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A Marked Point Process for Modeling Lidar

Waveforms
Clément Mallet, Florent Lafarge, Michel Roux, Uwe Soergel, Frédéric Bretar and Christian Heipke

Abstract—Lidar waveforms are 1D signals representing a train
of echoes caused by reflections at different targets. Modeling
these echoes with the appropriate parametric function is useful
to retrieve information about the physical characteristics of the
targets. This paper presents a new probabilistic model based
on a marked point process which reconstructs the echoes from
recorded discrete waveforms as a sequence of parametric curves.
Such an approach allows to fit each mode of a waveform with
the most suitable function and to deal with both, symmetric
and asymmetric, echoes. The model takes into account a data
term, which measures the coherence between the models and the
waveforms, and a regularization term, which introduces prior
knowledge on the reconstructed signal. The exploration of the
associated configuration space is performed by a Reversible Jump
Markov Chain Monte Carlo sampler coupled with simulated
annealing. Experiments with different kinds of lidar signals,
especially from urban scenes, show the high potential of the
proposed approach. To further demonstrate the advantages of
the suggested method, actual laser scans are classified and the
results are reported.

Index Terms—Object-based stochastic model, Source modeling,
Lidar, Marked point process, Monte Carlo Sampling.

I. INTRODUCTION

A. Lidar remote sensing of topographic surfaces

Airborne laser scanning or lidar (Light Detection And

Ranging) is an active remote sensing technique providing

direct range measurements between the laser scanner device

and the Earth surface. Such distance measurements are mapped

into 3D point clouds through a direct georeferencing process

involving GPS and inertial measurements [1]. It enables fast,

reliable, accurate, but irregular mapping of terrestrial land-

scapes from geospatial platforms (from satellites to aircrafts).

The accuracy of the measurement is high (typically < 0.1 m

and < 0.4 m in altimetry and planimetry, respectively).

In remote sensing, laser ranging devices actively emit pulses

of short duration (typically a few nanoseconds) in the infra-

red domain (wavelength between 1 and 1.5 µm) of the

electromagnetic spectrum. The distance is derived from the

measured round-trip time of the signal between sensor and
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target. By forward motion of the sensor carrier and an addi-

tional scanning mechanism in across-track direction strips of

150 m to 600 m swath width are covered, depending on type

of device and carrier altitude.

Due to diffraction, the laser beam inevitably fans out; a

typical value for the beam divergence lies between 0.4 and

0.8 mrad. Therefore, a single emitted pulse may cause several

echoes from objects located at different positions inside the

conical 3D volume traversed by the pulse. This is particularly

interesting in forested areas since lidar systems can measure

simultaneously both the canopy height and the terrain elevation

underneath. Topographic lidar is now fully operational for

many specific applications such as metrology, forest parameter

estimation, target detection, and power-line, coastal, and open-

cast mapping at large scales. 3D point clouds are known to

be complementary data to traditional satellite or aerial images

as well as hyperspectral data for many issues such as city

modeling and building reconstruction [2], and classification

of urban or forested areas [3], [4].

The new technology of full-waveform (FW) lidar systems has

emerged in the last fifteen years and has become popular the

last five years [5]. It permits to record the received signal for

each transmitted laser pulse, the result is called a waveform.

Since the waveform is digitized at constant rate and recorded

by the lidar system, FW data is thus a set of equally-spaced

discrete samples of the amplitude of the echo signal. Such

sample sequence represents the progress of the laser pulse as

it interacts with the reflecting surfaces. Hence, FW lidar data

yield more than a basic geometric representation of the Earth

topography. Instead of clouds of individual 3D points, lidar

devices provide connected 1D profiles of the 3D scene, which

allows gaining further insight into the structure of the scene.

Indeed, each signal consists of series of temporal modes,

where each of them corresponds to the reflection from a unique

object or a superposition of the signal of several elements (see

Figures 1, 2b and 2c).

Since laser scanners with waveform digitizers are becoming

increasingly available, many studies have already been carried

out to perform advanced signal processing and analysis [5].

The advantage of off-line waveform processing is twofold:

by designing his own signal fitting algorithm, traditionally by

fitting each echo with a Gaussian curve [6], [7], an end-user

can:

(i) Maximize the detection rate of relevant peaks within

the waveforms. More points can be extracted in a more

reliable and accurate way. Therefore, maximum loca-

tions are better determined, and close objects better
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discriminated [8]. To consistently geolocate the desired

reflecting surface, we need to be able to precisely identify

the corresponding reflection within the waveform. Such

decomposition of the waveforms allows to find the 3D

location of the targets.

(ii) Decompose the waveforms by modeling each echo with

a suitable parametric function. The echo shape can be

retrieved, providing relevant features for subsequent seg-

mentation and classification purposes. Waveform process-

ing capabilities can therefore be extended by enhancing

information extraction from the raw signals.

Lidar signal reconstruction is a topic of major interest and a

key point for efficient target discrimination. A possible tech-

nique is to select for each echo the optimal parametric model

taken from a predefined dictionary of modeling functions. This

is not a straightforward task, however, and today no automatic

techniques for its solution exist. The reason is that the shape

of the waveform may vary considerably, and the number of

modes is unknown. Their shape can be similar (single-mode)

to that of the outgoing pulse, or be complex and multimodal

with each mode representing a reflection from an apparently-

distinct surface within the laser footprint. Simple waveforms

are typical for bare-ground regions and complex waveforms

for vegetated areas. Figure 1 enhances the difference between

a traditional 3D point cloud and lidar waveform data over a

vegetated area, whereas Figure 2 shows some examples of

lidar waveforms in various contexts.

Fig. 1. Left: an orthorectified aerial image of a region of interest (ROI –
red rectangle) over a vegetated area c©IGN. Middle: 3D point cloud of the
ROI colored with the altitude (dark blue for lowest altitudes to white ones for
highest altitudes). Right: Waveforms of the ROI. Each recorded sample of the
backscattered signal is represented as a sphere whose radius is proportional
to the backscattered energy. The data have been displayed using FullAnalyze
[49].
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Fig. 2. Some examples of lidar waveforms. (a) Successive waveforms plotted
in the laser beam direction plane. (b) Emitted and received signals in a forested
area with a small-footprint lidar (laser beam size at the ground < 1 m). With
a small-sized footprint, all targets strongly contribute to the waveform shape,
but the laser beam has a high probability to miss the ground. (c) Emitted and
received signals in a forested area with a large-footprint lidar (size > 5 m).
When considering large footprints, the last pulse is bound to be the ground,
but each echo is the integration of several targets of identical range at different
locations and with different properties.

In this paper, our aim is to model specifically each mode

of a lidar waveform by an analytical parametric function.

B. Waveform decomposition as a parameter estimation prob-

lem of a Finite Mixture Model

Waveform processing consists in decomposing the wave-

form into a sum of components or echoes, in order to char-

acterize the different individual targets along the path of the

laser beam and model them. On the one hand, methods based

on wavelets [9], neural networks [10], splines [11], kernel-

based density estimation techniques involving for instance

Parzen windows [12] or Support Vector Machines [13] are

known to fit 1D signals with large flexibility and efficiency.

On the other hand, they do not model each mode of the

waveform with the best-fit analytical function of a given a

set of parametric curves. Such approach offers two advantages:

firstly, the choice of the curve provides insight into the type of

interaction involved for modes that result from signal mixture;

and secondly, the curve parameters provide additional features

for land cover classification.

The problem of finding the best-fit function can instead be

addressed by adopting a finite mixture model (FMM) [14]

which fulfills our requirements. Mixture models allow us to

describe and estimate complex multimodal data by considering

them as being sampled from different subpopulations. Indeed,

we can postulate the lidar signal to be a linear combination of

parametric components, each one corresponding to a specific

target. However, the state-of-the-art waveform reconstruction

using finite mixture models assumes the mixture component

density functions to have a classical parametric form (i.e.,

Gaussian, uniform, etc.). It should also be noted that many

different mixture solutions may explain the same data, and

thus, for an interpretability of the mixture, each component

should correspond to exactly one mode of the waveform.

Historically, estimates of the parameters of the class proba-

bility densities in mixture densities have been retrieved via

the Expectation-Maximization (EM) algorithm [15], which

has found wide application in image and video segmenta-

tion. The maximum-likelihood-based method either requires

knowledge of the number of components or must be coupled

with model selection; many authors have proposed improve-

ments and extensions to this algorithm [16]. Alternatives to

EM exist such as Bayesian methods, Kalman filtering, the

minimum-distance algorithm, optimization techniques (using,

for instance, the gradient descent or the Levenberg-Marquardt

algorithm [6]), or the method-of-moments [17]. As opposed

to most previous works on FMMs, the model order and the

most suitable modeling function for each echo are unknown

in our case. Unfortunately, when dealing with parametric

functions yielding more complicated analytical expressions,

the classical statistical estimation methods fail because their

moments do not exist. New approaches have been developed in

the Synthetic Aperture Radar (SAR) community to deal with

this problem combining the method of log-cumulants and the

Mellin transform [18], [19].
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C. Motivation

A large body of literature has shown that many remote

sensing signals exhibit a more asymmetric nature with heavier

tails compared to normal distributions. Also in lidar remote

sensing, the Gaussian assumption does not always hold and

approximating the waveforms by a sum of Gaussians may be

inadequate, depending on the application and the landscape.

An emitted laser pulse that interacts with complex natural

or man-made objects may cause a multi-echo backscatter

sequence of considerable temporal extent. The received power

as a function of time can be expressed as follows [7]:

Pr(t) =

C∑

i=1

ki S(t) ∗ σi(t) , (1)

where ki is a value varying with range between sensor and

target, S(t) is the system waveform of the laser scanner and

σi(t) the apparent cross-section of the ith target. S and σi

are usually described by Gaussian functions, but this is not

always correct, and waveforms can be composed of modes

with non-similar shapes. To remove both, the broadening and

the asymmetric effects caused by a varying S on the received

waveforms, a deconvolution step is usually carried out, using

for instance matched filtering, Wiener filtering [20], or B-

splines. Indeed, target cross-sections are physical parameters

which are independent of the emitted pulses. However, such

corrections were not introduced in our approach before the

modeling step, since asymmetric peaks are also reported

after deconvolution. Figure 3 shows waveforms with complex

shapes that are different from the Gaussian transmitted pulse.

They can be found in the following conditions:

• Two overlapping Gaussian echoes can lead to a single

right-skewed pulse (Figure 3a).

• Waveforms acquired with small-footprint sensors (di-

ameter of the laser beam on the ground ≤ 1 m) are

highly influenced by the local geometry of the intercepted

surfaces. They can be positively or negatively skewed

by rough surfaces like vegetated areas (trees, hedges) or

ploughed fields (Figures 3b and c).

• Waveforms received from large-footprint sensors repre-

sent the sum of reflections from all intercepted sur-

faces illuminated by the conical laser beam (see Fig-

ures 2b and 2c). These targets are likely to exhibit a

non-symmetric altimetric distribution leading to complex

pulse shapes (Figures 3c-d-e).

The traditional approaches dealing with lidar decomposition

and modeling [6] are not appropriate for such data. No

solution has yet been proposed to transform the well-known

parameter estimation problem into an optimal model selection

problem for each mixture component where (i) the number of

components is unknown and (ii) the parametric models come

from a predefined library.

Stochastic methods based on marked point processes [21],

[22] are very promising for addressing the issue of lidar

waveform reconstruction. These models, which allow the

sampling of parametric primitives while taking into account

complex interactions, have shown very good potential for

many applications in remote sensing [23] and especially in
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Fig. 3. Types of waveform signals (a) Right-skewed waveform (dark green
dashed curve) simulated with two Gaussian pulses (red continuous curves). (b)
and (c) Waveforms resulting from the small-footprint laser pulse backscattered
from a hedge and a tilted building roof. (d), (e), and (f) Several illustrations
of complex asymmetric waveforms acquired on tropical vegetated areas with
large-footprint sensors.

image analysis aiming at the extraction of line networks [24],

[25], [26], vegetation [27], or 3D urban objects [28], [29].

The sampling of the primitives is performed by Markov Chain

Monte Carlo (MCMC) techniques [30] which exhibit very

good signal reconstruction properties [31]. Such techniques

have been adopted in [32] where a specific model composed

of four exponential parametric functions is fitted to lidar

intensity histograms of data affected by significant background

noise. The model estimate is used for counting and locating

the reflected returns from surfaces, as well as retrieving

their amplitudes. It thus provides an effective algorithm for

3D ranging, all the more since prior knowledge can also

be incorporated into the model. However, this approach is

not suitable for our airborne lidar waveform: the parameters

of the underlying shape model can vary, but this increases

dramatically the dimensions of parameter space and makes

the problem much more complex. Thus, the authors of [32]

assume all the peaks of the signals to have a similar underlying

shape model, an assumption not valid in our case.

This paper presents a method based on a marked point process

model that hypothesizes mixtures of various parametric func-

tions representing the reconstructed echos of the airborne lidar

waveforms. The optimal configuration of functions is found

using a Monte Carlo sampler. Our model presents several

interesting characteristics compared to conventional waveform

modeling techniques mentioned above:

• Multiple function types - The joint sampling of multiple

functions types allows to deal with various parametric

functions. First, by using a library of shapes, more

accurate estimates are performed compared to classical

approaches such as the Gaussian mixture model (see [33]

and Figure 3). Secondly, by selecting the most suitable

function for each peak, which is unknown beforehand,

the estimated parameters are more discriminant for a

subsequent classification.

• Lidar physical knowledge integration - Complex prior in-

formation on lidar waveform characteristics can be intro-

duced in the energy of the stochastic model formulation

without having problems of convexity or/and continuity

restrictions in the formulation of these interactions. This

permits to get a more realistic model and to achieve better
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results.

• Efficient exploration of configuration spaces - A MCMC

sampler associated with relevant proposition kernels al-

lows us to avoid exhaustive explorations of large configu-

ration spaces, which can be both continuous and discrete.

It is particularly efficient when the number of functions

is unknown.

Thus, the Reversible Jump Markov Chain Monte Carlo (RJM-

CMC) [34] algorithm is attractive because in a multi-object

framework it can deal with parameter estimation and model

selection jointly in a single paradigm.

This paper extends the work we presented in [35] by improving

the model, detailing both the marked point process and the

optimization technique, and by presenting new results from

various kinds of sensors as well as applications to the clas-

sification of urban areas. Section II introduces marked point

processes. The proposed model is formulated in Section III.

Section IV describes the optimization procedure. Results are

shown in Section V including experiments from various kinds

of sensor data showing the flexibility of our approach. The

application of waveform modeling for image classification in

urban areas is also presented. It underlines the good potential

of our approach. Finally, conclusions are drawn and perspec-

tives for further work are given in Section VI.

II. MARKED POINT PROCESSES

The marked point processes are stochastic tools which have

been introduced in signal and image processing by Baddeley

and Van Lieshout [21], and extended further in [22], [36], [37].

These models can be considered as an extension of conven-

tional Markov Random Fields [38] such that random variables

are associated not with signal values but with parametrical

functions describing the signal. An overview of marked point

processes is given below.

A. Point processes

Let us consider X , a point process living in a continuous

bounded set K = [0, Lmax] supporting a 1D signal. X is

a measurable mapping from an abstract probability space

(Ω,A, P) to the set of configurations of points of K:

∀ ω ∈ Ω, xi ∈ K, X(ω) = {x1, ..., xn(ω)} , (2)

where n(ω) represents the number of points associated with

the event ω. The homogeneous Poisson process is the reference

point process. Let ν(.) be a positive measure on K. A Poisson

process X with intensity ν(.) possesses the two following

properties:

• For every Borel set B ∈ K, the random variable NX(B)
defining the number of points of X in the Borel set

B follows a discrete Poisson distribution with the mean

ν(B), i.e.:

P (NX(B) = n) =
ν(B)n

n!
e−ν(B).

• For every finite sequence of non intersecting Borelian sets

B1, ..., Bl, the random variables NX(B1), ..., NX(Bl) are

independent.

The Poisson process induces a complete spatial randomness,

given by the fact that the positions are uniformly and indepen-

dently distributed. Its role is analogous to Lebesgue measures

on R
d.

B. Density and Gibbs energy

Complex point processes introducing both, consistent mea-

surements with data and interactions between points, can be

defined by specifying a density with respect to the distribution

of a reference Poisson process. Let us consider an homoge-

neous Poisson process with intensity measure ν(.) and let h(.)
be a non-negative function on the configuration space C. Then,

the measure µ(.) having a density h(.) with respect to ν(.) is

defined by:

∀B ∈ B(C), µ(B) =

∫

B

h(x)ν(dx) . (3)

A Gibbs energy U(x) can also be used to specify a point pro-

cess. The density h(x) of a configuration x is then formulated

using the Gibbs equation:

h(x) =
1

Z
e−U(x) , (4)

where Z is a normalizing constant such that Z =
∫

x∈C
e−U(x).

When defining the Gibbs density of the associated marked

point process w.r.t. the Poisson measure, the issue is reduced

to an energy minimization problem. Generally, a Monte Carlo

Markov Chain sampler coupled with a simulated anneal-

ing is used to find the maximum density estimator1 x̂ =
arg maxh(.). This optimization process is particularly inter-

esting since the density h(.) does not need to be normalized.

Thus, the complex computation of the normalizing constant Z
is avoided.

C. Marks and object library

In order to model signals in terms of parametric functions, it

is possible to extend a point process by adding specific marks

that associate a parametric function (also called an object) to

each point2. A marked point process in S = K×M is a point

process in K where each point is associated with a mark from

a bounded set M (see Figure 4).

Usually, the marked point process based models [28], [24],

[25], [26], [39] use a single type of object. Some authors [40]

have extended the conventional framework in order to sample

various kinds of objects extracted from a library. The mark

space M associated with this library is then specified as a

finite union of mark bounded subsets Mq:

M =

Ns⋃

q=1

Mq , (5)

where each subset Mq corresponds to one of the Ns specific

object types. This extension of the marked point processes,

which is able to deal with objects having different numbers of

control parameters, will be used in the following.

1This estimator corresponds to the configuration minimizing the Gibbs
energy U(.), i.e., x̂ = arg min U(.)

2In many cases, the point corresponds to the mean of the function.
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Fig. 4. Illustration of various point processes - From left to right: a 1D
signal defined on the support K, realizations of a point process on K, a marked
point process of Gaussian functions, and a point process specified by a library
of various functions.

III. STOCHASTIC MODEL FORMULATION

A. Library of modeling functions

As underlined in Section I-C, the contents of the library is

a key point in our work since the function parameters will

be used subsequently for classifying the lidar data. Three

different distributions are chosen to model the waveforms.

Their parameters are defined in continuous domains.

The Gaussian and Generalized Gaussian (GG) models have

been shown to fit most of the echoes of small-footprint lidar

waveforms in urban areas [7]. They allow to model symmetric

echoes which form the majority of lidar signals. The GG

function can be expressed as follow:

f(x | I, s, α, σ) = I exp

(
−(x − s)α2

2σ2

)
, (6)

where I and σ give the amplitude and the width of the

Gaussian model, which are traditionally integrated in lidar

classification algorithms. It was shown that they are relevant

features for classification in urban areas [41]. A shape param-

eter α is added to cope with distorted symmetric echoes. It

enables to simulate traditional Gaussian shapes when α =
√

2,

more peaked curves when 1 ≤ α <
√

2 (α = 1 gives the

Laplace function), and flattened shapes when α >
√

2. Shift

parameter s was introduced to indicate the position of the

maximum of the function.

Nevertheless, the Gaussian assumption does not always hold.

Non-unique asymmetric echoes are observed within wave-

forms corresponding to ground surface or tree canopy (Fig-

ure 3). Thus, many waveforms exhibit heavier tails and require

a more flexible parametric characterization. Moreover, the GG

model gives the amplitude, width, and shape for symmetric

echoes. Amplitude and width are useful for discriminating

ground, vegetation, and buildings, but fail to segment different

kinds of surfaces such as grass, gravel, and asphalt, even when

the pulse shape is available [42]. The laser cross-section gives

slightly better discrimination.

Two kinds of functions must therefore be included: functions

able to fit asymmetric peaks and those which can cope with

both left- and right-skewed curves which therefore deliver

other parameters than those provided by the GG model: the

Nakagami and the Burr models have been selected.

The Nakagami distribution is a generalization of the χ distri-

bution and can model right-skewed and left-skewed distribu-

tions with a skewness/spread parameter ω:

f(x| I, s, ξ, ω) = I
2 ξξ

ωΓ(ξ)

(
x − s

ω

)2ξ−1

exp −ξ

(
x − s

ω

)2

.

(7)

When ω increases, the peak becomes narrower and more

symmetric. Scale parameter ξ controls the peak width: large

ξ leads to narrow peaks of higher amplitude. The Nakagami

function is traditionally used to model Synthetic Aperture

Radar (SAR) images to estimate their amplitude probability

density functions as well as for subsequent classification [18].

A large body of literature has presented and studied probability

density functions so as to model the dispersion of the received

signals produced by different objects, using either theoretical

or heuristic models [43], [19].

Finally, the Burr function is especially useful to model

asymmetric modes with two shape parameters. It enables to fit

right-skewed peaks that the Nakagami model cannot handle.

It is a generalization of the Fisk distribution thanks to the

parameter c. The scale parameter is a, and b and c are two

shapes parameters (b has the same effect as the ω parameter

for the Nakagami function). The ratio between peak amplitude

and skewness is tuned by c.

f(x| I, s, c, a, b) = I
bc

a

(
x − s

a

)−b−1
(

1 +

(
x − s

a

)−b
)−c−1

.

(8)

On the one hand, we admit that there is no physical

entity exclusively attached to these curves. On the other hand,

they enable us to handle asymmetric peaks and therefore we

expect their application will outperform standard approaches.

These distributions are defined in continuous domains. Table I

provides some representations of these functions with critical

parameter variations.

Generalized Gaussian Nakagami

σ = 0.1 ω = 5 ξ = 1

Burr

b = 1 - c = 1 a = 1 - c = 1 a = 1 - b = 5

TABLE I
BEHAVIOR OF THE THREE MODELING FUNCTIONS OF THE LIBRARY.

B. Energy definition

Let x be a configuration of parametric functions (or objects)

xi extracted from the above library. The energy U(x), mea-

suring the quality of x, is composed of both a data term Ud(x)
and a regularization term Up(x) such that:

U(x) = (1 − β) Ud(x) + β Up(x) , (9)

where β ∈ R
+ tunes the trade-off between the data term and

the regularization.

1) Data term: The data energy steers the model to best

fit to the lidar waveforms. The likelihood can be obtained by

computing a distance between the given signal Sdata and the
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estimated one Sx, which depends on the current objects on

the configuration x:

Ud(x) =

√
1

|K|

∫

K

(Sx − Sdata)2 . (10)

The term Ud(x) measures the quadratic error between both

signals: it allows to be sensitive to high variations i.e., to local

strong errors in the signal estimate that correspond to unfitted

peaks. The L2 norm has been chosen for that purpose.

2) Waveform constraints: The term Up(x) allows the in-

troduction of interactions between objects of x and to fa-

vor/penalize some configurations.

Up(x) = Un(x) + Ue(x) +
∑

xi∼xj

Um(xi, xj) , (11)

where xi ∼ xj constitutes the set of neighboring objects in the

configuration x. This neighborhood relationship ∼ is defined

as follow:

xi ∼ xj = {(xi, xj) ∈ x | |µxi
− µxj

| ≤ r} . (12)

Parameter µxi
(resp. µxj

) represents the mode (i.e., the posi-

tion of the maximum amplitude of the echo) of the associated

function to object xi (resp. xj) and r is constrained by

the lidar sensor range resolution (i.e., the minimum distance

between two objects along the laser line of sight that can be

differentiated) as well as the complexity of the reconstruction

we aim to achieve.

For aerial lidar waveforms the prior knowledge is set up by

physical limitations in the backscatter of lidar pulses. These

limitations are modeled by three terms Un (echo number

limitation), Ue (backscatter laser energy limitation), and Um

(reconstruction complexity) that are described below.

(i) Echo number limitation

The two first echoes of a waveform contain in general about

90% of the total reflected signal power. Consequently, even

for complex targets like forested areas, a waveform empirically

reaches a maximum of seven echoes and it is quite rare to find

more than four echoes. In urban areas, most of the targets are

rigid, opaque structures like buildings and streets. Thus, more

than two echoes are usually only found in open forests. We

therefore aim to favor configurations with a limited number of

objects with an energy given by:

Un(x) = − log Pcard(x) with

∞∑

n=0

Pn = 1 , (13)

where Pn is the probability for the waveform to have n echoes.

The probabilities were empirically determined by a coarse

mode estimate on an urban test area (41M waveforms over

20 km2). Here, we have: P1 = 0.6, P2 = 0.27, P3 = 0.1
and P46n67 = 0.01. For n > 7, Un(x) is set to a very high

positive value, which bans such configurations in practice.

(ii) Backscatter energy limitation

We take advantage of the law of conservation of energy and

define an upper bound for the backscatter energy. This upper

bound depends on the emitted laser power and the target

reflectance and scattering properties. This reference power Eref

can be set empirically to
√

2πAmaxσmax, which is the energy

of a Gaussian pulse of amplitude Amax and width σmax. Amax

and σmax are upper bounds for the amplitude and the width

of echoes within the waveforms over the area of interest.

Waveforms with larger pulse energy are penalized as follows:

Ue(x) = πe 1{E(x)>Eref}(E(x) − Eref)
2 , (14)

where 1{.} is the characteristic function, E(x) =
∫

K
Sx is the

pulse energy of Sx, compared to a reference power Eref (see

Figure 5).

(iii) Reconstruction complexity

Our aim is twofold:

• to penalize objects spatially closer along the line of sight

than the sensor range resolution;

• to favor configurations with a small number of objects,

following the Minimum Description Length principle.

Such energy is given by:

Um(xi, xj) = πm exp

(
r2 − |µxi

− µxj
.|2

σ2

)
(15)

This means that a mode of a waveform may be either recon-

structed by a single peak or by a sequence of peaks whose

accepted minimum distance is governed by parameter r (see

Figure 5). The lower bound of r is given by range resolution

τ × c/2 (where τ is the laser pulse duration, and c le speed

of light), while the upper bound of r is thus model based and

may be chosen depending on the scene. For example, if we

know that the data were acquired in a forested area in the

leaf-off period and the trees have preferably few, but strong

branches, we would chose a large r.

Fig. 5. Left: Backscatter energy limitation term plotted against the energy
of the current configuration E(x). Right: Reconstruction complexity term
plotted against the absolute distance between two neighboring objects of the
current configuration.

3) Parameter settings: Physical and weight parameters can

be distinguished in the energy. Physical parameters are r and

σ. Small-footprint airborne topographic sensor specifications

[5] and our knowledge on acquired waveforms lead to r =
0.75 m, and we set σ to 0.01. Thus, R3(xi, xj) → +∞ when

µxi
→ µxj

. Data and regularization terms are weighted with

respect to each other using a factor β (see Equation 9) set to

0.5. The two prior weights πe and πm are tuned by “trial-and-

error” tests.

IV. OPTIMIZATION BY MONTE CARLO SAMPLER

We aim to find the configuration of objects which minimizes

the non convex energy U in a variable dimension space since
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the number of objects is unknown and function types are

defined by different numbers of parameters. Such a space can

be efficiently explored using a Monte Carlo sampler coupled

with a simulated annealing that we detail below.

A. MCMC sampler

Since it is required to sample from parameter spaces

of varying dimensions, the Reversible Jump Markov Chain

Monte Carlo (RJMCMC) algorithm [34] is well adapted to

our problem. This technique is a general extension of the

formalism introduced in [30] for variable dimension models.

[34] proposes a selection of models in cases of a mixture of

k Gaussian, since k is not known. Several papers have shown

the efficiency of the RJMCMC sampler for the problem of

multiple parametric object recognition [44], [25], [45] in image

processing and computer vision.

The RJMCMC sampler consists in simulating a discrete

Markov Chain (Xt), t ∈ N on the configuration space, having

an invariant measure specified by the energy U . This sampler

performs ”jumps” between spaces of different dimensions

respecting the reversibility assumption of the Markov chain.

One of the advantage of this iterative algorithm is that it

does not depend on the initial state. The jumps are realized

according to various families of moves m called proposition

kernels and denoted by Qm. The jump process performs

a move from an object configuration x to y according a

probability Qm(x → y). Then, the move is accepted with

the following probability:

min

(
1,

Qm(y → x)

Qm(x → y)
exp−(U(y) − U(x))

)
. (16)

Two families of moves are used in order to perform jumps

between the subspaces. Another type of move is more specif-

ically dedicated to the exploration of such subspaces.

• Birth-and-death kernel QBD: an object is added or

removed from the current configuration x, following a

Poisson distribution. These transformations correspond-

ing to jumps into the spaces of higher (birth) and lower

(death) dimension are theoretically sufficient to visit

the whole configuration space. However, other kernels,

more adapted to our problem, can be specified. The aim

is to speed up the process convergence by proposing

relevant configurations more frequently. Therefore, two

other kernels have been introduced.

• Perturbation kernel QP : the parameters of an object

belonging to the current configuration x are modified

according to uniform distributions.

• Switching kernel QS : the type of an object belonging to

x is replaced by another type of the library. Contrary to

the previous kernel, this move does not change the num-

ber of objects in the configuration. However, the number

of parameters can be different (e.g., four parameters for

the Nakagami model are substituted by five parameters

for the Burr one). This kernel creates bijections between

the different types of objects [34].

If an object is added, its type and its associated parameters

are randomly chosen. Because no assumption can be made

Fig. 6. Optimization process: evolution of the object configuration from the
initial temperature T0 to the final one Tfinal (left to right, and top to down).

which move is more relevant at the current state, we choose

equiprobability of the kernels in order to not favor one with

respect to another. The computation of these kernels is detailed

in Appendix B.

B. Relaxation

Simulated annealing is used to ensure the convergence

process. A relaxation parameter Tt, defined by a sequence of

temperatures decreasing to zero when t → ∞, is introduced

in the RJMCMC sampler (i.e., U(.) is substituted by
U(.)
Tt

).

Simulated annealing allows to theoretically ensure the con-

vergence to the global optimum for all initial configurations

x0 using a logarithmic temperature decrease. In practice, we

prefer to use a geometrical cooling scheme which is faster and

gives an approximate solution close to the optimal one:

Tt = T0 αt , (17)

where α and T0 are the decrease coefficient and the initial

temperature, respectively. We prefer to use a constant decrease

coefficient. In our experiments, α is set to 0.99995. The initial

temperature T0 is estimated according to [46]. During the tem-

perature decrease, the process explores the configurations of

interest and becomes more and more selective. It corresponds

to local adjustments of the objects of the configuration (see

Figure 6).

V. EXPERIMENTS

The algorithm has been applied to different kinds of air-

borne lidar signals. The results have been evaluated quanti-
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tatively by computing the normalized cross-correlation coef-

ficient ρ and the relative Kolmogorov-Smirnov distance KS

between the raw and the estimated signals. We have:

ρ =

N∑
i=1

(Sdata(i) − Sdata) · (Ŝ(i) − Ŝ)

√
N∑

i=1

((Sdata(i) − Sdata)2

√
N∑

i=1

(Ŝ(i) − Ŝ)2

∈ [-1,1] .

(18)

Sdata is the reference waveform, and Ŝ is our estimated signal,

both composed of N bins. Sdata and Ŝ are their respective

mean values. If the reconstructed signal perfectly fits with the

lidar waveforms bins, ρ=1. The correlation coefficient is rather

sensitive to outliers. KS is a normalized L∞ norm, both used

to detect missing echoes and local shifts between signals. It

is defined as follows:

KS(Sdata, Ŝ) =

sup
K

|Sdata − Ŝ|

max
K

Sdata

∈ [0,1] . (19)

The L∞ norm has been normalized to allow comparisons

between waveform fitting results from different sensors. KS=0

means that every lidar bin perfectly matches with the re-

constructed signal, whereas KS=1 means that the main echo

has been missed. Setting a satisfactory KS upper bound thus

mainly depends on the noise level of the lidar waveforms.

A. Simulated data: relevance of the optimized energy

Various simulations have been carried out to assess the

relevance and the effectiveness of the proposed model energy.

Figure 7 shows several reconstructions of a simulated signal

composed of three pulses with two overlapping peaks with

variations on the optimized energy. The simulated signal and

the estimated one are represented by the dotted black line and

the continuous grey line, respectively.

First, the data term has been considered only (i.e., we only

minimize the difference according to Equation 10). It can be

noticed in Figure 7a that the signal is correctly estimated but

the configuration is composed of a high number of echoes

(eleven). Thus, the result is not realistic since not all echoes

does represent a specific target. Then, only the regularization

term is considered (Un + Ue + Um). Figure 7b shows that

the proposed regularization energy constraint is useful since it

provides a realistic lidar waveform: one echo with a bounded

energy. This is due to both, the echo number limitation and

the backscatter energy limitation terms. Finally, Figures 7c

to 7f show the influence of the reconstruction complexity

term Um. It is first discarded on Figure 7c: the signal is

perfectly reconstructed, but with the maximum number of

echoes allowed by Un. It does not correspond to reality since

the echoes are too closely located to each other. Then, Um is

introduced and r is respectively set to 0.3, 0.75, and 3 m in

Figures 7d, 7e, and 7f. The greater r, the lower the number

of peaks. It can be noticed that a reasonable value of r allows

the reconstruction of the signal with the appropriate number

of echoes (Figure 7e), whereas larger values lead to erroneous

detections (Figure 7f).

Fig. 7. Various signal reconstructions with variations of the model energy.
The dotted black line and the continuous grey one are respectively the raw and
the estimated signals. The other colors correspond to the individual echoes
that compose the estimated waveform. (a) No regularization term. (b) No
data term. Both data and regularization terms are now considered (first, Un

and Ue). The reconstruction complexity term Um is not used in (c). Um is
introduced and then modified by increasing the parameter r: r is set to 0.3,
0.75, and 3 m respectively for (d), (e), and (f).

Fig. 8. Examples of fitted (a-b) LVIS and (c-d) SLICER waveforms. The
Burr and Nakagami models are preferred for the first and last modes of the
waveform, that correspond to the first layer of the three canopy and the ground,
respectively. Waveform (b) has been fitted setting r to a high value, to prevent
small overlapping echoes to be individually detected.

Additional experiments have been carried out to assess

whether the parameters of the modeling functions are correctly

estimated and whether the correct model is selected (see

Appendix A for details).

B. Airborne medium and large-footprint topographic wave-

forms

Waveforms from LVIS (Laser Vegetation Imaging Sensor)

and SLICER (Scanning Lidar Imager of Canopies by Echo

Recovery) NASA sensors have been decomposed and modeled

with our approach (Figure 8). The sensor goals and specifica-

tions are described in [5]. LVIS waveforms have been acquired

in March 1998 over a 800km2 area of Costa Rica using 25m-

diameter footprints3 [47]. Both fine and coarse fitting strategies

have been tested. The fine strategy consists in selecting r so

that each mode of the waveform will be fitted by a function

(r = 3m). It leads to almost perfect signal approximation, but

conclusions are difficult to draw since the function selected

for a given peak depends on the functions of the neighboring

echoes (Figure 8a). With the coarse solution, r is set to higher

value (9 m) and σ to 0.001. Thus reduces the complexity of

the reconstruction and therefore prevents overlapping or close

echoes from being individually fitted. A unique global peak

is selected instead (Figure 8b), providing a general trend for

the first part of the signal (in practise, the first tree canopy

layer). SLICER elevation profiles come from in the BOREAS

Northern Study Area in Canada4, and have been acquired in

3Data set available at https://lvis.gsfc.nasa.gov/index.php
4Data set available at http://core2.gsfc.nasa.gov/research/laser/slicer/browser.html
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Sensor
ρ KS GG Nak. Burr

(number of waveforms)

SLICER (76417) 0.949 0.11 6.5 51.2 41.8
LVIS (4001) 0.968 0.14 5.1 57.0 37.9

TABLE II
MEDIUM AND LARGE-FOOTPRINT WAVEFORM FITTING AND MODELING

STATISTICS. THE FINE SOLUTION HAS BEEN ADOPTED FOR THE SIGNAL

DECOMPOSITION. THE TWO FIRST COLUMNS (ρ – KS) PROVIDE QUALITY

MEASURES. THE THREE LAST COLUMNS INDICATE THE PERCENTAGE OF

ECHOES THAT HAVE BEEN FITTED WITH EACH OF THE THREE MODELING

FUNCTIONS.

July 1996 [48]. Table II shows that signals from both sensors

are correctly decomposed, without significant errors. However,

the KS distance values show that some small peaks are not

retrieved. Indeed, LVIS and SLICER elevation profiles are very

complex since the sensor laser beam integrates many distinct

objects. Thus, even with the fine strategy, several close narrow

pulses (as displayed on Figure 8b) cannot be all detected.

With medium and large-footprint waveforms, the Generalized

Gaussian model is no longer selected by the algorithm. The

two functions allowing to simulate asymmetric peaks are

preferred. The main noticeable results (see also Table II) are

that:

• the GG function is sparsely chosen, mainly for peaks

with a small amplitude. Thus, the lidar echo Gaussian

assumption is no longer valid. This fact underlines the

relevance of our approach for modeling lidar waveforms

with a library of functions.

• the Nakagami model is preferred to the Burr function,

since its parameters allow for a higher flexibility. It is

mainly selected for the last echo, which correspond to

the ground and low above-ground objects, and is usually

left-skewed.

• the Burr function is relevant for echoes that correspond

to pulses backscattered from the tree canopy (first layer

of the vegetation).

C. Small-footprint waveforms in urban areas

Waveforms acquired from small-footprint airborne lidar sys-

tems (Riegl LMS-Q560 and Optech 3100EA, see [5] for their

specifications) over various kinds of urban landscapes have

been fitted using the stochastic approach. Figures 9 and 10, and

Table III show results both on urban and natural terrain. First, it

can be noticed in Figure 9 that the algorithm performs well on

complex waveforms. The correct number of echoes is found as

well as the correct shape of the waveform: single and multiple

overlapping echoes are retrieved, even in vegetated areas

where the noise level is significant w.r.t. the echo amplitudes

(Figures 9a and b). Moreover, for opaque solid targets like

building roofs and ground, slightly asymmetric echoes are

retrieved, and correctly adjusted: the Burr model allows to

retrieve them, especially when dealing with the second echo

of two overlapping ones (Figures 9c and d).

The fitting accuracy is higher than for medium and large-

footprint waveforms. However, the latter ones are much more

complex.
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Fig. 9. Decomposed and modeled waveforms on (a-b) trees, (c) a building
roof, and (d) a hedge (Riegl LMS-Q560 sensor).

More than 123,000 waveforms acquired with the Optech

3100EA sensor over the city of Amiens, France, have been

analyzed. The aim was to assess the reliability of the method

in heterogeneous landscapes and to show its local stability

in homogeneous areas. Six regions of interest have been

selected: three simple buildings with different slopes and

materials (Building #1); a complex area with high and low

buildings with grass and trees (Building #2); a Gothic cathedral

(Cathedral); a flat harvested field (Field); a slightly sloped

grass surface (Grass); and a mixed set of buildings with a

street, pavement, and trees (Street). Furthermore, the echoes

detected by the lidar system during the acquisition survey

are provided (hardware echoes). To assess the relevance of

waveform processing and to solve a multiple mixture problem,

the waveforms have been fitted with our proposed approach

using the library of functions as well as based exclusively on

the Gaussian model. All the results are included in Table III.

The main conclusions are:

• For areas including targets generating multiples echoes

(trees, building edges) more echoes are found than the

traditional 3D point cloud provides to the end-user. These

areas correspond approximatively to 5-10% for urban

scenes as stated in several papers in the literature [49].

• Whatever the ROI, the fitting accuracy is high (ρ >0.99

and KS<0.1) with our approach. One can notice that

using a library of shapes slightly improved the fitting

accuracy compared to only the Gaussian model (since

we have gained a higher flexibility in the fitting process

with new models featuring more and distinct parameters).

There are indeed asymmetric peaks, but in a relative low

proportion.

• For flat areas, which coincide with low incidence an-

gles, the echoes are symmetric and the Generalized

Gaussian function is selected (Field and Grass areas,

see Figure 10). However, in some cases also the Burr

and Nakagami functions have been selected because for

some parameter set-ups they are very similar to Gaussian

distributions. This is a limitation of the current version

of our approach which will be targeted in future work.

• In vegetated areas (trees), the algorithm does not prefer-

ably select a particular model. The usefulness of asym-

metric modeling functions is therefore difficult to draw

for fitting echoes of small-footprint waveforms in forested

areas, and the Gaussian function should be sufficient.

• For building regions, both symmetric and skewed peaks

are retrieved. Asymmetric echoes can be found on build-

ing roofs and where surface discontinuities exist. Such

behavior is frequently observed for the Cathedral scene

depicted in Figure 10. When the target geometry becomes
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Area Building #1 Building #2 Cathedral Field Grass Street

# waveforms 9943 38565 43563 10035 9790 11770

# echoes
10555 40785 49161 10035 9790 12428

hardware

L
ib

ra
ry

# echoes 11054 43385 50638 10035 9790 13033

GG 81.2 60.3 62.5 91.2 99.5 61.7

Nak. 12.6 35.3 27.4 4.4 0.35 31.4

Burr 6.2 4.4 10.1 4.2 0.15 6.9

ρ 0.9947 0.9948 0.9948 0.997 0.999 0.994

KS 0.098 0.0977 0.095 0.038 0.025 0.102

G
au

ss
.

ρ 0.991 0.987 0.9824 0.992 0.995 0.981

KS 0.109 0.125 0.113 0.087 0.057 0.134

Additional
+4.7% +6.4% +3% 0% +0.5% +4.8%

points

TABLE III
FITTING RESULTS ON SIX URBAN REGIONS OF INTEREST (OPTECH

3100EA SENSOR). OUR APPROACH HAS BEEN TESTED USING BOTH THE

FULL LIBRARY OF MODELS AND THE SINGLE GAUSSIAN FUNCTION.
QUALITY MEASURES (ρ – KS) ARE PROVIDED FOR BOTH. THE

PERCENTAGES OF ECHOES THAT HAVE BEEN FITTED BY EACH OF THE

THREE MODELING FUNCTIONS ARE INDICATED, AS WELL AS THE

PERCENTAGE OF ECHOES ADDITIONALLY RETRIEVED, COMPARED TO THE

UNKNOWN HARDWARE DETECTION METHOD.

Fig. 10. From top to down: orthoimages of the ROIs c©IGN, and 3D point
clouds interpolated in 2D and colored with the selected function: Generalized
Gaussian–Nakagami–Burr. Left: Cathedral – Middle: Grass – Right: Building
#1.

complex, the Nakagami and Burr functions are preferred.

• The reflectance of the targets also has an influence

on the fitting algorithm: for high reflectance objects,

the backscattered pulse has a significant amplitude and

becomes narrower. In such cases, the Gaussian model is

selected, as displayed in Figure 10 for the Building #1

area.

D. Application to lidar data classification

1) Motivation and strategy: A potential application is data

classification using the modeling features. The aim is to assess

whether such features are relevant for accurate urban land

cover classification. These features can be fed into a classifi-

cation algorithm using for instance Support Vector Machines

(SVM). SVM have evolved as a standard tool for a broad range

of classification tasks [50], [51].

Here, our goal is to carry out simple classification without

selecting the most relevant features. Three classes have been

chosen to characterize urban areas: buildings, vegetation,

and ground. Moreover, with such coarse classes, a 2D-based

classification is preferred. 3D lidar points are thus projected

into a 2D image geometry (0.75 m resolution). Images are

obtained for each feature by computing, for each pixel, the

mean corresponding value of the lidar points included in a 3×3

neighborhood. Such interpolation process has been proven

to be efficient for classifying lidar data with few errors on

class boundaries [41]. The SVM algorithm requires a feature

vector for each pixel to be classified. Our feature vector fv

has eight components. Four of those are spatial features,

which are computed using a volumetric approach within a

local neighborhood VP for each lidar point P . The local

neighborhood includes all the lidar points within a sphere of a

fixed radius (set to 2m), centered at P . Four other features are

extracted from the waveform processing step (shape features).

Finally, fv = [∆z, σz, DΠ, Sλ, A,w, s,M].

• ∆z: difference between the echo altitude and the lowest

altitude in a neighborhood of 20 m;

• σz: the variance of the altitude of the points found in VP ;

• DΠ: distance from the current point P to the locally

estimated plane ΠP . Such plane is estimated using a

robust M-estimator with L1.2 norm;

• Sλ: the sphericity is equal to λ3/λ1. λ1 and λ3 are

the highest and lowest eigenvalues, respectively extracted

from the covariance matrix computed in VP ;

• the peak amplitude A, width w, skewness s, and the type

selected by the marked point process M.

2) Results and comments: The six ROIs have been classi-

fied. To assess the relevance of the features extracted with the

modeling step, the classification has first been carried out using

only the echo shape features: fv1
= {A, w, s,M}. Then, the

four spatial features were selected: fv2
= {∆z, σz, DΠ, Sλ}.

Finally, the four shape features are successively introduced

into fv2
. The overall accuracy (OA) is used as a quality

criterion for comparing the results and is defined as:

OA =

∑N

i=1 Ai,i∑N

i=1

∑N

j=1 Ai,j

∈ [0,1] , (20)

where Ai,j gives the number of pixels labelled as j and belong-

ing to the class i in reality. Table IV shows the evolution of the

classification accuracy depending on the input features. One

can see also that the four shape features are not sufficient for

good discrimination, whereas the four spatial features perform

well. One can notice that the inclusion of the shape features

improves the OA from step to step. When considering the six

ROIs, the modeling of lidar waveforms allows gaining 2.3% of

OA (difference between fv2
∪ {A} and fv2

∪ {A, w, s,M}).

This is particularly due to the width parameter, that can be

retrieved with a simple Gaussian assumption, but which is

better estimated with the library of shapes. It leads to a

better discrimination of building and vegetation areas. Indeed,

for steeped roofs the four spatial feature values may be

very similar to dense tree canopies. The relevance of s and

M is lower, but the classification results benefit from their

introduction.

Figure 11 gives the classification results for three ROIs.

When dealing with flat homogeneous surfaces, the classifier

performs well (OA=99.3%, see Table IV), however the label

image looks slightly noisy. For complex mixed urban areas, the

OA is satisfactory and the label images are spatially coherent

(Figures 11b and c). Misclassified areas can be mainly noticed
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Overall Area

Accuracy 6 ROIs Grass Building #1 Building #2

fv1
68.4 98.17 64.6 68.1

fv2
85.5 99.11 82.7 83.5

fv2
∪ {A} 86.7 99.34 86.1 84.42

fv2
∪ {A, w} 88.3 82.7 87.9 84.59

fv2
∪ {A, w, s} 88.7 99.35 88.0 84.67

fv2
∪ {A, w, s,M} 89.0 99.31 88.3 84.71

TABLE IV
OVERALL ACCURACY EVOLUTION DEPENDING ON THE FEATURES

INCLUDED IN THE SVM ALGORITHM.

Fig. 11. Results of the SVM classification using the eight features (Buildings
– Vegetation – Ground). (a) and (b) Grass and Building #1 areas (see Figure 10
for their respective orthoimages). (c-d) Orthoimage c©IGN and classification
of the Building # 2 area.

at building edges and vegetated areas where both ground and

off-ground objects have been mixed. Moreover, low objects

on the ground such as cars may locally influence the feature

values for the ground class and may lead to locally misclas-

sified pixels (Figure 11d). These objects are then classified as

building instead of ground. This result does not stem from

the non spatial homogeneity in the model selection for our

approach as can be seen in Figure 10.

Although the four shape features are still not sufficient, we

can conclude that they allow for a better discrimination when

they are fed into a SVM classifier with traditional spatial lidar

features.

VI. CONCLUSION AND FUTURE WORKS

We have proposed an original method for modeling lidar

waveforms by complex parametric functions. The obtained

results are convincing. The fitting accuracy is better than that

with conventional Gaussian waveform fitting schemes. The

stochastic approach is well adapted both to locate echoes in

signals and accurately describe them with parametric func-

tions taken from an extensible and tunable model library.

The algorithm has been successfully applied to waveforms

from different lidar sensors, and at different spatial scales,

showing its effectiveness and flexibility for various landscapes

and resolutions. For medium and large-sized footprints, the

chosen functions allow to adjust asymmetric peaks occurring

frequently. Our approach is thus particularly relevant for such

data. For small-footprints, the skewness of the echoes is less

significant and shows the present limitations of our model.

For only slightly asymmetric echoes, all the objects of the

library are suitable and can be chosen, resulting in a sort of

overfitting. There are no prior constraints on the object types

in our model for neighboring echoes and echoes belonging to

the same waveforms. Thus, the approach can result in non-

homogeneous spatial function maps.

The potential advantages of the new approach are twofold.

First, 3D points can be to accurately generated over large

areas with shape descriptors that are the parameters of the

modeling functions. Moreover, the 3D points can be labelled

with their modeling function. By providing new features,

our approach offers the possibility to improve classical lidar

data classification algorithms. However, processing millions

of waveforms requires a significant computing time. For our

experiments, with a Macintosh Pro 8-core 2.93GHz with 6GB

RAM, approximatively 50,000 waveforms can be processed in

one hour.

In future works, it would be interesting to estimate auto-

matically the weighting parameters using for instance the

EM algorithm. Moreover, we should introduce, in the energy

formulation, specific interactions between parametric functions

of different types in order to improve local signal adjustments.

Eventually, as consecutive small-footprint waveforms along a

scan line and in the orthogonal directions are likely to have

similar shapes, spatial interactions should also be included in

the regularization term of the proposed model.
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