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Abstrat: We de�ne a probabilisti ontrat framework for desribing andanalysing omponent-based embedded systems, based on the theory of Intera-tive Markov Chains (IMC). A ontrat spei�es the assumptions a omponentmakes on its ontext and the guarantees it provides. Probabilisti transitionsallow for unertainty in the omponent behavior, e.g., to model observed blak-box behavior (internal hoie) or reliability. An interation model spei�es howomponents interat.We provide the ingredients for a omponent-based design �ow, inluding(1) ontrat satisfation and re�nement, (2) parallel omposition of ontratsover disjoint, interating omponents, and (3) onjuntion of ontrats desrib-ing di�erent requirements over the same omponent. Compositional design isenabled by ongruene of re�nement.Key-words: omponent, probabilisti ontrat, re�nement, omposition
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Contrats probabilistes pour la oneption à basede ompostantsRésumé : Nous dé�nissons un adre formel de ontrats probabilistes pourdérire et analyser des systèmes embarqués à base de omposants. Ce adreformel est fondé sur la théorie des haînes de Markov interatives (IMC). Unontrat spéi�e les hypothèses qu'un omposant fait quant à son ontexte etles garanties qu'il fournit. Des transitions probabilistes permettent de raisonnersur les inertitudes dans le omportement d'un omposant, par exemple pourmodéliser un omportement de type boîte noire (hoix interne) ou sa �abilité.Un modèle d'interation spéi�e la fa�on dont des omposants interagissent.Nous fournissons tous les ingrédients pour le �ot de oneption à basede omposants, inluant (1) la satisfation et le ra�nement de ontrat, (2)la omposition parallèle de ontrats portant sur des omposants disjoints quiinteragissent, et (3) la onjontion de ontrats dérivant des omportementsdi�érents d'un même omposant. Notre adre formel permet de faire de laoneption ompositionnelle grâe à la ongruene de l'opération de ra�nement.Mots-lés : omposant, ontrat probabiliste, ra�nement, omposition
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fail2

del

0.02 (b) The IMC Mℓ of the Link.Figure 1: An example of IMC: a Client-Link-Server.after reeiving a response (rec′) from the Server; the probability that it delivers(del) the response to the Client is 0.95 and the probability of failing to do sois 0.05. In state l8, the Link may still ommuniate with the Server regardingother servies, but will not deliver any response to the Client.Components ommuniate through interations, that is, synhronized ationtransitions. Interations are essential in omponent frameworks, as they allowthe modeling of how omponents ooperate and ommuniate. We use the BIPframework [7℄ to model interations between omponents.Sine the deploying ontext of a omponent is not known at design time, weuse probabilisti ontrats to speify and reason about orret behaviors of aomponent. Contrats were �rst introdued in [11℄. They allow the designer tospeify what a omponent an expet from its ontext, what it must guarantee,and expliitly limit the responsibilities of both.The framework we propose here allows us to model omponents, their inter-ations, and the unertainty in their observed behavior (�2). It supports di�er-ent steps in a design �ow: re�nement, satisfation, and abstration (�3), parallelomposition (�4.1), and onjuntion (shared re�nement) (�4.2). We prove thatthese operations satisfy the desired properties of independent implementabilityand ongruene for parallel omposition, and soundness for onjuntion. Thus,
• re�nement is ompositional, that is, ontrats over di�erent omponentsan be re�ned and implemented independently;
• the parallel omposition of two ontrats is satis�ed by the parallel om-position of any two implementations of the ontrats; and
• several ontrats Ci over the same omponent may be used to indepen-dently speify di�erent requirements, possibly over di�erent subsets ofthe omponent interations. The onjuntion is a ommon re�nement ofall Ci.As pointed out in [2℄, onjuntion of probabilisti spei�ations is non trivial,as a straight-forward approah would introdue spurious behaviors.

RR n° 7328



Probabilisti Contrats for Component-based Design 52 Components and ContratsWe give a formal de�nition to the disrete-time Interative Markov Chains de-sribed in [8℄, used to model the behavior of omponents.De�nition 1 (Probability distribution). A probability distribution over a set
X is a funtion f : X → [0, 1] suh that ∑

x∈X f(x) = 1.De�nition 2 (Interative Markov Chain (IMC)). An IMC is a tuple
(Q,A,→, π, s0) where:

• Q is a nonempty �nite set of states, partitioned into Qp, the set of proba-bilisti states, and Qa, the set of ation states;
• A is a �nite alphabet of ations;
• → ⊆ Qa ×A×Q is an ation transition relation;
• π : Qp → (Q → [0, 1]) is a transition probability funtion suh that, foreah s ∈ Qp, π(s) is a probability distribution over Q;
• s0 is the initial state.IMCs may interat with eah other by synhronizing on ation transitions(details in �4). Eah ation state in Qa has outgoing ation transitions like thosein an LTS. Eah probabilisti state in Qp has outgoing probabilisti transitionslike those in a Markov Chain. Probability distributions on states are memory-less, i.e., the future of an IMC depends only on the urrent state, not on pasthoies. For example, in Figure 1(b), the probabilisti hoie that the Linkdelivers the response to the Client (i.e., π(l4)(l5) = 0.95) is independent of theprobabilisti hoie of delivering a request to the Server (i.e., π(l1)(l2) = 0.98).Notation: For onveniene, we sometimes write the transition probabilityfuntion π as a transition relation 99K ⊆ Qp × [0, 1] ×Q suh that

99K = {(s, p, s′) | s ∈ Qp ∧ s′ ∈ Q ∧ p = π(s)(s′)}We introdue ontrats as a �nite spei�ation for a possibly in�nite num-ber of IMCs. In ontrast to IMCs, the probabilisti transitions of a ontratare labeled with probability intervals, similar to [9, 14℄. Moreover, a distint
⊤ state is used to distinguish assumptions on the use of the omponent fromthe guarantees it provides.De�nition 3 (Contrat). A ontrat is a tuple (Q,A,→, σ, t0) where:

• Q is a nonempty �nite set of states, partitioned into Q = Qp ∪Qa ∪ {⊤},where Qp is the set of probabilisti states, Qa is the set of ation states,and ⊤ is a distint state without any outgoing transitions;
• A is a �nite alphabet of ations;
• → ⊆ Qa ×A×Q is the ation transition relation;
• σ : Qp → (Q → 2[0,1]) is a transition probability prediate, assoiatingwith eah pair of states (s, s′) ∈ Qp ×Q an interval of probabilities;
• t0 is the initial state.RR n° 7328
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res′(a) IMC Ms for Server (b) Contrat Cs for ServerFigure 2: Contrat ExamplesNotations: We also write σ as a transition relation 99K ⊆ Qp × 2[0,1] ×Qsuh that 99K = {(s, P, s′) | s ∈ Qp ∧ s′ ∈ Q ∧ P = σ(s)(s′)}. We write q
>0
99K q′if ∃p > 0 : p ∈ σ(q, q′), and >0

99K

+ for the transitive losure of >0
99K.The meaning of a ontrat over a omponent C is the following:

• a transition s
a
→ ⊤ spei�es the assumption of the omponent C that aninteration involving ation a does not our in state s;

• in an ation state s, an ation a labeling a transition not leading to ⊤spei�es the guarantee of the omponent C that a is enabled in s; on-versely, the absene of any outgoing transition labeled with a spei�es theguarantee that an interation involving a will not our;
• the ⊤ state represents the fat that the assumption has been violated, andheneforth, the omponent C an show arbitrary, unontrollable behavior;
• a transition s

[a,b]
99K t spei�es an interval of allowed transition probabilities.Example 1. The ontrat Cs in Figure 2(b) spei�es that, after the Serverreeives a request req′, the probability that it reahes state t3 is within [0, 0.1];in state t3, it assumes that the environment does not give req ′ again; if thisours, its implementation is not bound by Cs any more; the probability that itreahes t2 from t1 is within [0.9, 1]; in state t2, it guarantees to send a response(res′). In �3, we show how to hek that the IMC Ms (in Figure 2(a)) satis�esthe ontrat Cs.From the de�nitions of IMC and ontrat, we an see that an IMC an betrivially onverted into a ontrat. For this, we de�ne a lifting operator ⌊.⌋(Figure 3 ()). For the sake of simpliity, we use the same notation 99K torepresent both kinds of probabilisti transitions (i.e., those in an IMC and in aontrat).The following de�nition, borrowed from [5℄, states that, for any probabilityhosen in the interval of any probabilisti transition, it is always possible to hoseprobabilities in the intervals of all the remaining transitions outgoing from thesame state suh that the sum is 1.De�nition 4 (Delimited ontrat). A ontrat C = (Q,A,→, σ, t0) is delim-ited [5℄ i� ∀s ∈ Qp ∀s′ ∈ Q ∀p ∈ σ(s)(s′) : 1 − p ∈

∑

s′′∈Q\{s′} σ(s)(s′′).RR n° 7328



Probabilisti Contrats for Component-based Design 7Example 2. Figure 3(a) shows a delimited ontrat: for all p ∈ [0, 2, 0.3], wean �nd p′ ∈ [0.7, 0.8] suh that p + p′ = 1 and vie versa. Figure 3(b) showsa ontrat that is not delimited. However, we an ut [5℄ the redundant sub-interval [0.8,0.9℄ from the interval [0.7,0.9℄ to obtain the delimited ontrat ofFigure 3(a).
t2

t1

t0 [0.7, 0.8] b

[0.2, 0.3]

a

t2

t1

t0 [0.7, 0.9] b

[0.2, 0.3]

a

⌊s1
α
−→ s2⌋ = s1

α
−→ s2

⌊s1
p

99K s2⌋ = s1

[p,p]
99K s2(a) Delimited. (b) Non-delimited. () Lifting rules.Figure 3: Delimited ontrat and rules for lifting IMC to ontrat.We de�ne some useful operations related to the probability-interval in Fig-ure 4. Regarding summing up lower bounds and upper bounds, by De�nition 4[Delimited ontrat℄, the ase that summation of the lower bounds greater than1 annot our. When summing up the upper bounds, the eiling for a proba-bility value is 1, so if the summation is greater than 1, we let the result be 1.The k is a onstant salar.

⌈n⌉ = if n > 1 then 1 else n
[l1, u1] + [l2, u2] = [l1 + l2, ⌈u1 + u2⌉] [F1]
[l1, u1] ∗ [l2, u2] = [l1 ∗ l2, u1 ∗ u2] [F2]

k ∗ [l, u] = [k ∗ l, k ∗ u] [F3]
[l, u] ∗ k = [l ∗ k, u ∗ k] [F4]Figure 4: Operations on Probability Interval(s)3 Contrat Re�nementSystem synthesis involves re�ning a ontrat several times until an implementa-tion is obtained. We therefore de�ne formally the notion of ontrat re�nement.3.1 Re�nement and SatisfationWe �rst de�ne ontrat re�nement, and give thereafter some explanations.De�nition 5 (Contrat re�nement). Let C1 = (Q1,A,→1, σ1, s0) and C2 =

(Q2,A,→2, σ2, t0) be two ontrats. C1 re�nes C2 (written C1 ≤ C2) i� s0 ≤ t0,where ≤ ⊆ Q1 ×Q2 is the greatest relation s.t. for all s ≤ t we have:1. s = ⊤ =⇒ t = ⊤;2. If (s, t) ∈ Qa

1 × (Qa

2 ∪ {⊤}) then(a) ∀t′ 6= ⊤ ∈ Q2, (t
α
→2 t′) =⇒ (∃s′ ∈ Q1, s

α
→1 s′ ∧ s′ ≤ t′);RR n° 7328



Probabilisti Contrats for Component-based Design 8(b) ∀s′ ∈ Q1, (s
α
→1 s′) =⇒ (t = ⊤ ∨ ∃t′ ∈ Q2, t

α
→2 t′ ∧ s′ ≤ t′).3. If (s, t) ∈ Qp

1×Qp

2 then there exists a funtion δ : Q1×Q2 → [0, 1], whih,for eah s′ ∈ Q1, gives a probability distribution δ(s′) over Q2, suh thatfor every probability distribution f over Q1 with f(s′) ∈ σ1(s)(s
′) and

∀t′ ∈ Q2,
∑

s′∈Q1

f(s′)∗δ(s′)(t′) ∈ σ2(t)(t
′) and ∀s′ ∈ Q1 :

(

δ(s′)(t′) > 0 =⇒ s′ ≤ t′
)4. If (s, t) ∈ Qa

1 ×Qp

2 then ∃ta ∈ Qa

2 : t
>0
99K

+

2 ta ∧ s ≤ ta and ∀t′ ∈ Q2,
(

t
>0
99K2 t′ =⇒ s ≤ t′

).5. If (s, t) ∈ Qp

1 ×Qa

2 then ∃sa ∈ Qa

1 : s
>0
99K

+

1 sa ∧ sa ≤ t and ∀s′ ∈ Q1,
(

s
>0
99K1 s′ =⇒ s′ ≤ t

).In De�nition 5, ondition (1) ensures that C1 makes no stronger assumptionson the ontext than C2. Condition (2a) says that any transition aepted by C2must also be aepted by C1. However, unexpeted transitions (i.e. transitionsleading to ⊤) do not need to be present in the re�nement. That is why wehave ∀t′ 6= ⊤ in Condition (2a). On the other hand, ondition (2b) says thateah ation transition of C1 must also be enabled in C2, unless C2 is in the ⊤state. Condition (3), adapted from [9℄, deals with re�nement among probabilis-ti states. Intuitively, s ≤ t if there exists a funtion δ whih distributes theprobabilities of transitions from s to s′ onto the transitions from t to t′, suhthat the sum of the probability frations (i.e., f(s′) ∗ δ(s′)(t′)) is in the range
σ2(t)(t

′), as illustrated in Example 3 below. Condition (4) says that an ationstate s re�nes a probabilisti state t if it re�nes all ation states reahable witha path of positive probability from t. Finally, ondition (5) is symmetrial toondition (4).Before giving an example of re�nement, we de�ne the satisfation of a on-trat by an implementation (an IMC) as the re�nement of the ontrat by thelifted IMC (i.e., written in the form of a ontrat).De�nition 6 (Contrat satisfation). An IMC M satis�es a ontrat C (written
M |= C) i� ⌊M⌋ ≤ C.Example 3. We illustrate in Figure 5 how to hek ⌊Ms⌋ ≤ Cs, in partiular,
s1 ≤ t1. It is easy to hek s3 ≤ t2, s4 ≤ t2, and s2 ≤ t3. In Figure 5,dashed lines stand for non-negative distribution δ. Condition (3) in De�nition 5states that s1 ≤ t1 if, for eah suessor of s1, there is a funtion δ (i.e., threereal numbers d1, d2, and d3) suh that, for eah tuple (p2, p3, p4) satisfyingthe onstraints (1) to (4) in Figure 5, the onstraints (5) and (6) are implied.Condition (3) an be heked e�iently by requiring the set inlusion to hold forthe bounds of interval σ(s)(s′), using a linear programming solver. As δ(s′) isa probability distribution, we obtain for our example d1 = d2 = d3 = 1. (Notethat if we had s2 ≤ t2 as well, say, we had d4 from s2 to t2, we would haveanother onstraint d3 + d4 = 1.)Lemma 1 (Re�exivity of re�nement). For all ontrats C = (Q,A,→, σ, s0),
C ≤ C and for all states s ∈ Q, s ≤ s.RR n° 7328
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s1

s3

s2

s4 t2

t3

t1
d3

[0.9, 1]d2

[0, 0.1]

[0.2, 0.2]

d1

[0.1, 0.1]

[0.7, 0.7] (1) p2 ∈ [0.1, 0.1]
(2) p3 ∈ [0.7, 0.7]
(3) p4 ∈ [0.2, 0.2]
(4) p2 + p3 + p4 = 1
(5) p3 ∗ d1 + p4 ∗ d2 ∈ [0.9, 1]
(6) p2 ∗ d3 ∈ [0, 0.1]Figure 5: Left: Contrat re�nement s1 ≤ t1. Right: Constraints to be heked.Proof. De�nition 5 (1) and (2) are satis�ed. De�nition 5 (3) is satis�ed with

δ(_)(_) = 1.Lemma 2 (Transitivity of re�nement). For all ontrats C1, C2 and C3, if
C1 ≤ C2 and C2 ≤ C3, then C1 ≤ C3.Proof. See appendix A.1.Lemma 3 (Re�nement (≤) is a preorder). The relation ≤ over two ontratsis a partial order.Proof. The relation ≤ is re�exive (Lemma 1) and transitive (Lemma 2).De�nition 7 (Models of ontrats). The set of models of a ontrat C (written
M(C)) is the set of IMCs that satisfy C: M(C) = {M | M |= C}.De�nition 8 (Semantial equivalene). Contrats C1 and C2 are semantiallyequivalent (written C1 ≡ C2) i� M(C1) = M(C2).Lemma 4 (Monotoniity of satisfation). For all IMC M and ontrats C1and C2, if M |= C1 and C1 ≤ C2, then M |= C2.Proof.

M |= C1 and C1 ≤ C2

⇐⇒ (By De�nition 6 [Contrat satisfation℄ (|=))
⌊M⌋ ≤ C1 and C1 ≤ C2

⇒ (By Lemma 2 [Transitivity of ≤℄)
⌊M⌋ ≤ C2

⇐⇒ (By De�nition 6 [Contrat satisfation℄ (|=))
M |= C2Lemma 5 (Re�nement and model inlusion). For all ontrats C1 and C2,

C1 ≤ C2 =⇒ M(C1) ⊆ M(C2).Proof. (⇒) We prove it by ontradition. Suppose that C1 ≤ C2 6⇒ M(C1) ⊆
M(C2). Then there exists an IMC M suh that M |= C1 and C1 ≤ C2, but
M 6|= C2. By Lemma 4, for all IMCs M |= C1 and C1 ≤ C2, then M |= C2.We reah a ontradition. So our assumption is false. Thus, we have the desiredresult.Remark: the onverse of Lemma 5 does not hold, as shown by the ounterexample in Figure 6.We an see that there is no model for C1, i.e. M(C1) = ∅, while there aremodels for C2. Thus, we have M(C1) ⊆ M(C2). It is obvious that C1 6≤ C2.RR n° 7328
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s1
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s0

[0, 0.2]

[0.6, 0.7]

a

b

t2

t0

t1

[0.8, 1] d

[0, 0.2]

c

(C1) (C2)Figure 6: Counter example for Lemma 5.3.2 BisimulationWe adapt the usual notion of bisimulation to ontrats, and de�ne redution ofa ontrat with respet to bisimulation.De�nition 9 (Bisimulation ≃). Given a ontrat C = (Q,A,→, 99K, s0), let
≃ ⊆ Q×Q be the greatest relation suh that if s ≃ t then:1. s = ⊤ ⇐⇒ t = ⊤;2. If (s, t) ∈ Qa ×Qa then(a) ∀α ∈ A ∀s′ ∈ Q, (s

α
→ s′ =⇒ ∃t′ ∈ Q, (t

α
→ t′ ∧ s′ ≃ t′))(b) ∀α ∈ A ∀t′ ∈ Q, (t

α
→ t′ =⇒ ∃s′ ∈ Q, (s

α
→ s′ ∧ s′ ≃ t′))3. If (s, t) ∈ Qp ×Qp then(a) there is a funtion δ : Q×Q → [0, 1], whih for eah s′ ∈ Q gives aprobability distribution δ(s′) on Q, s.t. for every probability distribu-tion f over Q with f(s′) ∈ σ(s)(s′) and ∀t′ ∈ Q

∑

s′∈Q

f(s′)∗δ(s′, t′) ∈ σ(t)(t′) and ∀s′ ∈ Q :
(

δ(s′, t′) > 0 =⇒ s′ ≃ t′
)(b) symmetri to (3a);4. If (s, t) ∈ Qa × Qp then ∃ta ∈ Qa : t

>0
99K

+

ta ∧ s ≃ ta and ∀t′ ∈ Q,
t

>0
99K t′ =⇒ s ≃ t′;5. If (s, t) ∈ Qp × Qa then ∃sa ∈ Qa : s

>0
99K

+

sa ∧ sa ≃ t and ∀s′ ∈ Q,
s

>0
99K s′ =⇒ s′ ≃ t.In De�nition 9, ondition (2) is the standard de�nition for bisimulation.Conditions (3a) and (3b) deal with the probabilisti transitions. Finally, ondi-tions (4) and (5) say that an ation state is bisimilar with a probabilisti state ifit is bisimilar with all its suessors with non-zero probability, and there existsat least one ation state that is reahable from this probabilisti state.De�nition 10 (Redution modulo ≃). Let C = (Q,A,→, σ, s0) be a ontrat.For all s ∈ Q, let Cs = {q ∈ Q | s ≃ q} be the equivalene lass of s. Let

C = {Cs | s ∈ Q}. The redued ontrat, written C, is (C,A,→≃, σ≃, Cs0
)suh that, ∀s = {s1, . . . , sm}, t = {t1, . . . , tn} ∈ C, we have: (1) s

a
→≃ t i�

∃i, j : si
a
→ tj , and (2) σ≃(s, t) =

∑

1≤j≤n σ(s1, tj)).RR n° 7328



Probabilisti Contrats for Component-based Design 11Notie that an equivalene lass may ontain both ation and probabilis-ti states. By De�nition 9, exept for probabilisti transitions with probabilityinterval [0, 0], either all transitions leaving an equivalene lass are ation tran-sitions and De�nition 9 (2) applies, or they are all probabilisti transitions andDe�nition 9 (3) applies as follows. For eah probabilisti state si ∈ s, the prob-abilities of transitions to states tj ∈ t are summed up (it does not matter whihof the transitions is taken sine all the suessors tj are equivalent). This sumis the transition probability from si to some state in t. By de�nition of ≃, thesum is the same for all si ∈ s, thus we pik σ(s1, tj).Example 4. We an redue the ontrat C2 of Figure 9() by ombining thebisimilar states t2 and t3 into one: t1
[0.2,0.6]
99K {t2, t3}.Lemma 6 (Redution and re�nement). For all delimited ontrats C, C ≤ Cand C ≤ C.Proof. See appendix A.2.Lemma 7 (Re�nement and equivalene). For all ontrats C1 and C2, C1 ≤ C2and C2 ≤ C1 implies C1 ≡ C2.Proof.

C1 ≤ C2 and C2 ≤ C1

⇒ (By Lemma 5 [Re�nement and model inlusion℄)
∀M, M |= C1 ⇒ M |= C2 and ∀M, M |= C2 ⇒ M |= C1

⇐⇒ (By Logi: (∀m, P (m) ⇒ Q(m) ∧ ∀m, Q(m) ⇒ P (m))
≡ ∀m, P (m) ⇐⇒ Q(m))
∀M, M |= C1 ⇐⇒ M |= C2

⇐⇒ (By De�nition 8 [Semantial equivalene℄ (≡))
C1 ≡ C2Lemma 8 (Model equivalene). For all delimited ontrats C, C ≡ C.Proof. By Lemma 6 and Lemma 7 [Re�nement and Equivalene℄.3.3 Contrat AbstrationThe need of abstration arises naturally in ontrat frameworks. We abstratations in A\B that are not relevant by renaming them into internal τ ations.The ontrat over the alphabet B ∪ {τ} is then projeted on the sub-alphabet

B by using the standard determinization algorithm (see e.g. [1℄).De�nition 11 (Projetion). Let C = (Q,A,→1, σ, s0) be a ontrat and B ⊆ Asuh that for any q ∈ Qa and a ∈ A, if q
a
→1 ⊤ then a ∈ B. Let C′ =

(Q,B ∪ {τ},→2, σ, s0) be the ontrat where all transition labels in A \ B arereplaed with τ . The projetion of C on B (written πB(C)) is obtained by τ-elimination (determinization) of C′.Example 5. In Figure 2, if we do not are how the implementation handlesfailure ases, we an hek that πAs\{handle}(Ms) |= Cs.RR n° 7328



Probabilisti Contrats for Component-based Design 12Lemma 9 (Abstration and re�nement). For all ontrats C1 = (Q1,A,→1

, 99K1, s0), C2 = (Q2,A,→2, 99K2, t0) and B ⊆ A, if C1 ≤ C2, then πB(C1) ≤
πB(C2).Proof. See appendix A.3.4 Contrat CompositionWe introdue two omposition operations for ontrats: parallel omposition ||,parametrized with an interation set I, and onjuntion ∧ (shared re�nement).4.1 Parallel Composition of ContratsParallel omposition allows the designer to build omplex models from simpleromponents in a stepwise and hierarhial manner. In order to reason aboutthe omposition of omponents at the ontrat level, we introdue the parallelomposition of ontrats. As in the BIP omponent framework [7℄, parallel om-position is parametrized with a set of interations, where eah interation is aset of omponent ations ourring simultaneously. For instane, an interationset {a, a|b, c} says that ation a an interleave or synhronize with b; ation bmust synhronize with a; ation c is a singleton interation that always inter-leaves. The symbol � |� is ommutative, whih means that a|b is idential to b|a.In Figure 7, the interations α and β are of the form c, a|b, or a|b|d, and so on.De�nition 12 (Parallel omposition of ontrats). Let C1 = (Q1,A1,→1, 99K1

, s0) and C2 = (Q2,A2,→2, 99K2, t0) be two ontrats. The parallel ompositionof C1 and C2 on interation set I (written C1||IC2) is the ontrat (

Q, I,→, 99K,

(s0, t0)
) where:1. Q = Q1×Q2 with ⊤ = (Q1×{⊤2})∪({⊤1}×Q2) � that is, ⊤ of C1||IC2is an aggregate state reahed as soon as C1 or C2 reahes its ⊤i state �,
Qa = Qa

1 ×Qa

2, and Qp = Q \ (Qa ∪ ⊤);2. → is the least relation satisfying the rules [R1℄�[R3℄ in Figure 7; and3. 99K is the least relation satisfying the rules [R4℄�[R6℄ in Figure 7.
q1

α
→1 q′1 α ∈ I q2 ∈ Qa

2

(q1, q2)
α
−→ (q′1, q2)

[R1]
q2

α
→2 q′2 α ∈ I q1 ∈ Qa

1

(q1, q2)
α
−→ (q1, q

′
2)

[R2]

q1
α
→1 q′1 q2

β
→2 q′2 α|β ∈ I

(q1, q2)
α|β
−−→ (q′1, q

′
2)

[R3]
q1

[p1,p2]
99K 1 q′1 q2

[p3,p4]
99K 2 q′2

(q1, q2)
[p1∗p3,p2∗p4]

99K (q′1, q
′
2)

[R4]

q1
P

99K1 q′1 q2 ∈ Qa
2

(q1, q2)
P

99K (q′1, q2)
[R5]

q2
P

99K2 q′2 q1 ∈ Qa
1

(q1, q2)
P

99K (q1, q
′
2)

[R6]Figure 7: Rules for the parallel omposition of ontrats.RR n° 7328
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(t2, u9)

(t1, u9)

(t2, u3)

(t1, u3)
(t0, u6)

(t0, u8)

(t3, u9)

(t0, u1)

(t0, u0)

(t0, u2)

(t0, u5)

(t0, u4)

(t0, u7)

(t3, u3)

[0.02, 0.02]

[0.9, 1]

[0, 0.1]

req′|del′

rec

[0, 0.05]

[0.95, 1]

fail2

[0, 0.1]

fail1

[0.9, 1]

res′|rec′

res′|rec′

req′|del′

del

[0.98, 0.98]Figure 8: Parallel omposition of Cs and Cℓ.Rules [R1℄ to [R3℄ are the usual parallel omposition rules for interative pro-esses, while Rule [R4℄ is similar to the typial parallel omposition for MarkovChains but on probability intervals. Finally, Rules [R5℄ and [R6℄ state thatprobabilisti transitions, usually modeling hidden internal behavior, have prior-ity over ation transitions.Example 6. Figure 8 illustrates the parallel omposition of ontrats Cs (fromFigure 2(b)) and Cℓ = ⌊Mℓ⌋ (where Mℓ is given in Figure 1(b)), with I =
{rec, del, req′|del′, res′|rec′, fail1 , fail2 }. The omposed ontrat Cs ||I Cℓ statesthat a failure in the Link omponent does not prevent it from ontinuing todeliver the request req′ to the Server, and reeiving the response res′ from theServer, but the failure prevents it from delivering the response res′ bak to theClient.We end the setion on parallel omposition with some nie properties.Lemma 10 (Commutativity of ||I). For all ontrats C1, C2 and interationset I, C1||IC2 = C2||IC1.Proof. It is obvious as rules for parallel omposition are symmetrially de�ned.Theorem 1 (Congruene of re�nement for ||I). For all ontrats C1, C2, C3, C4and an interation set I, if C1 ≤ C2 and C3 ≤ C4, then C1||I C3 ≤ C2||I C4.Proof. See appendix B.1.Theorem 2 (Independent implementability). For all IMCs M, N , ontrats
C1, C2, and interation set I, if M |= C1 and N |= C2, then M ||IN |= C1||IC2.Proof.

M |= C1 and N |= C2

⇐⇒ (By de�nition of |=)
⌊M⌋ ≤ C1 and ⌊N⌋ ≤ C2

⇒ (By Theorem 1 [Congruene for parallel omposition℄)
⌊M⌋||I⌊N⌋ ≤ C1||IC2Theorem 3 (Redution and parallel omposition). For all delimited ontrats

C1 and C2, C1 ||I C2 ≡ C1 ||I C2.
RR n° 7328



Probabilisti Contrats for Component-based Design 14Proof.
(By Lemma 6 [Redution and Re�nement℄)
C1 ≤ C1 and C2 ≤ C2 and C1 ≤ C1 and C2 ≤ C2

⇒ (By Theorem 1 [Congruene for parallel omposition℄)
C1||IC2 ≤ C1||IC2 and C1||IC2 ≤ C1||IC2

⇒ (By Lemma 7 [Re�nement and Equivalene℄)
C1||IC2 ≡ C1||IC24.2 Conjuntion of ontratsA single omponent may have to satisfy several ontrats that are spei�edindependently, eah of them speifying di�erent requirements on the omponent,suh as safety, reliability, and quality of servie aspets. Therefore, the ontratsmay use di�erent, possibly overlapping, sub-alphabets of the omponent. Theonjuntion of ontrats omputes a ommon re�nement of all ontrats. Priorto onjuntion, we de�ne similarity of ontrats as a test whether a ommonre�nement exists.De�nition 13 (Similarity (∼)). Let C1 = (Q1,A1,→1, 99K1, s0) and C2 = (Q2,

A2,→2, 99K2, t0) be two ontrats. ∼ ⊆ Q1×Q2 is the largest relation suh that
∀(s, t) ∈ Q1 ×Q2, s ∼ t i� (s = ⊤∨ t = ⊤) or onditions (1) to (4) below hold:1. If (s, t) ∈ Qa

1 ×Qa

2 then(a) for all s′ ∈ Q1, if s
a
→ s′, then either t

a
→ t′ for some t′ ∈ Q2 and

s′ ∼ t′, or a 6∈ A2 and s′ ∼ t; and(b) for all t′ ∈ Q2, if t
a
→ t′, then either s

a
→ s′ for some s′ ∈ Q1 and

s′ ∼ t′, or a 6∈ A1 and s ∼ t′;2. If (s, t) ∈ Qp

1 ×Qp

2 then(a) for all s′ ∈ Q1, if s
P1

99K s′, then t
P2

99K t′ for some t′ ∈ Q2 with
P1 ∩ P2 6= ∅ and (s′ ∼ t′ ∨ 0 ∈ P1 ∩ P2);(b) for all t′ ∈ Q2, if t

P2

99K t′, then s
P1→ s′ for some s′ ∈ Q1 with

P1 ∩ P2 6= ∅ and (s′ ∼ t′ ∨ 0 ∈ P1 ∩ P2);3. If (s, t) ∈ Qa

1×Qp

2 then for all t′ ∈ Q2 with t
P

99K2 t′, (s ∼ t′ ∨ 0 ∈ P ).4. If (s, t) ∈ Qp

1×Qa

2 then for all s′ ∈ Q1 with s
P

99K1 s′, (s′ ∼ t ∨ 0 ∈ P );Finally, C1 and C2 are similar, written C1 ∼ C2, i� s0 ∼ t0.
Pi in De�nition 13 refers to a probabilisti interval in the form of [ℓi, ui]. Anystate is similar to the top state ⊤ (where the ontrat does not onstrain theimplementation in any way). Two ation states are similar if they agree on theenabled ations in the ommon alphabet, and the suessor states are similaragain. Two probabilisti states are similar if the probabilisti transitions anbe mathed suh that the intervals overlap, and the suessor states are eithersimilar, or an be made unreahable by re�ning the probability interval to [0, 0].RR n° 7328



Probabilisti Contrats for Component-based Design 15De�nition 14 (Unambiguous ontrat). A ontrat C = (Q,A,→, 99K, s0) isunambiguous i� for all r, s, t ∈ Q, if r
>0
99K s ∧ r

>0
99K t ∧ s ∼ t, then s = t.A ontrat is unambiguous if the reahable suessor states of any proba-bilisti state are pairwise non-similar.

s1

s3

s2

s5

s4

s7

s6

[0, 0.4]

[0, 0.3]

b
[0.8, 1]

[0.7, 1]
b

[0.4, 1]

[0, 0.6]

a

a

s1

s3

s2

b

a

[0.5, 1]

[0, 0.5]

t2

t3

t4

t1

[0, 0.2]

[0.2, 0.4]

a

a

[0.4, 0.8]
b(a) Ca (b) C1 () C2Figure 9: (a) An ambiguous ontrat Ca; (b,) Two non-similar ontrats C1and C2.Example 7. In Figure 9(a), the ontrat Ca is ambiguous beause s2 ∼ s3(highlighted in gray) but s2 6= s3.We are now ready to de�ne the onjuntion of ontrats.De�nition 15 (Conjuntion of ontrats (∧)). For unambiguous ontrats C1 =

(Q1,A1,→1, 99K1, s0) and C2 = (Q2,A2,→2, 99K2, t0) suh that C1 and C2 aresimilar, let C1 ∧ C2 be the ontrat (

Q1 × Q2,A1 ∪ A2,→, 99K, (s0, t0)
) where

⊤ = (⊤1,⊤2) and1. → is the least relation satisfying the rules [C1℄ � [LiftR℄ in Figure 10,and2. 99K is the least relation satisfying the rules [C3℄ � [C4R℄ in Figure 10(where for all other probabilisti transitions (q1, q2)
P

99K (q′1, q
′
2), P =

[0, 0]).Rule [C1℄ requires the ontrats to agree on ation transitions over theommon alphabet. Aording to rule [C2L℄ (resp. [C2R℄), the onjuntionbehaves like the �rst (resp. seond) ontrat as soon as the other ontrat isin⊤. Rules [LiftL℄ and [LiftR℄ allow the interleaving of ation transitions thatare not in the ommon alphabet. Rules [C3℄ � [C4R℄ de�ne the probabilistitransitions whose suessor states are similar. For non-similar suessor states,the probability interval is re�ned to [0, 0], aording to De�nition 15.Example 8. Figure 11 shows three ontrats for the Link omponent: Cℓ1 spe-i�es that the implementation should reeive a request (req) from the Client anddeliver it to the Server (del′); Cℓ2 spei�es that the implementation should re-eive a response (rec′) from the Server and deliver it to the Client (del); Cℓ3 re-quires the response (rec′) reeived from the Server to our after the request(del′) delivered to the Server. We an verify that Mℓ |= (Cℓ1∧Cℓ3)∧ (Cℓ2∧Cℓ3)(where Mℓ is in Figure 1(b)).RR n° 7328
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q1

α
→1 q′1 q2

α
→2 q′2

(q1, q2)
α
−→ (q′1, q

′
2)

[C1]

q1
α
→1 q′1

(q1,⊤)
α
−→ (q′1,⊤)

[C2L]
q2

α
→1 q′2

(⊤, q2)
α
−→ (⊤, q′2)

[C2R]

q1
α
→1 q′1 α 6∈ A2 q2 ∈ Qa

2

(q1, q2)
α
→ (q′1, q2)

[LiftL]

q2
α
→2 q′2 α 6∈ A1 q1 ∈ Qa

1

(q1, q2)
α
→ (q1, q

′
2)

[LiftR]

q1
P1

99K1 q′1 q2
P2

99K2 q′2 q′1 ∼ q′2

(q1, q2)
P1∩P2

99K (q′1, q
′
2)

[C3]

q1
P

99K1 q′1 q2 ∈ Qa
2 ∪ {⊤}

q′1 ∼ q2

(q1, q2)
P

99K (q′1, q2)

[C4L]
q2

P
99K2 q′2 q1 ∈ Qa

1 ∪ {⊤}
q1 ∼ q′2

(q1, q2)
P

99K (q1, q
′
2)

[C4R]Figure 10: Rules for onjuntion of ontrats.
s1

s0

s3

s2

⊤[0.02, 0.02]

del′

fail1

rec [0.98, 0.98]

⊤

t2

t3

t0

t1

fail2

rec′ [0.95, 1]

[0, 0.05]

del(a) Cℓ1 (b) Cℓ2() Cℓ3

u1u0
del′

rec′Figure 11: Example: Conjuntion of Contrats
⊤

t2

t3

t0

t1
[0, 0.5]

[0, 0.1]
a

a

a

[0, 0.4]
v2

v3

⊤

(t0, t0)

(t1, t1)
[0, 0.1]

a

[0, 1]

a
a

[0, 0.7](a) Ambiguous ontrat Cb (b) Cb ∧ Cb() A model Mb

s1

s0

s3

s2

s5s4
b

0.2 a

a a
0.8Figure 12: Example where Mb |= Cb ∧ Cb but Mb 6|= Cb.Example 9. As a ontrat that is not in redued form is not unambiguous,ontrats should be redued before performing onjuntion. In Figure 9 (left),ontrat C2 is non unambiguous, but t2 ≃ t3. If we redue C2 by applyingRR n° 7328



Probabilisti Contrats for Component-based Design 17De�nition 10, we get t1
[0.2,0.6]
99K {t2, t3}

a
→ {t2, t3}. The redued ontrat isunambiguous and s1 ∼ t1, suh that onjuntion yields a ommon re�nement of

C1 and C2.Theorem 4 (Conjuntion is a ommon re�nement). For all ontrats C1 and
C2, πAi

(C1 ∧ C2) ≤ Ci for i = 1, 2.Proof. See appendix B.2.Theorem 5 (Soundness of onjuntion). For any IMC M and unambiguousontrats Ci with alphabets Ai, i = 1, 2, suh that C1 ∼ C2, if M |= C1 ∧ C2then πAi
(M) |= Ci, i = 1, 2.Proof. See appendix B.2.Example 10. Figure 12 motivates the requirement of onjuntion (De�ni-tion 15) for unambiguous ontrats. The resulting ontrat Cb ∧ Cb is reduedsuh that the model relation an be seen easily. The node v2 denotes the equiv-alent lass {(s1, s2), (s2, s1), (s2, s2)}; the node v3 denotes the equivalent lass

{(s1, s3), (s2, s3), (s3, s1), (s3, s2), (s3, s3)}. As t1 ∼ t2 ∼ t3, dupliated intervalslead to an unsound result.It is interesting to note the similarity of onjuntion with disrete ontrollersynthesis [13℄, in the sense that onjuntion is a re�nement of both ontratsmaking bad states (i.e., pairs of states where both ontrats are ontradi-tory) unreahable. In this analogy, both ation transitions and probabilistitransitions with stritly positive intervals amount to unontrollable transitions,whereas transitions whose probability interval ontains 0 amount to ontrollabletransitions that an be re�ned to [0, 0] so as to make bad states unreahable.5 Case StudyWe study a dependable omputing system with time redundany. The systemspei�ation is expressed by the ontrat CS of Figure 13 (top left), whihspei�es that the omputation comp should have a suess probability of atleast 0.999. If the omputation fails, then nothing is spei�ed (state ⊤).The proessor P the system is running on is spei�ed by the ontrat CP ofFigure 13 (top right). Following an exeution request exe, either the proessorsueeds and replies with ok (with a probability at least p), or fails and replieswith nok (with a probability at most 1 − p). The failure rates for suessiveexeutions are independent. The probability p is a parameter of the ontrat.We plae ourselves in a setting where the reliability level guaranteed by CPalone (as expressed by p) annot ful�ll the requirement of CS (that is, 0.999),and hene some form of redundany must be used. We propose to use timeredundany, as expressed by the ontrat CT of Figure 13 (bottom). Eahomputation comp is �rst launhed on the proessor P (exe′), either followedby a positive (ok′) or negative (nok′) answer from P . In the latter ase, theexeution is launhed a seond time, therefore implementing time redundany.The ontrat CT �nally answers with success if either exeution is followed by
ok′, or with fail is both exeutions are followed by nok′.RR n° 7328
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[0, 0.001]

s2

fail

⊤
CS

success

s0

comp

[0.999, 1]

s1

s3

p1

CP ok

p0

[p, 1]

[0, 1 − p]

p2

p3

nok

exe

CT

q2 q4

q6

q0 q1 q3

q5

ok′

exe′ nok′ exe′

nok′

ok′

success

comp

failFigure 13: (top left) Spei�ation CS ; (top right) Proessor ontrat CP ;(bottom) Time redundany ontrat CT .In terms of omponent-based design for reliability, we wonder what is theminimum value of p that guarantees the reliability level of CS . To ompute thisminimum value, we �rst ompute the parallel omposition CT ||ICP , with theinteration set I = {comp, exe|exe′, ok|ok′, nok|nok′, success, fail}. The redu-tion modulo bisimulation of this parallel omposition is shown in Figure 14 (top),where the interations exe|exe′, ok|ok′, and nok|nok′ have been replaed for on-iseness by exe, ok, and nok, respetively. We all this new ontrat CT ||P . Wethen ompute the projetion of CT ||P onto the set B = {comp, success, fail}.The result Cπ = πB(CT ||P ) is shown in Figure 14 (bottom left).
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q1 q2

[p, 1]
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q6 q7

[0, 1 − p]
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CT ||P = CT ||ICP
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[p, 1]

[0, 1 − p]

q′
1

q′
2

[p, 1]

q′
3

[0, 1 − p]

q′
4

Cπ = πB(CT ||P )

success

fail q′′
1

q′′
0

comp
[2p − p2, 1] q′′

2

q′′
3

C̃π

[0, (1 − p)2]

success

failFigure 14: Parallel omposition CT ||P ; Projetion Cπ ; Transitive losure C̃π.We are thus faed with a ontrat Cπ having sequenes of probabilisti tran-sitions; more preisely, sine some probabilisti states have several outgoingtransitions, we have DAGs of probabilisti transitions. We therefore omputeRR n° 7328



Probabilisti Contrats for Component-based Design 19the transitive losure for eah suh DAG: that is, for eah sequene of proba-bilisti transitions from the initial state of the DAG (e.g., q′1 in Cπ) to one ofits �nal states (e.g., q′2 and q′4 in Cπ), we ompute the equivalent probabilistitransition. Without entering into the details of this omputation, we show theresulting ontrat C̃π in Figure 14 (bottom right).The last step involves heking under whih ondition on p the ontrat C̃πre�nes the spei�ation CS . We have C̃π ≤ CS ⇔ (1−p)2 ≤ 0.001 ⇔ p ≥ 0.968.This means that, with time redundany and a proessor with a reliability levelof at least 0.969, we are able to ensure an overall reliability level of 0.999.6 DisussionWe have introdued a design framework based on probabilisti ontrats, andproved essential properties for the use in omponent-based design. Our de�ni-tion of ontrats is based on the ideas from [9, 14, 5℄, although the frameworksin [9, 5℄ do not support interations between ontrats.Shared re�nement of interfaes, and onjuntion of modal spei�ations overpossibly di�erent alphabets have been de�ned in [4, 12℄. A framework overmodal assume/guarantee-ontrats is introdued in [6℄, for whih both paral-lel omposition and onjuntion are de�ned. Probabilisti assume/guarantee-ontrats have also been introdued in [3℄ in terms of traes. [10℄ introduesa ompositional framework based on ontinuous time IMCs, adopting a similarinteration model as done in this paper. This framework supports abstra-tion, parallel and symmetri omposition, but not onjuntion. The reentlyintrodued Constraint Markov Chains (CMC) [2℄ generalize Markov Chains byintroduing onstraints on state valuations and transition probability distribu-tions, aiming at a similar goal of providing a probabilisti omponent-baseddesign framework. Whereas CMCs do not support expliit interations amongomponents, they allow the designer to expressively speify onstraints on prob-ability distributions. Conjuntion is shown to be sound and omplete in thisframework.Future work will enompass implementing the framework and arrying outase studies. A partiularly interesting appliation would be the design of adap-tive systems where the probabilisti behavior of omponents may hange overtime, while the overall system must at any time satisfy a set of safety, reliability,and quality of servie ontrats.Referenes[1℄ A.V. Aho, R. Sethi, and J.D. Ullman. Compilers � Priniples, Tehniques,and Tools. Addison Wesley, 1986.[2℄ B. Caillaud, B. Delahaye, K.G. Larsen, A. Legay, M. Pedersen, and A. Wa-sowski. Compositional design methodology with onstraint markov hains.Researh Report 6993, INRIA, 2009.[3℄ B. Delahaye and B. Caillaud. A model for probabilisti reasoning on as-sume/guarantee ontrats. Researh Report 6719, INRIA, 2008.RR n° 7328



Probabilisti Contrats for Component-based Design 20[4℄ L. Doyen and T. Petrov T.A. Henzinger, B. Jobstmann. Interfae theorieswith omponent reuse. In Pro. EMSOFT'08, pages 79�88. ACM, 2008.[5℄ H. Feher, M. Leuker, and V. Wolf. Don't know in probabilisti systems.In Model Cheking Software, LNCS, pages 71�88. Springer, 2006.[6℄ G. Gössler and J.-B. Ralet. Modal ontrats for omponent-based design.In Pro. SEFM'09, pages 295�303. IEEE, 2009.[7℄ G. Gössler and J. Sifakis. Composition for omponent-based modeling.Siene of Computer Programming, 55(1-3):161�183, 3 2005.[8℄ H. Hermanns. Interative Markov Chains: The Quest for Quanti�ed Qual-ity, volume 2428 of LNCS. Springer, 2002.[9℄ B. Jonsson and K.G. Larsen. Spei�ation and re�nement of probabilistiproesses. In LICS, pages 266�277. IEEE Computer Soiety, 1991.[10℄ J.-P. Katoen, D. Klink, and M.R. Neuhäuÿer. Compositional abstrationfor stohasti systems. In Pro. FORMATS'09, pages 195�211, 2009.[11℄ B. Meyer. Advanes in Objet-Oriented Software Engineering, hapter De-sign by Contrat, pages 1�50. Prentie Hall, 1991.[12℄ J.-B. Ralet, E. Badouel, A. Benveniste, B. Caillaud, and R. Passerone.Why modalities are good for interfae theories? In Pro. ACSD'09. IEEE,2009.[13℄ P.J. Ramadge and W.M. Wonham. Supervisory ontrol of a lass of disreteevent proesses. SIAM J. Control and Optimization, 25(1), 1987.[14℄ W. Yi. Algebrai reasoning for real-time probabilisti proesses with un-ertain information. In FTRTFT, volume 863 of LNCS, pages 680�693.Springer, 1994.A Contrat Re�nementA.1 Transitivity of Re�nementLemma 2 [Transitivity of ≤℄ For all ontrats C1, C2 and C3, if C1 ≤ C2 and
C2 ≤ C3, then C1 ≤ C3.Proof. Let

C1 = (Q1,A1,→1, σ1, r0)
C2 = (Q2,A2,→2, σ2, s0)
C3 = (Q3,A3,→3, σ3, t0)To show C1 ≤ C2 and C2 ≤ C3 implies C1 ≤ C3, by De�nition 5, we wantto show r0 ≤ s0 and s0 ≤ t0 implies r0 ≤ t0.That is, for all r ∈ Q1, s ∈ Q2, t ∈ Q3, we want to show that

r ≤ s ∧ s ≤ t ⇒ r ≤ tRR n° 7328



Probabilisti Contrats for Component-based Design 21Let us �rst onsider onditions (1) and (2) in De�nition 5 [Contrat Re�ne-ment℄. We have the following o-indution hypothesis: for all r′, s′, t′ whih arenext states of r, s, t respetively,
r′ ≤ s′ ∧ s′ ≤ t′ ⇒ r′ ≤ t′ [H1℄(1)

r = ⊤
⇒ (By De�nition 5 (1))

s = ⊤
⇒ (By De�nition 5 (1))

t = ⊤(2a) For all t′ 6= ⊤ ∈ Q3, we have:
t

a
→3 t′

⇒ (By De�nition 5 (2a))
s

a
→2 s′ for some s′ and s′ ≤ t′

⇒ (s′ ≤ t′ implies s′ 6= ⊤, so by De�nition 5 (2a))
r

a
→1 r′ for some r′ and r′ ≤ s′ and s′ ≤ t′

⇒ (By o-indution hypothesis [H1℄)
r

a
→1 r′ and r′ ≤ t′(2b) For all r′ 6= ⊤ ∈ Q1, we have:
r

a
→1 r′

⇒ (By De�nition 5 (2b))
s = ⊤ or s

a
→2 s′ for some s′ and r′ ≤ s′There are two ases to onsider:� Case s = ⊤.
s = ⊤

⇒ (By De�nition 5 (1))
t = ⊤Sine any state re�nes ⊤, we have r ≤ ⊤.� Case s 6= ⊤.

s
a
→2 s′ for some s′ and r′ ≤ s′

⇒ (By De�nition 5 (2b))
t = ⊤ or t

a
→3 t′ for some t′ and s′ ≤ t′ and r′ ≤ s′There are two subases to onsider:* Subase t = ⊤. Sine any state re�nes ⊤, we have r ≤ ⊤.* Subase t 6= ⊤.

t
a
→3 t′ for some t′ and s′ ≤ t′ and r′ ≤ s′

⇒ (By o-indution hypothesis [H1℄)
t

a
→3 t′ for some t′ and r′ ≤ t′RR n° 7328



Probabilisti Contrats for Component-based Design 22(3) Now, let us onsider the De�nition 5 [Contrat Re�nement℄ (3). Given
C1 ≤ C2, by De�nition 5 (3), we know there is a probability distribution
δ12 ⊂ Q1 ×Q2 × [0, 1], suh that, ∀f1 ∈ σ1(r), s

′ ∈ Q2,
(A)

∑

r′∈Q1
(f1(r

′) ∗ δ12(r
′)(s′)) ∈ σ2(s)(s

′), and δ(r′)(s′) > 0 ⇒ r′ ≤ s′Given C2 ≤ C3, by De�nition 5 [Contrat Re�nement℄ (3), we know thereis a probability distribution δ23 ⊂ Q2 × Q3 × [0, 1], suh that, ∀f2 ∈
σ2(s), t

′ ∈ Q3,
(B)

∑

s′∈Q1
(f2(s

′) ∗ δ23(s
′)(t′)) ∈ σ3(t)(t

′), and δ(s′)(t′) > 0 ⇒ s′ ≤ t′We want to establish a δ13 ⊂ Q1 × Q3 × [0, 1] suh that De�nition 5 (3)holds. Let δ13 be
δ13(r

′)(t′) =
∑

s′∈Q2

δ12(r
′)(s′) ∗ δ23(s

′)(t′)We want to hek that δ13 satis�es the ondition De�nition 5 (3) for all
f1 ∈ δ1(r), t

′ ∈ Q3.
∑

r′∈Q1
(f1(r

′) ∗ δ13(r
′)(t))

= (By de�nition of δ13)
∑

r′∈Q1
(f1(r

′) ∗
∑

s′∈Q2
δ12(r

′)(s′) ∗ δ23(s
′)(t′))

= (By distribution of ∗ over +)
∑

r′∈Q1

∑

s′∈Q2
f1(r

′) ∗ δ12(r
′)(s′) ∗ δ23(s

′)(t′)
= (By ommutativity and assoiativity of +)

∑

s′∈Q2

∑

r′∈Q1
f1(r

′) ∗ δ12(r
′)(s′) ∗ δ23(s

′)(t′)
= (By (A), ∃f2 ∈ σ2(s), f2(s

′) =
∑

r′∈Q1
f1(r

′) ∗ δ12(r
′)(s′))

∑

s′∈Q2
f2(s

′) ∗ δ23(s
′)(t′)

∈ (By (B), whih holds for all f2 ∈ σ2(s))
σ3(t)(t

′)So we have the desired result ∑

r′∈Q1
(f1(r

′) ∗ δ13(r
′)(t)) ∈ σ3(t)(t

′).(4) If r ∈ Qa
1 and t ∈ Qp

3 and r ≤ s and s ≤ t, then there are two subases toonsider: s ∈ Qa
2 and s ∈ Qp

2.� Subase s ∈ Qa
2 .

r ≤ s and s ≤ t
⇐⇒ (By De�nition 5 [Contrat re�nement℄ (4))

r ≤ s and ∃ta ∈ Qa
3 : t

>0
99K

+

3 ta ∧ s ≤ ta and
∀t′ ∈ Q3,

(

t
>0
99K3 t′ =⇒ s ≤ t′

)

⇐⇒ (By o-indution hypothesis [H1℄ r′ = r, s′ = s, t′ = ta)

r ≤ s and ∃ta ∈ Qa
3 : t

>0
99K

+

3 ta ∧ r ≤ ta and
∀t′ ∈ Q3,

(

t
>0
99K3 t′ =⇒ s ≤ t′

)

⇐⇒ (By o-indution hypothesis [H1℄ r′ = r, s′ = s, t′ = t′)

∃ta ∈ Qa
3 : t

>0
99K

+

3 ta ∧ r ≤ ta and
∀t′ ∈ Q3,

(

t
>0
99K3 t′ =⇒ r ≤ t′

)

⇐⇒ (By De�nition 5 [Contrat re�nement℄ (4))
r ≤ tRR n° 7328



Probabilisti Contrats for Component-based Design 23� Subase s ∈ Qp
2.

r ≤ s and s ≤ t
⇐⇒ (By De�nition 5 [Contrat re�nement℄ (4))

∃sa ∈ Qa
2 : s

>0
99K

+

2 sa ∧ r ≤ sa and
∀s′ ∈ Q2,

(

s
>0
99K2 s′ =⇒ r ≤ s′

) and s ≤ t
⇐⇒ (By De�nition 5 [Contrat re�nement℄ (3))

(1) ∃sa ∈ Qa
2 : s

>0
99K

+

2 sa ∧ r ≤ sa and
(2) ∀s′ ∈ Q2,

(

s
>0
99K2 s′ =⇒ r ≤ s′

) and
(∃δ : Q2 ×Q3 → [0, 1], ∀f ∈ σ3(s) and
(3) ∀t′ ∈ Q3,

∑

s′∈Q2
(f(s′) ∗ δ(s′)(t′)) ⊆ σ3(t)(t

′)and ∀s′ ∈ Q2 :
(

δ(s′)(t′) > 0 =⇒ s′ ≤ t′
)

)
⇐⇒ (By (3) and De�nition 5 (4,5), we have (4); by (2), (3) ando-indution hypothesis [H1℄ where r′ = r, s′ = s′, t′ = t′,we have (5))

(4) ∃ta ∈ Qa
3 : t

>0
99K

+

3 ta ∧ sa ≤ ta and
(5) ∀t′ ∈ Q3,

(

t
>0
99K3 t′ =⇒ r ≤ t′

)

⇐⇒ (By o-indution hypothesis [H1℄ where r′ = r, s′ = sa, t′ = ta)

∃ta ∈ Qa
3 : t

>0
99K

+

3 ta ∧ r ≤ ta and
∀t′ ∈ Q3,

(

t
>0
99K3 t′ =⇒ r ≤ t′

)

⇐⇒ (By De�nition 5 [Contrat re�nement℄ (4))
r ≤ t(5) Similar to the proof in (4).A.2 RedutionLemma 11 (Bisimulation and Equivalene). For all delimited ontrats C1 and

C2, C1 ≃ C2 ⇒ C1 ≡ C2.Proof. By inspeting De�nition 5 and De�nition 9, we an see C1 ≃ C2 implies
C1 ≤ C2 and C2 ≤ C1. By Lemma 7 [Re�nement and Equivalene℄, we have
C1 ≃ C2 ⇒ C1 ≡ C2.Lemma 6 [Redution and re�nement℄ For all delimited ontrats C, C ≤ Cand C ≤ C.Proof. Let C = (Q,A,→, π, s0). The redution ombines all bisimilar statesinto one. De�nition 10 (1) is from literature so we omit its orretness proof here.We now prove the orretness of De�nition 10 (2), σ≃(s, t) =

∑

1≤j≤n σ(s1, tj)),whih ombines probabilisti transitions leading to bisimilar states into one asshown below.
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Probabilisti Contrats for Component-based Design 24
s1 tj t s

t3

t1

dn

[l1, u1]...
[ln, un]

[l, u]

d1...
De�nition 10 (2) omputes [l, u] as follows.

l = l1 + · · · + ln u = ⌈u1 + · · · + un⌉By Lemma 1 [Re�exivity of (≤)℄, s ≤ s. Sine t1 ≃ . . . ≃ tj ≃ . . . ≃ tn,by Lemma 11 [Bisimulation and equivalene℄ and Lemma 7 [Re�nement andequivalene℄, t1 ≤ tj , tj ≤ t1, tj ≤ tn, tn ≤ tj for all 1 ≤ j ≤ n. So we have themapping di from tj for all 1 ≤ i = j ≤ n.Case (C ≤ C). We want to show that for all s, t ∈ Q there exists a probabilitydistribution δ1 ⊂ Q×Q× [0, 1] suh that s1 ≤ s. Let s′ denote any next stateof s.Let δ1(s
′)(t′) = 1. For any f ∈ σ(s), we have

∑n

i=1(f(s′) ∗ δ1(s
′)(si))

= (By de�nition of δ1)
∑n

i=1 f(s′)
⊆ (By De�nition 4 [Delimited ontrat℄, ∑n

i=1 f(s′) ≤ 1)
[l1 + · · · + ln, ⌈u1 + · · · + un⌉]

= (By de�nition of l and u)
[l, u]Case (C ≤ C). We want to show that for all s, t ∈ Q there exists a probabilitydistribution δ2 ⊂ Q×Q× [0, 1] suh that s ≤ s1.(a) Sine δ2(si) is a probability distribution, we need to make sure that sumof di is 1.Let di ∈ [li/l, ui/u] for 1 ≤ i ≤ n. We show that there exists a vetor of

di suh that ∑n

i=1 di = 1 as follows.
∑n

i=1 di

∈ (By de�nition of di)
[
∑n

i=1 li/l,
∑n

i=1 ui/u]
= [l1/l + · · · + ln/l, u1/u + · · · + un/u]

[(
∑n

i=1 li)/l, (
∑n

i=1 ui)/u]
= (By de�nition of l and u)

[l/l, u/u]
= [1, 1]
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Probabilisti Contrats for Component-based Design 25(b) We need to hek that for all 1 ≤ i ≤ n, [l, u] ∗ di ⊆ [li, ui]. Here is theproof.
di ∈ [li/l, ui/u]

⇐⇒ (By set theory and math)
l ∗ di ∈ [li, (ui ∗ l)/u] and u ∗ di ∈ [(li ∗ u)/l, ui]

⇐⇒ (Sine l ≤ u, we know l/u ≤ 1 and u/l ≥ 1.)
[li, (ui ∗ l)/u] ⊆ [li, ui] and [(li ∗ u)/l, ui] ⊆ [li, ui]

⇐⇒ (Sine l ≤ u, we know l ∗ di ≤ u ∗ di.)
[l ∗ di, u ∗ di] ⊆ [li, ui]

⇐⇒ [l, u] ∗ di ⊆ [li, ui]A.3 Contrat AbstrationLemma 9 [Abstration and re�nement℄ For all ontrats C1 = (Q1,A,→1, 99K1

, s0), C2 = (Q2,A,→2, 99K2, t0) and B ⊆ A, if C1 ≤ C2, then πB(C1) ≤ πB(C2).Proof. Let
πB(C1) = (Q3,A,→3, σ3, s0)
πB(C2) = (Q4,A,→4, σ4, t0)Given a state s and its next state s′ in a ontrat before projetion, we use boldfont s and t to represent a set of states in Q1 and Q2 respetively. The nextstate of s is represented by s

′. To show that if s0 ≤ t0 then s0 ≤ t0, we showthe general ase: for all s ∈ Q1, t ∈ Q2, if s ≤ t, then s ≤ t. We prove thislemma by strutural indution. We have the following indution hypothesis: forall s′ ∈ Q1, t
′ ∈ Q2, s

′ ∈ Q3, t
′ ∈ Q4, suh that s′ ∈ s and t′ ∈ t,

s′ ≤ t′ =⇒ s
′ ≤ t

′ [H℄We have the following ases to onsider.
• Case s = ⊤. Sine s ≤ t, by De�nition 5 (1), we have t = ⊤. Ationsleading to ⊤ are kept in the projetion. There is no state in the projetionontaining other states than ⊤. Therefore, s = t = ⊤.
• Case s ∈ Qa

1 , t ∈ Qa
2 ∪ {⊤}. There are three ases to onsider:(a) ∀t′ 6= ⊤ ∈ Q2, (t

α
→2 t′) =⇒ (∃s′ ∈ Q1, s

α
→1 s′ ∧ s′ ≤ t′).If α ∈ B, this ation transition is kept in πB(C1) and πB(C1). So wehave s

α
→3 s

′ and t
α
→4 t

′. From s′ ≤ t′, by indution hypothesis[H℄, we have (1) s
′ ≤ t

′. So we have ∀t′ 6= ⊤ ∈ Q4, (t
α
→4 t

′)

=⇒ (∃s′ ∈ Q3, s
α
→3 s

′ ∧ s
′ ≤ t

′).If α /∈ B, this ation transition does not appear in πB(C1) and πB(C1).We have {s, s′} ⊆ s and {t, t′} ⊆ t. By indution hypothesis [H℄, wehave s ≤ t.(b) ∀s′ ∈ Q1, (s
α
→1 s′) =⇒ (t = ⊤ ∨ ∃t′ ∈ Q2, t

α
→2 t′ ∧ s′ ≤ t′). Forthe ase t = ⊤, As ations leading to ⊤ are kept in the projetion,there is no state in the projetion ontaining other states than ⊤.RR n° 7328



Probabilisti Contrats for Component-based Design 26Therefore, t = ⊤. By De�nition 5 (1) and (2), any state re�nes ⊤,so we have s ≤ t.For the ase ∃t′ ∈ Q2, t
α
→2 t′ ∧ s′ ≤ t′, we have two subases toonsider.* If α ∈ B, this ation transition is kept in πB(C1) and πB(C1).So we have s

α
→3 s

′ and t
α
→4 t

′. From s′ ≤ t′, by indutionhypothesis [H℄, we have s
′ ≤ t

′. So we have (2) ∀s′ ∈ Q3, (s
α
→3

s
′) =⇒ ∃t′ ∈ Q4, t

α
→2 t

′ ∧ s
′ ≤ t

′.* If α /∈ B, this ation transition does not appear in πB(C1) and
πB(C1). We have {s, s′} ⊆ s and {t, t′} ⊆ t. By indutionhypothesis [H℄, we have s ≤ t.From (1) and (2), by De�nition 5 (2), we have s ≤ t.

• Case s ∈ Qa
1 , t ∈ Qp

2. By De�nition 5 (4), ∃ta ∈ Qa

2 : t
>0
99K

+

2 ta ∧ s ≤ taand ∀t′ ∈ Q2,
(

t
>0
99K2 t′ =⇒ s ≤ t′

). If we have t′ ∈ Qp
2, we have s ≤ t′.Projetion does not have e�et on probabilisti transitions, by indutionhypothesis [H℄, we are done. If we have t′ ∈ Qa

2 , we have s ≤ ta. Sine
s ∈ Qa

1 , this falls into the ase s ∈ Qa
1 , t ∈ Qa

2 , whih has been provedabove.
• Case s ∈ Qp

1, t ∈ Qa
2 . Similar reasoning as the ase s ∈ Qa

1 , t ∈ Qp
2.

• Case s ∈ Qp
1, t ∈ Qp

2. By De�nition 5 (3), we know s
P1

99K1 s′, t
P2

99K2 t′and s′ ≤ t′. Projetion only has e�et on ation states, the probabilistitransitions remain the same (up to their target states). That is, we have(1) s
P3

99K3 s
′ and (2) t

P4

99K4 t
′. From s′ ≤ t′, by indution hypothesis [H℄,we have (3) s

′ ≤ t
′. From (1), (2), (3), by De�nition 5 (3), we have s ≤ t.B Contrat CompositionB.1 Congruene of Re�nement for Parallel CompositionLemma 12 (Congruene of re�nement for ||I). For all ontrats C1, C2, C3,and interation set I, if C1 ≤ C2, then C1||IC3 ≤ C2||IC3.Proof. Let
C1 = (Q1,A1,→1, σ1, s0)
C2 = (Q2,A2,→2, σ2, t0)
C3 = (Q3,A3,→3, σ3, u0)

C1||I C3 = (Q13,A13,→13, σ13, (s0, u0))
C2||I C3 = (Q23,A23,→23, σ23, (t0, u0))Let θ ⊆ Q1 × Q2 be the re�nement relation stating that s ≤ t. Let θ′ ⊆

Q13×Q23 be a binary relation suh that ((s, u), (t, u)) ∈ θ′ if (s, t) ∈ θ. We nowprove that θ′ allows to establish that (s, u) ≤ (t, u).Notation: For all σ, let σ and σ be the lower bound and upper bound of σrespetively.We �rst onsider 3 ases involving the state ⊤.RR n° 7328



Probabilisti Contrats for Component-based Design 27(a) Case s = ⊤. Sine s ≤ t, by De�nition 5 [Re�nement℄ (1), t = ⊤. ByDe�nition 12 [Parallel omposition℄ (1), if one state is in ⊤ state, theomposed state is in ⊤ state, we have (s, u) = ⊤ and (t, u) = ⊤. Thus,
(s, u) ≤ (t, u).(b) Case t = ⊤. By De�nition 12 [Parallel omposition℄ (1), we have (t, u) =
⊤. Sine any state re�nes ⊤ state, we have (s, u) ≤ (t, u).() Case u = ⊤. By De�nition 12 [Parallel omposition℄ (1), we have (s, u) =
⊤ and (t, u) = ⊤. Thus, (s, u) ≤ (t, u).Now, we onsider ases where s 6= ⊤, t 6= ⊤ and u 6= ⊤. We have the followingo-indution hypothesis: for all s′, t′, u′ suh that s′, t′, u′ are the next states of

s, t and u respetively, and ((s′, u′), (t′, u′)) ∈ θ′,
s′ ≤ t′ ⇒ (s′, u′) ≤ (t′, u′) [H℄Given ((s, u), (t, u)) ∈ θ′, we have the following ases to onsider.

• Case s ∈ Qa
1 , t ∈ Qa

2 , u ∈ Qa
3 . Sine s ≤ t, we have (1) s

α
→1 s′; (2) t

α
→2 t′;(3) u

β
→3 u′; (4) s′ ≤ t′. There are three ases to onsider:(a) Subase α|β ∈ I.By (1), (3) and rule [R3℄, we have (5) (s, u)

α|β
→ 12 (s′, u′).By (2), (3) and rule [R3℄, we have (6) (t, u)

α|β
→ 23 (t′, u′).From (4), by indution hypothesis [H℄, we have (7) (s′, u′) ≤ (t′, u′).By De�nition 5 (2), we have (s, u) ≤ (t, u).(b) Subase α ∈ I.By (1), (3) and rule [R1℄, we have (5) (s, u)
α
→12 (s′, u).By (2), (3) and rule [R1℄, we have (6) (t, u)
α
→23 (t′, u).From (4), by indution hypothesis [H℄, we have (7) (s′, u) ≤ (t′, u).By De�nition 5 (2), we have (s, u) ≤ (t, u).() Subase β ∈ I.By (1), (3) and rule [R2℄, we have (5) (s, u)
α
→12 (s, u′).By (2), (3) and rule [R2℄, we have (6) (t, u)
α
→23 (t, u′).From (4), by indution hypothesis [H℄, we have (7) (s, u′) ≤ (t, u′).For eah subase, from (5), (6), (7), by De�nition 5 (2), we have (s, u) ≤

(t, u).
• Case s ∈ Qa

1 , t ∈ Qa
2 , u ∈ Qp

3. Sine s ≤ t, we have (1) s
α
→1 s′; (2) t

α
→2 t′;(3) u

P3

99K3 u′; (4) s′ ≤ t′.By (1), (3) and rule [R6℄, we have (5) (s, u)
P3

99K12 (s, u′).By (2), (3) and rule [R6℄, we have (6) (t, u)
P3

99K23 (t, u′).From (4), by indution hypothesis [H℄, we have (s, u′) ≤ (t, u′). By De�-nition 5 (3), we have (s, u) ≤ (t, u).
• Case s ∈ Qa

1 , t ∈ Qp
2, u ∈ Qa

3 . Sine s ≤ t, we have (1) s
α
→1 s′; (2)

t
P2

99K2 t′; (3) u
β
→3 u′. (4) ∃ta ∈ Qa

2 : t
>0
99K

+

2 ta ∧ s ≤ ta; ∀t′ ∈ Q2,
(

t
>0
99K2 t′ =⇒ s ≤ t′

). There are three ases:RR n° 7328



Probabilisti Contrats for Component-based Design 28(a) Subase α|β ∈ I.By (1), (3) and rule [R3℄, we have (s, u)
α|β
→ 12 (s′, u′).(b) Subase α ∈ I.By (1), (3) and rule [R1℄, we have (s, u)
α
→12 (s′, u′).() Subase β ∈ I.By (1), (3) and rule [R2℄, we have (s, u)
α
→12 (s′, u′).By (2), (3) and rule [R6℄, we have (t, u)

P2

99K23 (t′, u).From (5), by indution hypothesis [H℄, we have (s, u) ≤ (t′, u). By De�ni-tion 5 (4), we have (s, u) ≤ (t′, u).
• Case s ∈ Qa

1 , t ∈ Qp
2, u ∈ Qp

3. Sine s ≤ t, we have (1) s
α
→1 s′; (2)

t
[p1,p2]
99K 2 t′; (3) u

[p3,p4]
99K 3 u′. (4) ∃ta ∈ Qa

2 : t
>0
99K

+

2 ta ∧ t ≤ ta; (5) ∀t′ ∈ Q2,
(

t
>0
99K2 t′ =⇒ s ≤ t′

).By (1), (3) and rule [R6℄, we have (s, u)
[p3,p4]
→ 12 (s, u′).By (2), (3) and rule [R4℄, we have (t, u)

[p1∗p3,p2∗p4]
99K 12 (t′, u′).That means

(†1) σ23(t, u)(t′, u′)
= [σ23(t, u)(t′, u′), σ23(t, u)(t′, u′)]
= [σ2(t)(t

′) ∗ σ3(u)(u′), σ2(t)(t
′) ∗ σ3(u)(u′)]By Lemma 1 [Re�exivity of re�nement℄, u ≤ u. That means there existsa δ that satis�es the ondition De�nition 5 (3) for all fu(u′) ∈ σ3(u)(u′)and u′ ∈ Q3. By de�nition of fu, we have

(†2)
∑

u′∈Q3
fu(u′) ∗ δu(u′)(u′) ∈ σ(u)(u′)

⇐⇒
∑

u′∈Q3
σ3(u)(u′) ∗ δu(u′)(u′) ⊆ σ3(u)(u′)We want to hek that there exists a δ that satis�es the ondition Def-inition 5 (3) for all f(s, u′) ∈ σ12(s, u)(s, u′) and (t′, u′) ∈ Q23. Let
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δ((s, u′))((t′, u′)) ∈ σ(t)(t′) ∗ δu(u′)(u′)

(By de�nition [F2℄ in Figure 4: [a, b] ∗ [c, d] = [a ∗ c, b ∗ d])
σ(t)(t′) ∗ σ3(u)(u′)
⊆ [σ2(t)(t

′) ∗ σ3(u)(u′), σ2(t)(t
′) ∗ σ3(u)(u′)]

⇒ (By †2 and by set theory
[a, b] ∗ [c, d] ⊆ [e, f ] ∧ [c1, d1] ⊆ [c, d] =⇒ [a, b] ∗ [c1, d1] ⊆ [e, f ])
∑

u′∈Q3
σ(t)(t′) ∗ σ3(u)(u′) ∗ δu(u′)(u′)

⊆ [σ2(t)(t
′) ∗ σ3(u)(u′), σ2(t)(t

′) ∗ σ3(u)(u′)]
⇒ (By de�nition of δ and ommutativity of ∗)

∑

u′∈Q3
(σ3(u)(u′) ∗ δ(s, u′)(t′, u′))

⊆ [σ2(t)(t
′) ∗ σ3(u)(u′), σ2(t)(t

′) ∗ σ3(u)(u′)]
⇐⇒ (By (1), (3), rule [R6℄, ∑

(s,u′)∈Q13
σ13(s, u)(s, u′) =

∑

u′∈Q3
σ3(u)(u′))

∑

(s,u′)∈Q13
(σ13(s, u)(s, u′) ∗ δ′(s, u′)(t′, u′))

⊆ [σ2(t)(t
′) ∗ σ3(u)(u′), σ2(t)(t

′) ∗ σ3(u)(u′)]
⇐⇒ (By (†1))

∑

(s,u′)∈Q13
(σ13(s, u)(s′, u) ∗ δ′(s, u′)(t′, u′)) ⊆ σ23(t, u)(t′, u′),

⇐⇒ (By de�nition of f)
∑

(s,u′)∈Q13
(f(s, u′) ∗ δ(s, u′)(t′, u′)) ∈ σ23(t, u)(t′, u′)

• Case s ∈ Qp
1, t ∈ Qa

2 , u ∈ Qa
3 . Similar to the ase s ∈ Qa

1 , t ∈ Qp
2, u ∈ Qa

3 .
• Case s ∈ Qp

1, t ∈ Qa
2 , u ∈ Qp

3. Similar to the ase s ∈ Qa
1 , t ∈ Qp

2, u ∈ Qp
3.

• Case s ∈ Qp
1, t ∈ Qp

2, u ∈ Qa
3 . We have (1) s

P1

99K1 s′; (2) t
P2

99K2 t′; (3)
u

α
→3 u′. By (1), (3) and rule [R5℄, we have (5) (s, u)

P1

99K12 (s′, u).By (2), (3) and rule [R5℄, we have (6) (s, u)
P1

99K12 (s′, u).We know there is a probability distribution δ ⊂ Q1×Q2× [0, 1], suh that,
∀f ∈ σ(s), t′ ∈ Q2,

(†)
∑

s′∈Q1
(f(s′) ∗ δ(s′)(t′)) ∈ σ2(t)(t

′) and
∀s′ ∈ Q1, δ(s

′)(t′) > 0 ⇒ s′ ≤ t′We want to hek that δ′ satis�es the ondition De�nition 5 (3) for all
f(s′, u′) ∈ σ12(s, u)(s′, u) and (t′, u) ∈ Q23.

= (By de�nition of δ′)
∑

(s′,u)∈Q13
(f(s′, u) ∗ δ(s′)(t′))

= (By (3) and rule [R5℄, ∑(s′,u)∈Q13
f(s′, u) =

∑

s′∈Q1
f(s′))

∑

(s′,u)∈Q13
(f(s′) ∗ δ(s′)(t′))

∈ (By (†))
σ2(t)(t

′)
= (By (3) and rule [R5℄, σ23(t, u)(t′, u) = σ2(t)(t

′))
σ23(t, u)(t′, u),

• Case s ∈ Qp
1, t ∈ Qp

2, u ∈ Qp
3. We have (1) s

[p1,p2]
99K 1 s′ and (2) u

[p3,p4]
99K 3 u′.From (1), (2), by rule [R4℄, we have (s, u)

[p1∗p3,p2∗p4]
99K 13 (s′, u′). Thatmeans:

(†1) σ13(s, u)(s′, u′) = σ1(s)(s
′) ∗ σ3(u)(u′)RR n° 7328



Probabilisti Contrats for Component-based Design 30Sine s ≤ t, by De�nition 5 [Contrat Re�nement℄ (3), we know t
[p5,p6]
99K 2 t′for some t′, p5, p6 and s′ ≤ t′. By u

[p3,p4]
99K 3 u′ and rule [R4℄, we know

(t, u)
[p5∗p3,p6∗p4]

99K 23 (t′, u′). That means:
(†2) σ23(t, u)(t′, u′) = σ2(t)(t

′) ∗ σ3(u)(u′)By De�nition 5 (3), We also know there is a probability distribution δ ⊂
Q1 ×Q2 × [0, 1], suh that, ∀f ∈ σ(s), t′ ∈ Q2,

∑

s′∈Q1

(f(s′) ∗ δ(s′)(t′)) ∈ σ2(t)(t
′), and s′ ≤ t′ if δ(s′)(t′) > 0We know:

(†3) ∀f ∈ σ1(s)
∑

s′∈Q1
(f(s′) ∗ δ(s′)(t′)) ∈ σ2(t)(t

′)
⇐⇒

∑

s′∈Q1
(σ1(s)(s

′) ∗ δ(s′)(t′)) ⊆ σ2(t)(t
′)We want to show that there is a probability distribution δ′ ⊂ Q13×Q23×

[0, 1], suh that De�nition 5 (3) holds. Let δ′ be
δ′(s′, u′′)(t′, u′) =

{

δ(s′)(t′), if u′′ = u′

0, otherwiseWe want to hek that δ′ satis�es the ondition De�nition 5 (3) for all
f ′ ∈ σ13(s, u)) and (t′, u′) ∈ Q23. We prove it for all t′ ∈ Q2 as follows.

(By (†3))
∑

s′∈Q1
σ1(s)(s

′) ∗ δ(s′)(t′) ⊆ σ2(t)(t
′)

⇐⇒ (By arithmeti, if [a, b], [c, d], [e, f ] ⊆ [0, 1], then
[a, b] ⊆ [c, d] ⇐⇒ [a, b] ∗ [e, f ] ⊆ [c, d] ∗ [e, f ].We also know σ3(u)(u′) ⊆ [0, 1])
∀u′ ∈ Q3,

∑

s′∈Q1
σ1(s)(s

′) ∗ σ3(u)(u′) ∗ δ(s′)(t′),
⊆ σ2(t)(t

′) ∗ σ3(u)(u′)
⇐⇒ (By (†1) and (†2))

∀u′ ∈ Q3,
∑

s′∈Q1
σ13(s, u)(s′, u′) ∗ δ′(s′)(t′) ⊆ σ23(t, u)(t′, u′)

⇐⇒ (For u′′ 6= u′, ∑

(s′,u′′)∈Q13
does not add any non-zero term.Also by de�nition of δ′)

∀u′ ∈ Q3,
∑

(s′,u′′)∈Q13
σ13(s, u)(s′, u′′) ∗ δ′(s′, u′′)(t′, u′) ⊆ σ23(t, u)(t′, u′)

⇐⇒ (By de�nition of f ′)
∀u′ ∈ Q3,

∑

(s′,u′′)∈Q13
(f ′(s′, u′′) ∗ δ′(s′, u′′)(t′, u′)) ∈ σ23(t, u)(t′, u′)Theorem 1 [Congruene of re�nement for ||I ℄ For all ontrats C1, C2, C3, C4and an interation set I, if C1 ≤ C2 and C3 ≤ C4, then C1||I C3 ≤ C2||I C4.RR n° 7328
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C1 ≤ C2 and C3 ≤ C4

⇒ (By Lemma 12 [Congruene of ≤℄)
C1||IC3 ≤ C2||IC3 and C3 ≤ C4

⇐⇒ (By Lemma 10 [Commutativity of ||I ℄)
C1||IC3 ≤ C3||IC2 and C3 ≤ C4

⇒ (By Lemma 12, C3 ≤ C4 ⇒ C3||IC2 ≤ C4||IC2)
C1||IC3 ≤ C3||IC2 and C3||IC2 ≤ C4||IC2)

⇒ (By Lemma 2 [Transitivity of ≤℄)
C1||IC3 ≤ C4||IC2

⇐⇒ (By Lemma 10 [Commutativity of ||I ℄)
C1||IC3 ≤ C2||IC4B.2 Conjuntion of ContratsTheorem 4 [Conjuntion is a ommon re�nement℄ For all ontrats C1 and C2,

πAi
(C1 ∧ C2) ≤ Ci for i = 1, 2.Proof. We only show the proof for πA1

(C1∧C2) ≤ C1 as the proof for πA2
(C1∧

C2) ≤ C2 is similar.Let
C1 = (Q1,A1,→1, 99K1, s0)
C2 = (Q2,A2,→2, 99K2, t0)

πA1
(C1 ∧ C2) = (Q12,A1,→12, 99K12, (s0, t0))Let θ ⊆ Q12 ×Q1 be a binary relation suh that
{((s, t), s) | s ∈ Q1, t ∈ Q2, (s, t) ∈ Q12}We want to show that θ allows us to establish θ ⊆≤.There are 8 ases to onsider when we perform C1 ∧ C2. Sine projetion isonly done for ation transitions where the ation is in A2 and not in A1, it onlyhas e�et for the ase [LiftR℄.

• Rule [C1℄. If we have (s, t)
α
→12 (s′, t′), by rule [C1℄, we have s

α
→1 s′ (and

α ∈ A1) and t
α
→2 t′. We have the following o-indution hypothesis:

(s′, t′) ≤ s′ [HC1℄Sine we have s
α
→1 s′ and (s, t)

α
→12 (s′, t′) and [HC1℄, it is easy to hekthat De�nition 5 (≤) (2a) and (2b) are satis�ed and sine (s, t) 6= ⊤,De�nition 5 (≤) (1) is vauously true.

• Rule [C2L℄. If we have (s,⊤)
α
→12 (s′,⊤), by rule [C2L℄, we have s

α
→1 s′.We have the following o-indution hypothesis:

(s′,⊤) ≤ s′ [HC2L℄Sine we have s
α
→1 s′ and (s,⊤)

α
→12 (s′,⊤) and [HC2L℄, it is easy tohek that De�nition 5 (≤) (2a) and (2b) are satis�ed and sine (s, t) 6= ⊤,De�nition 5 (≤) (1) is vauously true.RR n° 7328
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• Rule [C2R℄. Sine C1 has reahed ⊤ state and any state re�nes ⊤ state,we are done.
• Rule [C3℄. If we have (s, t)

[p5,p6]
99K 12 (s′, t′) where p5 = max(p1, p3) and

p6 = min(p2, p4) and s′ ∼ t′, by rule [C3℄, we have s
[p1,p2]
99K 1 s′ and

t
[p3,p4]
99K 2 t′. We have the following o-indution hypothesis:

(s′, t′) ≤ s′ [HC3℄Sine ≤ is re�exive (by Lemma 1), we have s ≤ s. we know there is aprobability distribution δ ⊂ Q1×Q1× [0, 1], suh that, ∀f ∈ σ(s), s′ ∈ Q1,
(†)

∑

s′∈Q1
(f(s′) ∗ δ(s′)(s′)) ∈ σ1(s)(s

′), and δ(s′)(s′) > 0 =⇒ s′ ≤ s′We want to establish a δ′ suh that De�nition 5 (3) holds. Let δ′ ⊂
Q12 ×Q1 × [0, 1] be

δ′(s′, t′)(s′) = δ(s′)(s′)We want to hek that δ′ satis�es the ondition De�nition 5 (3) for all
f ′ ∈ δ12(s, t).

(By (†))
∑

s′∈Q1
(f(s′) ∗ δ(s′)(s′)) ∈ σ1(s)(s

′)
⇐⇒ (By de�nition of f)

∑

s′∈Q1
([σ1(s)(s

′), σ1(s)(s
′)] ∗ δ(s′)(s′)) ⊆ σ1(s)(s

′)
⇐⇒ (By rule [C3℄, [σ12(s

′, t′), σ12(s
′, t′)] ⊆ [σ1(s)(s

′), σ1(s)(s
′)])

∑

s′∈Q1
([σ12(s

′, t′), σ12(s
′, t′)] ∗ δ(s′)(s′)) ⊆ σ1(s)(s

′),
⇐⇒ (By De�nition 14 [Unambiguous ontrat℄, the similarity between

s′ and t′ is a bijetion, so the number of (s′, t′) states is the same asthe number of s′ states.)
∑

(s′,t′)∈Q12
([σ12(s

′, t′), σ12(s
′, t′)] ∗ δ(s′)(s′)) ⊆ σ1(s)(s

′),

⇐⇒ (By de�nition of δ′)
∑

(s′,t′)∈Q12
([σ12(s

′, t′), σ12(s
′, t′)] ∗ δ′(s′, t′)(s′)) ⊆ σ1(s)(s

′),

⇐⇒ (By de�nition of f ′)
∑

(s′,t′)∈Q12
(f ′(s′, t′) ∗ δ′(s′, t′)(s′)) ∈ σ1(s)(s

′)Together with o-indution hypothesis [HC3℄, we have the desired result.
• Rule [C4L℄. If we have (s, t)

P
99K12 (s′, t) and P 6= [0, 0], by rule [C4L℄,we have s

P
99K1 s′, t ∈ Qa and s′ ∼ t. We have the following o-indutionhypothesis:

(s′, t) ≤ s′ [HC4L℄We know there is a probability distribution δ ⊂ Q1×Q1× [0, 1], suh that,
∀f ∈ σ(s), s′ ∈ Q1,
(1)

∑

s′∈Q1
(f(s′) ∗ δ(s′)(s′)) ∈ σ1(s)(s

′), and δ(s′)(s′) > 0 =⇒ s′ ≤ s′We want to establish a δ′ suh that De�nition 5 (3) holds. Let δ′ ⊂
Q12 ×Q1 × [0, 1] be

δ′(s′, t′)(s′) = δ(s′)(s′)RR n° 7328



Probabilisti Contrats for Component-based Design 33We want to hek that δ′ satis�es the ondition De�nition 5 (3) for all
f ′ ∈ δ12(s, t).

(By (1))
∑

s′∈Q1
(f(s′) ∗ δ(s′)(s′)) ∈ σ1(s)(s

′)
⇐⇒ (By de�nition of f)

∑

s′∈Q1
([σ1(s)(s

′), σ1(s)(s
′)] ∗ δ(s′)(s′)) ⊆ σ1(s)(s

′)
⇐⇒ (By rule [C4L℄, [σ12(s

′, t′), σ12(s
′, t′)] = [σ1(s)(s

′), σ1(s)(s
′)])

∑

(s′,t′)∈Q12
([σ12(s

′, t′), σ12(s
′, t′)] ∗ δ(s′)(s′)) ⊆ σ1(s)(s

′),

⇐⇒ (By de�nition of δ′)
∑

(s′,t′)∈Q12
([σ12(s

′, t′), σ12(s
′, t′)] ∗ δ′(s′, t′)(s′)) ⊆ σ1(s)(s

′),

⇐⇒ (By de�nition of f ′)
∑

(s′,t′)∈Q12
(f ′(s′, t′) ∗ δ′(s′, t′)(s′)) ∈ σ1(s)(s

′)Together with o-indution hypothesis [HC4L℄, we have the desired result.
• Rule [C4R℄. Similar to the proof for Rule [C4L℄.
• Rule [LiftL℄. If we have (s, t)

α
→12 (s′, t), by rule [LiftL℄, we have s

α
→1

s′, α 6∈ A2 and q2 ∈ Qa
2 . We have the following o-indution hypothesis:

(s′, t) ≤ s′ [HLiftL℄Sine we have s
α
→1 s′ and (s, t)

α
→12 (s′, t) and [HLiftL℄, it is easy to hekthat De�nition 5 (≤) (2a) and (2b) are satis�ed and sine (s, t) 6= ⊤, (1)is vauously true.

• Rule [LiftR℄. If we have (s, t)
α
→12 (s, t′), by rule [LiftR℄, we have t

α
→1

t′, α 6∈ A1 and q2 ∈ Qa
2 . We have the following o-indution hypothesis:

(s, t′) ≤ s [HLiftR℄After projetion on A1, we have (s, t) = (s, t′). By [HLiftR℄, we know
(s, t) ≤ s so we are done.Lemma 13 (Abstration and lifting). For all ontrats C, ⌊πA(C)⌋ ≡ πA(⌊C⌋)Proof. By inspeting de�nition of ⌊.⌋ and De�nition 11 [Projetion℄, lifting islike an identity operation exept onverting a single probability p to an interval

[p, p], so it is obvious that doing lifting before or after projetion have the samee�et.Theorem 5 [Soundness of onjuntion℄ For any IMC M and unambiguous on-trats Ci with alphabets Ai, i = 1, 2, suh that C1 ∼ C2, if M |= C1 ∧ C2 then
πAi

(M) |= Ci, i = 1, 2.
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M |= C1 ∧ C2

⇐⇒ (By De�nition 6 |=)
⌊M⌋ ≤ C1 ∧ C2

⇒ (By Lemma 9 [Abstration and re�nement℄)
πAi

(⌊M⌋) ≤ πAi
(C1 ∧ C2) for i = 1, 2

⇒ (By Lemma 2 [Transitivity of ≤℄ andby Theorem 4 [Conjuntion is a ommon re�nement℄)
πA1

(⌊M⌋) ≤ C1 and πA2
(⌊M⌋) ≤ C2

⇐⇒ (By Lemma 13 [Abstration and lifting℄)
⌊πA1

(M)⌋ ≤ C1 and ⌊πA2
(M)⌋ ≤ C2

⇐⇒ (By De�nition 6 |=)
πA1

(M) |= C1 and πA2
(M) |= C2

RR n° 7328
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