
HAL Id: inria-00520468
https://inria.hal.science/inria-00520468

Submitted on 23 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A GPU-based Iterated Tabu Search for Solving the
Quadratic 3-dimensional Assignment Problem

Thé Van Luong, Nouredine Melab, El-Ghazali Talbi

To cite this version:
Thé Van Luong, Nouredine Melab, El-Ghazali Talbi. A GPU-based Iterated Tabu Search for Solving
the Quadratic 3-dimensional Assignment Problem. Workshop on Parallel Optimization in Emerging
Computing Environments (POECE) in Conjunction with the International Conference on Computer
Systems and Applications (AICCSA), 2010, Hammamet, Tunisia. �inria-00520468�

https://inria.hal.science/inria-00520468
https://hal.archives-ouvertes.fr

A GPU-based Iterated Tabu Search for Solving the
Quadratic 3-dimensional Assignment Problem

Thé Van Luong∗, Lakhdar Loukil †, Nouredine Melab∗ and El-Ghazali Talbi∗
∗ INRIA Lille Nord Europe - CNRS/LIFL Laboratory

40, avenue Halley, Bt. A, Park Plaza
59650 Villeneuve d’Asq, France

Email: The-Van.Luong@inria.fr, Nouredine.Melab@lifl.fr, Email: El-Ghazali.Talbi@lifl.fr
†Computer Science Department, Faculty of Sciences

Oran University
BP. 1524 El M’Naouer, Oran, Algeria
Email: Loukil.Lakhdar@univ-oran.dz

Abstract—The quadratic 3-dimensional assignment problem
(Q3AP) is an extension of the well-known NP-hard quadratic
assignment problem. It has been proved to be one of the most
difficult combinatorial optimization problems. Local search (LS)
algorithms are a class of heuristics which have been successfully
applied to solve such hard optimization problem. These methods
handle with a single solution iteratively improved by exploring
its neighborhood in the solution space. In this paper, we propose
an iterated tabu search for solving the Q3AP. The design of this
algorithm is essentially based on a new large neighborhood struc-
ture. Indeed, in LS heuristics, designing operators to explore large
promising regions of the search space may improve the quality
of the obtained solutions. However, designing such neighborhood
is at the expense of a highly computationally process. Therefore,
the use of graphics processing units (GPUs) provides an efficient
complementary way to speed up the search. The proposed
GPU-based iterated tabu search has been experimented on 5
different Q3AP instances. The obtained results are convincing
both in terms of efficiency, quality and robustness of the provided
solutions at run time.

Index Terms—Quadratic 3-dimensional assignment problem
(Q3AP), GPU-based local search, metaheuristics on GPU, iterated
tabu search on graphics processing units.

I. INTRODUCTION

The Quadratic 3-dimensional Assignment Problem is a
combinatorial optimization problem introduced by Pierskalla
[1] in 1967. The Q3AP consists in finding an optimal symbol-
mapping over two vectors so as to minimize an objective
function. An application example of the Q3AP is the Hy-
brid Automatic Repeat reQuest (Hybrid-ARQ) error-control
mechanism used in wireless communication systems to detect
altered bits in transmitted packets [2].

To the best of our knowledge, there is not much work
devoted to solving the Q3AP. The most important work found
in the literature is that achieved by Peter Hahn’s team at the
University of Pennsylvania in collaboration with researchers
from the University of California, Davis [3], [4]. In this
work, LS algorithms have been successfully applied for the
resolution of Q3AP instances. Indeed, these methods are single
solution-based metaheuristics which have been successfully
applied for solving many real and complex problems [5]. LS

methods could be viewed as “walks through neighborhoods”
meaning search trajectories through the solutions domains of
the problems at hand. The walks are performed by iterative
procedures that allow to move from a solution to another one
in the solution space.

The definition of the neighborhood plays a crucial role in
the performance of a LS method. Since the neighborhood
structure strongly depends on the target optimization problem,
we focus on designing a new large neighborhood adapted
to the Q3AP all along of this paper. Indeed, theoretical
and experimental studies have shown that the increase of
the neighborhood size may improve the quality of provided
solutions of LS algorithms [6]. Nevertheless, as it is generally
CPU time-consuming it is not often fully exploited in practice.
Indeed, experiments with large neighborhood algorithms are
often stopped without convergence being reached. That is
the reason why, in designing LS methods, there is often a
compromise between the size of the neighborhood to use and
the computational complexity to explore it. As a consequence,
in LS algorithms, there is often a reduction of the size of the
explored neighborhood at the expense of the effectiveness. To
deal with such issues, only the use of parallelism allows to
design algorithms based on large neighborhoods.

Nowadays, GPU computing is recognized as a powerful
way to achieve high-performance on long-running scientific
applications [7]. GPU is a dedicated graphics rendering device
for computers that provide tremendous parallel execution
capabilities and fast memory access. Nevertheless, the use
of GPU-based parallel computing for metaheuristics is not
straightforward. Indeed, several scientific challenges mainly
related to the hierarchical memory management have to be
faced. As a consequence, designing LS algorithms based on
large neighborhood structures for solving real-world optimiza-
tion problems are good challenges for GPU computing.

In the present work, we propose a hierarchical parallel
iterated tabu search algorithm on GPU for solving Q3AP
problems. Tabu search (TS) method is a deterministic local
search metaheuristic used to solve combinatorial optimization
problems. Its search intensification capability and its ease to

implementation make it largely used for solving a number
of challenging optimization problems such as the quadratic
assignment problem. The motivation behind the use of a tabu
search combined with a large neighborhood in solving the
Q3AP is to explore larger search space by exploring various
search space sub-areas. Therefore, we investigate to measure
the impact on how the increase of the size of the neighborhood
can improve the quality of the obtained solutions.

The remainder of the paper is organized as follows: Section
II gives the mathematical formulation of the Q3AP. Our
proposed neighborhood for LS algorithms and the commonly
used one are presented in Section III. In Section IV, for
a better understanding of the difficulties of using the GPU
architecture, GPU computing for metaheuristics is described.
Section V presents high-level concepts for the design and the
implementation of a tabu search on GPU. Section VI reports
the performance results obtained for the implemented iterated
tabu search for the Q3AP. Finally, a discussion and some
conclusions of this work are drawn in Section VII.

II. Q3AP FORMULATION

The quadratic 3-dimensional assignment problem (Q3AP)
is an extension of the quadratic assignment problem and of
the axial 3-dimensional assignment problem (3AP). Q3AP
was introduced by William P. Pierskalla in 1967 [1] and
has recently been used to model some advanced assignment
problems like the symbol-mapping problem posed in wireless
communication systems and described in [3]. The Q3AP can
be formulated as follows:

min

n−1∑
i=0

n−1∑
j=0

n−1∑
l=0

n−1∑
k=0

n−1∑
s=0

n−1∑
r=0

cijlksrxijlxksr +

n−1∑
i=0

n−1∑
j=0

n−1∑
l=0

bijlxijl

 (1)

where:

X = (xijl) ∈ I ∩ J ∩ L, (2)
xijl ∈ {0, 1}, i, j, l = 0, 1, ..., n− 1. (3)

I , J and L sets are defined as follows:

I = {X = (xijl) :

n−1∑
j=0

n−1∑
l=0

xijl = 1, i = 0, 1, ..., n− 1};

J = {X = (xijl) :

n−1∑
i=0

n−1∑
l=0

xijl = 1, j = 0, 1, ..., n− 1};

L = {X = (xijl) :
n−1∑
i=0

n−1∑
j=0

xijl = 1, l = 0, 1, ..., n− 1}.

Whereas for the QAP the problem is to find a 2-dimensional
permutation matrix that minimizes a quadratic function, the
problem for the Q3AP is to minimize a quadratic function

over the 3-dimensional assignment polytope I ∩ J ∩ P . That
is the reason why this problem is referred as the quadratic
3-dimensional assignment problem.

An alternative formulation that is frequently used is the
permutation-based formulation. The Q3AP given by Eqs. (1)-
(3) can be expressed in permutation-based formulation as
follows:

min

f(p, q) =

n∑
i=1

n∑
j=1

cip(i)q(i)jp(j)q(j) +

n∑
i=1

bip(i)q(i)

}
(4)

where p and q are permutations over the set
{0, 1, . . . , n− 1}. According to this formulation, minimizing
the Q3AP consists in finding a double permutation (p, q)
which minimizes (4).

As mentioned earlier in this section, the Q3AP is an exten-
sion of the QAP and of the axial 3-dimensional assignment
problem which are both NP-hard problems. Therefore, the
Q3AP is proved to be also a NP-hard problem. Furthermore,
this problem is particularly difficult since the number of
feasible solutions of an instance of size n is n!× n!.

III. LOCAL SEARCH NEIGHBORHOODS FOR THE Q3AP

A. Formalization of Neighborhoods

The definition of the neighborhood is a required common
step for the design of any LS algorithm. Indeed, If the
neighborhood structure is not adequate to the problem, any
LS metaheuristic will fail to solve the problem. Regarding
the Q3AP, a basic neighborhood for LS algorithms has been
proposed in [8] and investigated in different works of the
literature [4], [9]. This neighborhood is based on the Q3AP
permutation-based formulation (4) where each generated solu-
tion is obtained by an exchange of two positions in either the
first permutation p or the second q. The number of generated
neighbors is thus equal to n × (n − 1). Formally, the basic
neighborhood can be expressed as follows:

NBasic(p, q) = { (p′, q′) : p′[k] = p[l], p′[l] = p[k]
0 ≤ k 6= l < n;
p′[i] = p[i], 0 ≤ i 6= k, l < n;
q′[j] = q[j], 0 ≤ j < n

}⋃
{ (p′, q′) : q′[k] = q[l], q′[l] = q[k]

0 ≤ k 6= l < n;
q′[i] = q[i], 0 ≤ i < n;
p′[j] = p[j], 0 ≤ j 6= k, l < n

}

(5)

For different optimization problems, theoretical and exper-
imental studies have shown that the increase of the neighbor-
hood size may improve the effectiveness of LS algorithms

[6]. As a consequence, regarding the Q3AP, we propose
an advanced neighborhood where more candidate solutions
are evaluated. It consists in exchanging two positions in
both permutations p and q. Therefore, the size of this new
neighborhood is equal to (n×(n−1)

2)2. A formal definition of
the advanced neighborhood can be expressed as follows:

NAdvanced(p, q) = { (p′, q′) : p′[k] = p[l], p′[l] = p[k],
q′[r] = q[s], q′[s] = q[r]
0 ≤ k 6= l < n, 0 ≤ r 6= s < n;
p′[i] = p[i], 0 ≤ i 6= k, l < n;
q′[j] = q[j], 0 ≤ j 6= r, s < n

}
(6)

B. Incremental Evaluation Functions

According to the Q3AP permutation-based formulation, a
full evaluation of a solution of size n requires the computation
of n2 cost terms cijklmn. A more efficient way to evaluate the
set of neighboring candidates is to consider the incremental
evaluation (or partial evaluation). It consists in evaluating only
the move transformation applied to a solution (∆ calculation)
rather than the complete evaluation of the objective function.

For the first basic neighborhood, an incremental evaluation
function has been proposed in [8] where the evaluation of a
neighbor requires the computation of 8(n + 1) cost terms.
The ∆ computation is given by:

• If the swapping of positions k and l (k 6= l) occurs in p:

∆ =

n∑
j=1

- ckp(k)q(k)ip(i)q(i)+ cjp(i)q(j)kp(k)q(k)
+ ckp(l)q(l)ip(i)q(i)- clp(l)q(l)ip(i)q(i)
- cip(i)q(i)kp(k)q(k)+ cip(i)q(i)lp(k)q(l)
+ cjp(j)q(j)kp(l)q(k)- cjp(j)q(j)kp(k)q(k)

∆ +=

- ckp(k)q(k)lp(l)q(l)+ ckp(l)q(k)lp(k)q(l)
- clp(l)q(l)kp(k)q(k)+ clp(l)q(l)kp(l)q(k)
- ckp(k)q(k)kp(k)q(k)+ ckp(k)q(k)kp(l)q(k)
+ clp(k)q(l)lp(k)q(l)- clp(l)q(l)lp(l)q(l)

• If the swapping of positions k and l (k 6= l) occurs in q:

∆ =

n∑
i=1

- ckq(i)p(k)iq(i)p(i)+ clq(k)p(l)iq(i)p(i)
+ ckq(j)p(k)iq(i)p(i)- clq(l)p(l)iq(i)p(i)
- ciq(k)p(i)kq(k)p(k)+ ciq(i)p(i)lq(k)p(l)
+ ciq(k)p(i)kq(l)p(k)- ciq(i)p(i)lq(l)p(l)

∆ +=

- ckq(k)p(k)lq(l)p(l)+ ckq(l)p(k)lq(k)p(l)
- clq(l)p(l)kq(k)p(k)+ clq(k)p(l)kq(l)p(k)
- ckq(k)p(k)kq(k)p(k)+ ckq(l)p(k)kq(l)p(k)
+ clq(k)p(l)lq(k)p(l)- clq(l)p(l)lq(l)p(l)

Since exchanges are performed in both p and q permu-

tations, the incremental evaluation function of our proposed
advanced neighborhood is more complex. As a consequence,
only a part on the ∆ computation is described in this paper.
Let k and l be the swapped positions in the first permutation
p and let r and s be the swapped positions in the second

permutation q. If we suppose that k 6= r and l 6= s, the ∆
computation is given by:

∆ =

n−1∑
i=0
i 6=k,l
i6=r,s

cip(i)q(i)kp(l)q(k)- cip(i)q(i)kp(k)q(k)
+ cip(i)q(i)lp(k)q(l)- cip(i)q(i)lp(l)q(l)
+ cip(i)q(i)rp(r)q(s)- cip(i)q(i)rp(r)q(r)
+ cip(i)q(i)sp(s)q(r)- cip(i)q(i)sp(s)q(s)

∆ +=

ckp(l)q(k)kp(l)q(k)- ckp(k)q(k)kp(k)q(k)
+ ckp(l)q(k)lp(k)q(l)- ckp(k)q(k)lp(l)q(l)
+ ckp(l)q(k)rp(r)q(s)- ckp(k)q(k)rp(r)q(r)
+ ckp(l)q(k)sp(s)q(r)- ckp(k)q(k)sp(s)q(s)

∆ +=

clp(k)q(l)kp(l)q(k)- clp(l)q(l)kp(k)q(k)
+ clp(k)q(l)lp(k)q(l)- clp(l)q(l)lp(l)q(l)
+ clp(k)q(l)rp(r)q(s)- clp(l)q(l)rp(r)q(r)
+ clp(k)q(l)sp(s)q(r)- clp(l)q(l)sp(s)q(s)

∆ +=

crp(r)q(s)kp(l)q(k)- crp(r)q(r)kp(k)q(k)
+ crp(r)q(s)lp(k)q(l)- crp(r)q(r)lp(l)q(l)
+ crp(r)q(s)rp(r)q(s)- crp(r)q(r)rp(r)q(r)
+ crp(r)q(s)sp(s)q(r)- crp(r)q(r)sp(s)q(s)

∆ +=

csp(s)q(r)kp(l)q(k)- csp(s)q(s)kp(k)q(k)
+ csp(s)q(r)lp(k)q(l)- csp(s)q(s)lp(l)q(l)
+ csp(s)q(r)rp(r)q(s)- csp(s)q(s)rp(r)q(r)
+ csp(s)q(r)sp(s)q(r)- csp(s)q(s)sp(s)q(s)

∆ +=

n−1∑
j=0
j 6=k,l
j 6=r,s

{
ckp(l)q(k)jp(j)q(j)- ckp(k)q(k)jp(j)q(j)

}

∆ +=
n−1∑
j=0
j 6=k,l
j 6=r,s

{
clp(k)q(l)jp(j)q(j)- clp(l)q(l)jp(j)q(j)

}

∆ +=
n−1∑
j=0
j 6=k,l
j 6=r,s

{
crp(r)q(s)jp(j)q(j)- crp(r)q(r)jp(j)q(j)

}

∆ +=
n−1∑
j=0
j 6=k,l
j 6=r,s

{
csp(s)q(m)jp(j)q(j)- csp(s)q(s)jp(j)q(j)

}

Our proposed ∆ computation method also considers the
three other cases where (k = r and l 6= s), (k 6= r and l = s)
and (k = r and l = s). It can be proved that the incremental
function of our proposed advanced neighborhood requires the
computation of 16× (n− 1) cost terms cijklmn in the worst
case.

Most of LS algorithms use neighborhoods which are in
general a linear or quadratic function of the input instance size.
Some large neighborhoods may be high-order polynomial of
the size of the input instance. For instance, the size of our
proposed neighborhood is equal to (n×(n−1)

2)2 i.e. this latter
is a quartic function of the input size. Then, the complexity
of the search will be much higher.

So, in practice, such large neighborhoods for LS algorithms
are unusable because of their high computational cost. In the
other sections, we will show how the use of GPU computing
allows to fully exploit parallelism in such algorithms.

IV. GPU COMPUTING FOR METAHEURISTICS

Driven by the demand for high-definition 3D graphics on
personal computers, GPUs have evolved into a highly par-
allel, multithreaded and many-core environment. Indeed, this
architecture provides tremendous computational horsepower
and very high memory bandwidth compared to traditional
CPUs. Since more transistors are devoted to data processing
rather than data caching and flow control, GPU is specialized
for compute-intensive and highly parallel computation. A
complete review of GPU architecture can be found in [7].

Recently, their use has been extended to other application
domains [10] (e.g. computational science) thanks to the pub-
lication of the CUDA (Compute Unified Device Architecture)
development toolkit that allows GPU programming in C-like
language. In some areas such as numerical computing [11],
we are now witnessing the proliferation of software libraries
such as CUBLAS for GPU. However, in other areas such as
combinatorial optimization, in particular metaheuristics, the
arrival of GPU does not know the same growth. Indeed,
there only exists few research works related to evolutionary
algorithms on GPU: genetic algorithm [12], [13], genetic
programming [14], [15] and evolutionary programming [16],
[17]. To the best of our knowledge GPU computing has never
deeply investigated for LS algorithms [18], [19]. With the
arrival of OpenCL as the open standard programming language
on GPU and the arrival of future compilers for this language,
like other application areas, combinatorial optimization on
GPU will generate a growing interest.

Nevertheless, the use of GPU-based parallel computing for
metaheuristics is not straightforward. Indeed, several chal-
lenges mainly related to the hierarchical memory management
have to be considered. The major issues are the efficient
distribution of data processing between CPU and GPU, the
thread synchronization, the optimization of data transfer be-
tween the different memories, the capacity constraints of these
memories, etc. Such issues have been dealt with in one of our
previous work [20] for the re-design of parallel LS models to
allow solving of large scale optimization problems on GPU
architectures.

Basically, in general-purpose computing on graphics process
units, the CPU is considered as a host and the GPU is exposed
as a device coprocessor. This way, each GPU has its own
memory and processing elements that are separate from the
host computer, where data must be transferred between the

memory space of the host and device. Each device processor
supports the single program multiple data (SPMD) model, i.e.
multiple autonomous processors simultaneously execute the
same program on different data.

For achieving this, the notion of kernel is defined. It is a
function callable from the host and executed on the specified
device simultaneously by several processors in parallel. Figure
1 illustrates an example of this concept. Memory transfer from
the CPU to the device memory is a synchronous operation
which is time consuming. Bus bandwidth and latency between
CPU and GPU can significantly decrease performance of a
program. As a consequence, data transfers between the GPU
and the host memory must be minimized to avoid significant
bottleneck.

The adaptation of metaheuristics on GPU requires to take
into account at the same time the characteristics and underlined
issues of the GPU architecture and the parallel models of meta-
heuritics. The main challenge which persists is the efficient
distribution of the search process among the CPU and the
GPU minimizing the data transfer between them. Therefore,
in designing metaheuristics on GPU, one has to identify what
must be performed on CPU and GPU.

V. DESIGN AND IMPLEMENTATION OF A TABU SEARCH ON
GPU

To allow solving Q3AP instances, a tabu search algorithm
using our proposed neighborhood has been considered. Ba-
sically, the tabu search enhances the performance of a local
search method by using memory structures. Indeed, the main
memory structure called the tabu list represents the history
of the search trajectory. In this way, using this list allows to
avoid cycles during the search process. More details of this
algorithm are given in [21].

A. The Proposed GPU-based Algorithm

As quoted above, a GPU is organized following the SPMD
model, meaning that multiple autonomous processors simul-
taneously execute the same program at independent points.
Adapting traditional LS methods to GPU is not a straightfor-
ward task because hierarchical memory management on GPU
has to be handled. As previously said, memory transfers from
CPU to GPU are slow and these copying operations have to
be minimized.

We propose a tabu search on GPU (see algorithm 1) for
the Q3AP in agreement with the previous general GPU model
presented in Section IV (Fig. 1). This algorithm can be seen as
a cooperative model between the CPU and the GPU. Indeed,
the GPU is used as a coprocessor in a synchronous manner.
The resource-consuming part i.e. the generation and evaluation
kernel is calculated by the GPU and the rest is handled by the
CPU.

First of all, at initialization stage, memory allocations on
GPU are made: the input matrices and the candidate solu-
tion of the Q3AP must be allocated (lines 4 and 5). Since
GPUs require massive computations with predictable memory
accesses, a structure has to be allocated for storing all the

Fig. 1. Illustration of the general GPU model.

Algorithm 1 Tabu Search Template on GPU
1: Choose an initial solution
2: Evaluate the solution
3: Initialize the tabu list
4: Allocate the two Q3AP matrices on GPU device memory
5: Allocate a solution on GPU device memory
6: Allocate a neighborhood fitnesses structure on GPU device

memory
7: Copy the two Q3AP matrices on GPU device memory
8: Copy the solution on GPU device memory
9: repeat

10: for each generated neighbor on GPU do
11: Incremental evaluation of the candidate solution
12: Insert the resulting fitness into the neighborhood

fitnesses structure
13: end for
14: Copy the neighborhood fitnesses structure on CPU host

memory
15: Select the best admissible neighboring solution
16: Update the tabu list
17: Copy the chosen solution on GPU device memory
18: until a maximum number of iterations reached

neighborhood fitnesses at different addresses (line 6). Second,
the matrices and the initial candidate solution have to be
copied on the GPU (lines 7 and 8). It is important to notice
that the input matrices are a read-only structure and never
change during all the execution of LS algorithms. Therefore,
their associated memory is copied only once during all the
execution. Third, comes the parallel iteration-level, in which
each neighboring solution is generated, evaluated and copied
into the neighborhood fitnesses structure (from lines 10 to

13). Fourth, since the order in which candidate neighbors are
evaluated is undefined, the neighborhood fitnesses structure
has to be copied to the host CPU (line 14). Then the selection
strategy is applied to this structure (line 15): the exploration
of the neighborhood fitnesses structure is done by the CPU.
Finally, after a new candidate has been selected, this latter is
copied to the GPU (line 17). The process is repeated until a
given number of iterations has been reached.

VI. EXPERIMENTAL RESULTS

A. Effectiveness of the Proposed Neighborhood

Before implementing any metaheuristic on GPU, we need
first to evaluate the impact of our proposed neighborhood
in terms of effectiveness. The following experiment intends
to compare a simple tabu search algorithm with the two
neighborhoods mentioned above for the Q3AP instances. On
the one hand, for the first basic neighborhood addressed in the
literature, a neighbor is obtained by swapping two elements
in either the first or the second permutation. On the other
hand, for our advanced neighborhood, generating a neighbor
consists in exchanging two elements in both two permutations.
The instance Nug15 has been considered and 50 executions
have been performed for each algorithm. The number of
iterations is set to 11025 for the advanced neighborhood and
2315250 for the basic one. This way, a fair comparison is
made in accordance with the number of evaluated solutions
(evaluations). The size of the tabu list is set to m

4 where m
is the size of each neighborhood. Fig. 2 reports the average
evolution of the fitnesses for the instance Nug15 on a Core 2
Duo 2Ghz with an approximate running time of 3 minutes.

From the beginning of the search process, the tabu search
using the advanced neighborhood starts to find more improving
solutions. As the number of iterations grows, our proposed

 2400

 2500

 2600

 2700

 2800

 2900

 3000

 3100

 3200

 0 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08 1.4e+08

F
itn

es
s

Evaluations

Evolution of the fitness in Nug15

Tabu search using a basic neighborhood
Tabu search using an advanced neighborhood

Fig. 2. Comparison of the average evolution of the fitnesses for two different neighborhoods.

neighborhood clearly outperforms the basic one. Indeed, since
more solutions are evaluated at each iteration, designing op-
erators to explore large promising regions of the search space
of the Q3AP allows to improve the quality of the obtained
solutions. Similar results not reported here can be obtained
for the other Nugent instances (Nug8, Nug12, Nug13, Nug18
and Nug22).

B. Effectiveness in Comparison with the Literature

The following experiments intend to measure the effective-
ness of our proposed neighborhood through LS algorithms.
However, although the increase of the neighborhood size
allows to improve the effectiveness for the Q3AP, using such
neighborhood is generally CPU time-consuming. Therefore,
the use of GPU computing provides an efficient complemen-
tary way to speed up the search.

An iterated local search using an embedded tabu search
(ILS-TS) has been implemented on GPU. The iterated local
search (ILS) may be used to improve the quality of successive
local optima provided by TS methods. The principle of the
ILS method consists in perturbing the local optima and re-
considering them as initial solutions [22]. Regarding our ILS-
TS algorithm, the applied perturbation is a random number µ
of swaps in either the first or the second permutation where
µ ∈ [2 : n] (n is the instance size). From an implementation
point of view, since the ILS process consists in a loop over
the TS (thus performed on CPU), adapting this algorithm
according to the proposed TS template on GPU (see Algorithm
1) is straightforward.

The used configuration for experiments is a Core 2 Duo
2GHz laptop with a NVIDIA GeForce 8600M GT where the

number of multiprocessors is equal to 4. This graphic card
has been chosen among others since it represents nowadays a
standard in most of computers.

The number of ILS iterations and the number of TS itera-
tions are respectively equal to 100 to 5000. These values have
been set in accordance with those chosen in [4], [9] to perform
less evaluations in terms of computational time.

The tabu list size is set to m
4 as before. The average

time measurement for 50 executions is reported in seconds
and acceleration factors compared to a standalone CPU are
also considered. The algorithm is stopped when a maximum
number of iterations has been reached or when the optimal/best
known value has been discovered. Average and max values of
the evaluation function have been measured. The number of
successful tries (hits) and the average number of ILS iterations
to converge to the optimal/best known value are also repre-
sented. The associated standard deviation for each average
measurement are shown in sub-index. Since the computational
time is too exorbitant for Nug18 and Nug22, the average
expected time for the CPU implementation is deduced from
the base of one ILS iteration per execution. Table I reports
the obtained results for the ILS-TS using our neighborhood
structure.

In comparison with the literature [4], [9], the obtained
results by the ILS-TS with our proposed neighborhood are
really competitive. Indeed, considering a smaller number of
maximal evaluations (thus less computational time), this al-
gorithm is able to find the optimal/best known value with a
better significant rate success (varying from 62% to 100%) for
most Nugent instances.

Regarding the execution time, the fact to generate and eval-

TABLE I
ILS TABU SEARCH FOR DIFFERENT Q3AP INSTANCES

Instance Optimal/Best known value Average value Max value Hits CPU time GPU time Acceleration ILS iteration
Nug12 580 580.53.4 604 98% 256246 113120 ×2.3 1818
Nug13 1912 1917.615.1 1974 74% 18791568 476309 ×3.9 5736
Nug15 2230 2230 2230 100% 13601216 283301 ×4.8 1515
Nug18 17836 17874.452.8 18026 62% 1744711523 31302117 ×5.6 5938
Nug22 42476 42476 42476 100% 1614714239 26472341 ×6.1 1512

uate the neighborhood in parallel on GPU provides an efficient
way to speed-up the search process in comparison with a
single CPU. Indeed, for the smallest instance Nug12, the GPU
version starts to be faster than the CPU one (acceleration factor
of ×2.2). As long as the problem size increases, the speed-up
grows significantly (up to ×6.1 for the Nug22 instance).

The conclusion from this experiment indicates that the use
of GPU provides an efficient way to deal with large neigh-
borhoods. Indeed, our proposed neighborhood is unpractical
in terms of single CPU computational resources for large
Q3AP instances such as Nug18 or Nug22 (estimated to around
5 hours per run). So, implementing this algorithm on GPU
has allowed to exploit parallelism in such neighborhood and
improve the robustness/quality of provided solutions.

VII. DISCUSSION AND CONCLUSION

Local search algorithms based on large neighborhoods may
allow to enhance the effectiveness and robustness in com-
binatorial optimization [6]. However, their exploitation for
solving real-world problems is possible only by using a great
computational power. High-performance computing based on
GPU accelerators is recently revealed as an efficient way to
use the huge amount of resources at disposal and fully exploit
the parallelism of neighborhoods.

In this paper, we have particularly focused on the design and
the achievement of a new neighborhood for the Q3AP. How-
ever, LS algorithms using such neighborhood is unpractical
on traditional machines because of their high computational
cost. Therefore, the use of GPU-based parallel computing is
required as a complementary way to speed up the search.

GPU computing has thus permitted to design and implement
an iterated tabu search and the obtained results on the Q3AP
are particularly promising in terms of effectiveness. The exper-
iments indicate that GPU computing allows not only to speed
up the search process, but also to exploit large neighborhoods
structures to improve the robustness and the quality of the
obtained solutions.

Regarding the execution time, the reported speedups on a
traditional GeForce 8600M GT (4 multiprocessors) provide
significant results (up to ×6) compared to traditional CPUs.
It is obvious that the efficiency of the iterated tabu search
in terms of acceleration would be drastically enhanced by
choosing sophisticated cards such a GeForce 8800 GTX (16
multiprocessors) or GTX 280 (30 multiprocessors).

Beyond the improvement of the efficiency and the effective-
ness, the parallelism of GPUs allows to push far the limits in
terms of computational resources. As a consequence, a next

perspective is to use a multi-GPU approach to tackle larger
instances. It will consist of partitioning the neighborhood set,
where each partition is executed on a single GPU. That way,
a multi-GPU approach will allow to increase the speed-up of
the exploration space of a given solution. But since each GPU
has its own private memory, managing the context execution
of different GPUs in an efficient way is not a straightforward
task.

Furthermore, the GPU-based re-design of LS metaheuris-
tics will be integrated in the ParadisEO platform [23]. This
framework was developed for the reusable and flexible design
of parallel hybrid metaheuristics dedicated to the mono and
multiobjective optimization. ParadisEO is based on a clear
conceptual separation of metaheuristics concepts, and can be
seen as a white-box object-oriented with reusable components.
The Parallel Evolving Objects (PEO) module of ParadisEO
includes the well-known parallel and distributed models for
metaheuristics such as LS methods. This module will be
extended with multi-core and GPU-based implementations.

REFERENCES

[1] W. P. Pierskalla, “The multi-dimensional assignment problem,” Septem-
ber 1967, technical Memorandum No. 93, Operations Research Depart-
ment, CASE Institute of Technology.

[2] L. K. Rasmussen and B. W. Wicker, “Trellis-Coded, Type-I Hybrid-
ARQ Protocols Based on CRC Error-Detecting Codes,” IEEE Trans.
Commun., vol. COM-43, pp. 2569–2575, Oct. 1995.

[3] P. M. Hahn, B.-J. Kim, T. Stützle, S. Kanthak, W. L. Hightower, Z. D.
H. Samra, and M. Guignard, “The quadratic three-dimensional assign-
ment problem: Exact and approximate solution methods,” European
Journal of Operational Research, vol. 184, pp. 416–428, 2008.

[4] P. M. Hahn, B.-J. Kim, T. Stützle, S. Kanthak, W. L. Hightower,
H. Samra, Z. Ding, and M. Guignard, “The quadratic three-dimensional
assignment problem: Exact and approximate solution methods,” Euro-
pean Journal of Operational Research, vol. 184, no. 2, pp. 416–428,
2008.

[5] E.-G. Talbi, Metaheuristics: From design to implementation. Wiley,
2009.

[6] R. K. Ahuja, J. Goodstein, A. Mukherjee, J. B. Orlin, and D. Sharma,
“A very large-scale neighborhood search algorithm for the combined
through-fleet-assignment model,” INFORMS Journal on Computing,
vol. 19, no. 3, pp. 416–428, 2007.

[7] S. Ryoo, C. I. Rodrigues, S. S. Stone, J. A. Stratton, S.-Z. Ueng, S. S.
Baghsorkhi, and W. mei W. Hwu, “Program optimization carving for
gpu computing,” J. Parallel Distribributed Computing, vol. 68, no. 10,
pp. 1389–1401, 2008.

[8] B.-J. Kim, “Investigation of methods for solving new classes of quadratic
assignment problems (QAPs),” Ph.D. dissertation, University of Penn-
sylvania, 2006.

[9] L. Loukil, M. Mehdi, N. Melab, E.-G. Talbi, and P. Bouvry, “A
parallel hybrid genetic algorithm-simulated annealing for solving q3ap
on computational grid,” in IPDPS. IEEE, 2009, pp. 1–8.

[10] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron,
“A performance study of general-purpose applications on graphics
processors using cuda,” J. Parallel Distributed Computing, vol. 68,
no. 10, pp. 1370–1380, 2008.

[11] C. Tenllado, J. Setoain, M. Prieto, L. Piuel, and F. Tirado, “Parallel
implementation of the 2d discrete wavelet transform on graphics pro-
cessing units: Filter bank versus lifting,” IEEE Transactions on Parallel
and Distributed Systems, vol. 19, no. 3, pp. 299–310, 2008.

[12] J.-M. Li, X.-J. Wang, R.-S. He, and Z.-X. Chi, “An efficient
fine-grained parallel genetic algorithm based on gpu-accelerated,” in
Network and Parallel Computing Workshops, 2007. NPC Workshops.
IFIP International Conference, 2007, pp. 855–862. [Online]. Available:
http://dx.doi.org/10.1109/NPC.2007.108

[13] O. Maitre, L. A. Baumes, N. Lachiche, A. Corma, and P. Collet, “Coarse
grain parallelization of evolutionary algorithms on gpgpu cards with
easea,” in GECCO, F. Rothlauf, Ed. ACM, 2009, pp. 1403–1410.

[14] D. M. Chitty, “A data parallel approach to genetic programming using
programmable graphics hardware,” in GECCO, 2007, pp. 1566–1573.

[15] W. Banzhaf and S. Harding, “Accelerating evolutionary computation
with graphics processing units,” in GECCO (Companion), F. Rothlauf,
Ed. ACM, 2009, pp. 3237–3286.

[16] T.-T. Wong and M. L. Wong, “Parallel evolutionary algorithms on
consumer-level graphics processing unit,” in Parallel Evolutionary Com-
putations, 2006, pp. 133–155.

[17] K.-L. Fok, T.-T. Wong, and M. L. Wong, “Evolutionary computing on
consumer graphics hardware,” IEEE Intelligent Systems, vol. 22, no. 2,
pp. 69–78, 2007.

[18] A. Janiak, W. A. Janiak, and M. Lichtenstein, “Tabu search on gpu,” J.
UCS, vol. 14, no. 14, pp. 2416–2426, 2008.

[19] W. Zhu, J. Curry, and A. Marquez, “Simd tabu search for the quadratic
assignment problem with graphics hardware acceleration,” International
Journal of Production Research, 2008.

[20] T. V. Luong, N. Melab, and E.-G. Talbi, “Parallel Local Search on
GPU,” INRIA, Research Report RR-6915, 2009. [Online]. Available:
http://hal.inria.fr/inria-00380624/en/

[21] F. Glover, “Future paths for integer programming and links to artificial
intelligence,” Computers and Operations Research, vol. 13, no. 5, pp.
533–549, 1986.

[22] T. Stützle, “Iterated local search for the quadratic assignment problem,”
European Journal of Operational Research, vol. 174, no. 3, pp. 1519–
1539, 2006.

[23] S. Cahon, N. Melab, and E.-G. Talbi, “ParadisEO: a Framework for the
Reusable Design of Parallel and Distributed Metaheuristics,” Journal of
Heuristics, vol. 10, pp. 353–376, 2004, kluwer Academic Publishers.

