ φn) ∨ φ′

n) belong to S. Finally, since qn = q and φ = φ1 ∧ . . . ∧ φn, we
that (q, q′, φ ∨ φ′

n) ∈ S. Furthermore, we trivially have that φS = φ ∨ φ′
n and φ |= φS.

• Assume that for all term of height lesser or equal to n ∈ N, the property is true. Let us prove
that it is also true for a term f (t1, . . . , tn) with t1, . . . , tn of height lesser or equal to n. Since
f (t1, . . . , tn) →∗

B q′ and B is an epsilon free tree automaton, we obtain that ∃q′1, . . . , q′n ∈ QB

such that ∀i = 1 . . . n : ti →∗
B q′i and f (q′1, . . . , q′n) → q′ ∈ ∆B. With regards to A, by def-

inition 6, f (t1, . . . , tn)
φ
−→

∗

A q means that there exists states q0, q1, . . . , qm, q′′1 , . . . , q′′n and for-

mulas φ1, . . . , φm, φ′
1, . . . , φ′

n such that ∀i = 1 . . . n : ti

φ′
i−→
∗

A q′′i , f (q′′1 , . . . , q′′n) →∆A
q0 and

q0
φ1
−→ q1

φ2
−→ . . . qn, q = qn. Furthermore, we obtain that φ =

∧n
i=1 φ′

i ∧
∧m

i=1 φi. Since terms ti

are of height lesser or equal to n, ∀i = 1 . . . n : ti →
∗
B qi and ∀i = 1 . . . n : ti

φ′
i−→
∗

A q′′i , we can
apply the induction hypothesis and obtain that ∀i = 1 . . . n : (qi, q′′i , φ′′

i ) ∈ S with φ′
i |= φ′′

i .
Besides to this, using case 1 of definition 6 on f (q1, . . . , qn) → q′ ∈ ∆B, f (q′′1 , . . . , q′′n) → q0 ∈
∆A, and ∀i = 1 . . . n : (qi, q′′i , φ′′

i ) ∈ S, we obtain that there exists a formula φ′ such that

(q0, q′, (
∧n

i=1 φ′′
i ) ∨ φ′) ∈ S. Then, like in the base case, since q0

φ1
−→ q1

φ2
−→ . . . qn, q = qn, we

can deduce that there exists a formula φ′′ such that (q, q′, (
∧n

i=1 φ′′
i ∧

∧m
i=1 φi) ∨ φ′′) ∈ S. Let

φS = (
∧n

i=1 φ′′
i ∧

∧m
i=1 φi) ∨ φ′′. Since we know from above that φ =

∧n
i=1 φ′

i ∧
∧m

i=1 φi and
∀i = 1 . . . n : φ′

i |= φ′′
i , we obtain that φ |= φS.

Second, we prove the ’if’ part: if (q, q′, φS) ∈ S and φS 6= ⊥ then there exists a term t and a

formula φ 6= ⊥ such that φ |= φS, t
φ
−→

∗

A q and t →∗
B q′. We make a proof by induction on the number

of applications of the two rules of definition 26, necessary to prove that (q, q′, φS) in S.
• If the number of steps is 0 then, since the computation of S starts from the set QA × QB ×⊥,

then all (q, q′, φS) are such that φS = ⊥, which is a contradiction.
• We assume that the property is true for any triple (q, q′, φS) which can be deducted by n or less

applications of the rules of definition 26. Now, we consider the case of a triple (q, q′, φS) that is
deduced at the n + 1-th step of application of the deduction rules.

– If the first rule is concerned, this means that there exists triples (q1, q′1, φ1), . . . , (qn, q′n, φn)
and (q, q′, φ) in S deduced before n+ 1-th step, as well as transitions f (q1, . . . , qn) → q ∈
∆A and f (q′1, . . . , q′n) → q′ ∈ ∆B. Furthermore, we know that φS = φ ∨

∧n
i=1 φi. If φ 6= ⊥

then, since (q, q′, φ) was shown to belong to S before n + 1-th step, we can apply the
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induction hypothesis and directly obtain that there exists a term t and a formula φ′ such

that φ′ |= φ, t
φ′

−→
∗

A q and t →∗
B q′. Note that φ′ |= φ implies φ′ |= φS. Otherwise, if

φ = ⊥, then we can apply the induction hypothesis on triples (qi, q′i, φi), i = 1 . . . n and

obtain that ∀i = 1 . . . n : ∃φ′
i : ∃ti ∈ T (F ) : φ′

i |= φi, ti

φ′
i−→
∗

A qi and ti →
∗
B q′i. Finally,

because of the two transitions f (q1, . . . , qn) → q ∈ ∆A and f (q′1, . . . , q′n) → q′ ∈ ∆B,

we get that f (t1, . . . , tn)
φ′

−→
∗

A f (q1, . . . , qn) →∗
A q with φ′ =

∧n
i=1 φ′

i on one side and
f (t1, . . . , tn) →B f (q′1, . . . , q′n) →

∗
B q on the other side. Furthermore, since ∀i = 1 . . . n :

φ′
i |= φi, we have

∧n
i=1 φ′

i |=
∧n

i=1 φi. Recall that φ′ =
∧n

i=1 φ′
i and φS = φ ∨

∧n
i=1 φi.

Hence, φ′ |= φS.
– If the second rule is concerned, this means that there exists triples (q1, q′, φ1) and (q, q′, φ2)

in S deduced before the n + 1-th step. Furthermore, we know that φS = (φ1 ∧ φ) ∨ φ2.
Like above, if φ2 6= ⊥ then we can apply induction hypothesis on (q, q′, φ2) and trivially
get the result. Otherwise, if φ2 = ⊥ then we can use induction hypothesis on the triple

(q1, q′, φ1) and obtain that there exists a formula φ′
1 and a term t1 such that t1

φ′
1−→
∗

A q1,
t1 →∗

B q′ and φ′
1 |= φ1. Then, by case on the epsilon transition used for the deduction on

S, we prove that t1
φ′

1∧φ
−−−→

∗

A q:

∗ Assume that q1
φ
−→ q ∈ εR. Then, by definition 6, we obtain that t1

φ′
1∧φ

−−−→
∗

A q.
Furthermore, since φ′

1 |= φ1, we have that φ′
1 ∧ φ |= φ1 ∧ φ and, finally, that

φ′
1 ∧ φ |= φS.

∗ Assume that q1 → q ∈ ε=. By definition 6, we obtain that t
φ1∨Eq(q1,q)
−−−−−−→

∗

A q. Fi-
nally, like above, we can deduce that φ′

1 ∧ Eq(q1, q) |= φ1 ∧ Eq(q1, q) and thus
φ′

1 ∧ Eq(q1, q) |= φS.


