
HAL Id: inria-00520604
https://inria.hal.science/inria-00520604

Submitted on 23 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Importing HOL Light into Coq
Chantal Keller, Benjamin Werner

To cite this version:
Chantal Keller, Benjamin Werner. Importing HOL Light into Coq. ITP - Interactive Theorem
Proving, First International Conference - 2010, Jul 2010, Edimbourg, United Kingdom. pp.307-322.
�inria-00520604�

https://inria.hal.science/inria-00520604
https://hal.archives-ouvertes.fr

Importing HOL Light into Coq

Chantal Keller1,2 and Benjamin Werner2

1 ENS Lyon
2 INRIA Saclay–Île-de-France at

École polytechnique
Laboratoire d’informatique (LIX)

91128 Palaiseau Cedex
France

keller@lix.polytechnique.fr werner@lix.polytechnique.fr

Abstract. We present a new scheme to translate mathematical devel-
opments from HOL Light to Coq, where they can be re-used and re-
checked. By relying on a carefully chosen embedding of Higher-Order
Logic into Type Theory, we try to avoid some pitfalls of inter-operation
between proof systems. In particular, our translation keeps the mathe-
matical statements intelligible. This translation has been implemented
and allows the importation of the HOL Light basic library into Coq.

1 Introduction

1.1 The curse of Babel?

Proof-systems are software dedicated to the development of mechanically checked
formal mathematics. Each such system comes with its own logical formalism,
its own mathematical language, its own proof language and proof format, its
own libraries. A consequence is that it is largely impossible to reuse a formal
development of one system in another, at least not without a re-implementation
requiring important amounts of human work and skills.

This situation is about as old as proof-systems themselves, has often been
deplored and is mostly felt as a modern form of the curse of Babel.

On the other hand, if the large number of human languages sometimes hinders
comprehension between people, it also gives them a broader set of means to
express themselves. It is well known that many subtleties of an original text are
often “lost in translation”. A similar point can be made in the case of formal
mathematics: certain formalisms and systems can allow smoother developments
of, say, real analysis, while others will be more at ease with fields involving large
combinatorial case analyzes.

For these reasons, automatic translation between proof-systems is a tempting
and old idea. It has, however, been hindered by various theoretical and practical
obstacles. We here describe a new attempt that opens new possibilities. The
ideas underlying this work are:

– We focus on one particular case, the translation from HOL Light to Coq.

– This work is specific to this case, and builds upon a careful study of the
logical formalisms of both systems and the way they are implemented.

– In this particular case, we provide a good translation, in the following sense:
the statements of the theorems translated from HOL Light remain intelligible
and can be incorporated into further developments made in Coq.

1.2 Embedding Higher-Order Logic into Coq

As it is often the case when logic meets implementation, there are two aspects
in this work:

1. The choice of logical embedding: in our case, statements and proofs of HOL
Light have to be translated into counterparts in Coq’s type theory. For in-
stance, one often distinguishes between deep and shallow embeddings. The
choice of this translation is central and will be discussed below.

2. The way to actually implement this translation. This will depend on issues
like the way the two systems represent proofs, whether the translating func-
tion processes proof objects or proof scripts, etc. . .

Deep and shallow embeddings In order to represent terms from one logical
framework A inside another formalism B, we have two possible ways:

– A deep embedding: define data-types in B that represent types and terms of
A; we can then define, inside B, what it means to be provable in A.

– A shallow embedding: represent types and terms of A using their counter-
parts in B; this translation must preserve provability.

A deep embedding can ease things on the implementation side: we have access
to the structure of the terms, and we can reason about them. Furthermore, the
data types serve as a well-defined interface between the two systems.

However, our ultimate aim is to obtain actual Coq theorems3. For that, we
concretely need a shallow embedding. In a previous work by F. Wiedijk [20],
theorems from HOL Light were directly translated through a shallow encoding.
Wiedijk observed that automation was difficult to perform that way. Further-
more, and although he used a shallow embedding, the theorems he obtained were
still somewhat awkward in Coq. For instance, we would like to see the theorem
∀a, ∃b, a = b to be translated in Coq in forall (A:Type)(a:A), exists b, a

= b whereas Wiedijk obtains forall (A:hol_type), hol_thm (hol’’forall

A (hol_Abs A hol’’bool (fun (a:A)=> hol’’exists A (hol_Abs

hol’’bool (fun (x:A)=> hol’’eq A x a))))).
To avoid these pitfalls, we are going to obtain this shallow encoding going

through a deep one. Frameworks like type theories allow to lift a deep embedding
into a shallow one. This operation is called reflection from a proof theoretic point

3 If John Harrison provides us with, say, Wiles’ proof of Fermat’s theorem in HOL

Light, we want to translate it to the “real” Coq formulation of this famous result,
and not the theorem “Fermat’s theorem as stated in HOL is provable in HOL”.

of view; through a proofs-as-programs perspective it can be understood as a
compilation operation and corresponds to one of the two steps of normalization

by evaluation (NbE) [7]. In this work we adapt a previous formalization of NbE
in Coq [12].

To conclude, from HOL Light, we get deeply embedded terms; then we trans-
late them into Coq theorems using a process similar to the computation part of
normalization by evaluation.

Motivations and difficulties Embedding the Higher-Order Logic into Coq

means defining a model of this logical framework, and so proving its coherence.
The confidence we can have about the HOL Light theorem prover is thus in-
creased. And this is enforced by the ability we have to check in Coq the theorems
that were proved in HOL Light.

When translating theorems from HOL Light to Coq, we will have to take into
account the differences between the two systems: as they often make different
choices in the way a same mathematical corpus is formalized, one can therefore
fear that a translated theorem is difficult to reuse in the target system, or that
its statement becomes obscured.

Finally, one expects such a translation to be robust to changes in both proof-
systems, and to be as efficient as possible in terms of time and memory con-
sumption.

1.3 Related work

Interaction between HOL and Coq There already have been some attempts
to share proofs between HOL systems and Coq, some of which are being devel-
oped now. One solution is to rely on an independent tool that will, at the same
time, check the proof and perform the translation [9, 2]. Closer to our approach,
it is conceivable to transform a theorem in the HOL system into a theorem in
Coq, and check it in Coq, using its HOL proof as a guideline. F. Wiedijk [20] ob-
served that directly using a shallow encoding was hard to automate and resulted
in rather unintelligible theorems in Coq.

Recording and exporting HOL proofs Efficient systems to record and ex-
port HOL proofs have already been developed, both for the HOL prover [21]
and for HOL Light [19, 17]. These works pursue the same motivations as ours:
to import HOL proofs into a theorem prover. Since Obua’s tool [19] is far more
stable and easier for a direct exportation to Coq, we reused his code on the HOL
Light side (proof recording), and changed the exportation side to a Coq format.
These changes are now distributed with the development version of HOL Light4.

4 The development version of HOL Light is currently available at http://hol-light.
googlecode.com/svn/trunk

1.4 Outlines

In the next section, we see the main characteristics of HOL Light and Coq that
serve our work. Section 3 is dedicated to the major part of our work: constructing
a deep embedding of the HOL Light logic into Coq, that is defining data structures
that represent types, terms and derivations of HOL Light. To relate this to our
main goal, we have to work on two levels:

– Upstream: we record and export HOL Light proofs into this encoding.
– Downstream: inside Coq, we construct a lifting from the deep embedding to

a shallow embedding. Each HOL Light construction is mapped to its Coq

counterpart. Besides, we prove that each time we have a Coq object rep-
resenting a correct HOL Light derivation, its translation is a correct Coq

theorem (Section 4).

This way, from a proof tree imported from HOL Light, we can reconstruct a
theorem statement and its proof, using reflection.

We develop some aspects of the way to obtain reasonable performances in
Section 5, thus obtaining the results described in Section 6. Finally, we discuss
our approach and its perspectives.

2 HOL Light and Coq

HOL Light [15] and Coq [6] are two interactive theorem provers written in OCaml

[18]. Although the ancestries of Coq and HOL Light can both be traced back to
LCF, there are important differences, between the logical formalisms as well as
in the way they are implemented. For obvious matters of space, we here do not
give a complete description of the two systems, but underline differences which
are crucial for the translation.

A more detailed comparison between HOL [14] and Coq has been established
in [22] and enhanced in [9]. These studies also apply to HOL Light, which mainly
differs from HOL by its smaller implementation.

2.1 The status of proofs

Proof systems like Coq and HOL Light share the same goal: to construct a formal
proof. However, the status of these constructions is different in the two systems.
This difference is directly related to the two formalisms.

HOL Light implements a variant of Church’s Higher-Order Logic. A proof
is a derivation in natural deduction. In the example below, Γ and ∆ are sets of
hypotheses; s, t, u and x are objects of some well chosen types:

Γ ⊢ s = t ∆ ⊢ t = u

Γ ∪∆ ⊢ s = u
trans

⊢ x = x
refl

Γ ∪∆ ⊢ s(x) = u(x)
mk comb

While such a derivation has an obvious tree structure, it is not constructed as
such in the system’s memory. HOL Light represents statements like Γ ⊢ s = t as
objects of an ML abstract data type thm. The fact that this data type is abstract
is the key to the system’s safety5: the only way to construct objects of type thm
are well-understood primitive tactics corresponding to primitive inference rules.
Thus, if a statement Γ ⊢ P can be represented in thm, it is indeed a theorem.

Coq implements a Type Theory where proofs are objects of the formalism6.
More precisely, “being a proof of P” is identical with “being of type P”, and as
a consequence, the statements of the theory are of the form Γ ⊢ t : P .

This results in a very different architecture and safety model:

– The type-checker is the safety critical part of the system, its trusted comput-

ing base.
– Theorems are constants: the statement is the type and the body is the proof.

Proofs are thus kept in the system’s memory and can be re-checked.

Consequences Since Coq keeps proof-objects while HOL Light does not, we
need to build these objects at some point in the translation process. The trans-
lated proofs can have a critical size. We will see below that this requires special
care.

2.2 Computations and equality

In both formalisms, the objects are strongly normalizing typed λ-terms. The
way normalization is performed is very different however. Coq allows to type
actual functional programs: its objects include a purely functional and termi-
nating kernel of ML. This leads to some computation over terms, and a notion
of convertibility between β-equivalent terms. In HOL Light, no computation is
performed, and two β-equivalent terms are only provably equal.

Let us take an example.
In Coq, addition over unary natural numbers is defined as the usual program:

Fixpoint plus (n m : nat) : nat := match n

with | O => m | S p => S (plus p m) end.

Such programs come with a notion of computation, which defines a notion
of intentional equality. In this case, extended β-reduction yields (with some syn-
tactic sugar) 2 + 2⊲β 4 and thus 2 + 2 =c 4.

Like in all Martin-Lf type theories, these, possibly complex, computations
are taken into account in the formalism by the specific conversion rule:

(Conv)
Γ ⊢ t : A Γ ⊢ B : s

Γ ⊢ t : B
(if A =c B)

5 And to the safety of related systems (LCF, HOL).
6 This is one aspect of the Curry-Howard isomorphism; another aspect is that the
Type Theory is constructive, but this point is less central here.

As a consequence, computations are omitted in the proof; for instance the
propositions even(2 + 2) and even(4) have exactly the same proofs.

Another consequence is that Coq and similar type theories need a notion of
propositional equality which is distinct from the computational relation =c.

In HOL Light, on the other hand, one will prove the existence of addition,
that is of a function verifying the properties 0+ x = x and S(x) + y = S(x+ y).
The equality predicate is the way to construct atomic propositions, and all con-
structions (∧,∨,⇒ connectors, quantifiers. . .) are defined through combinations
of equality and, in some cases, the ε-operator.

HOL Light’s equality has specific rules corresponding to reflexivity, transitiv-
ity, extentionality, β and η-equivalence.

Consequences On the one hand, in Coq, the length of a proof can be reduced
by maximizing the computational part, which does not appear in proofs. This
principle is called computational reflection. In our development, proofs of the
theorems that are imported from HOL Light use these computational capabilities
of Coq.

On the other hand, in HOL Light, the absence of computation leads to big
proofs. The advantage is that we avoid the implementation of a β-reduction
over our representation of HOL Light’s λ-terms and a conversion rule, really
simplifying de facto proof checking.

2.3 Treatment of constants

Constants, that is the ability to have definitions, are essential to any mathemati-
cal development. Precisely because of the different statuses of equality, constants
are treated differently in the two systems.

In Coq, constants are treated through the computational equality and the
conversion rule. Whenever a constant is defined:

Definition c : A := body.

a new object c of type A is added to the environment, and the computational
equality is extended by c =c body.

In HOL Light, constant unfolding is explicitly handled by the equality pred-
icate. The corresponding definition will also yield an object c of type A, together
with a theorem stating that c = body.

Consequences The fact that constants in HOL Light are unfolded only by
invoking a specific theorem will turn out to be very convenient: it will allow us
to map specific constants to previously defined Coq objects (see Section 4.3).

2.4 Classical logic

Whereas Coq’s intentional type theory is constructive, HOL Light’s logic is:

– Extensional: the η-equivalence is assumed (and functional extensionality can
be deduced from it in HOL Light).

– Classical: propositions are actually boolean terms; thus propositional exten-
sionality is true by definition; furthermore the axiom of choice is assumed
via the introduction of a primitive Hilbert ε-operator.

Consequences Given the fact that the classical reasoning is deeply embedded
in HOL Light logic, there seems to be no alternative but to assume corresponding
axioms in Coq (excluded middle, choice operator, extentionality). Indeed, we
need to apply them when proving the coherence of HOL Light in Coq.

2.5 Type definitions

In Coq, type definitions are just regular definitions or inductive definitions. In
HOL, there is no primitive notion of induction, and since types have a different
status than terms, type definitions have to be handled specifically.

A user can define new types in different ways involving facilities such as
induction, but they all rely on one mechanism: the schema of specification. This
is implemented by the primitive rule new_basic_type_definition, which, given
a property P : A → bool, a term x : A such that ⊢ P x holds, defines the type
B = {y : A|P y}, and two constants (in the sense of section 2.3): the canonical
injection from B to A and the injection from A to B whose behavior is specified
only for elements y such that P y holds.

Consequences All the types in HOL Light are inhabited, since the base types
are inhabited and a type definition has to be inhabited because we require ⊢ P x.
This is useful to define the ε operator in a proper way without a condition of
non-emptiness on the type.

3 Deep embedding: representing Higher-Order Logic in

Coq

In this section, we represent Higher-Order Logic in Coq. The main originality is
the computational definition of deduction at the end of the section. The basic
definitions are quite standard, but some care is needed in order to make the later
developments tractable and to keep memory consumption as low as possible as
well as the computations efficient enough. In particular, it is mandatory to have
explicit definitions.

Our encoding uses the SSReflect tactics and libraries package developed by
G. Gonthier et al. [13], but the level of details of this paper does not allow us to
make clear how crucial this is.

3.1 Types and terms

Names We need names for variables and definitions both for types and terms.
These names have to be in an infinite countable set over which equality is decid-
able. For efficiency reasons, we chose positive, the Coq representation of binary
natural numbers greater than 1.

In the rest of the paper, idT, defT, idV and defV, respectively representing
types variables, types constants, terms variables and terms constants, stand for
positive.

Types For types, we need variables and definitions, and we give a specific status
to the two primitive definitions of HOL Light: bool and the functional arrow. A
previously defined type is accessed through its name and the list of its arguments.

Inductive type : Type :=

| TVar : idT → type | Bool : type

| Arrow : type → type → type

| TDef : defT → list_type → type

with list_type : Type :=

| Tnil : list_type

| Tcons : type → list_type → list_type.

Terms Terms are defined straightforwardly as an inductive type. For bound
variables, we use a locally nameless representation [5], which is simpler to reason
about than a named representation. As for types, we distinguish some primitive
term definitions: the equality, the ε choice operator, and the logical connectives.
We group them together under the type cst, and obtain for terms this definition:

Inductive term : Type :=

| Dbr : nat → term | Var : idV → type → term

| Cst : cst → term | Def : defV → type → term

| App : term → term → term

| Abs : type → term → term.

Typing This is our first use of computational reflection. Rather than defining
typing judgments as an inductive relation, we directly define [12] a typing algo-
rithm. Given a De Bruijn context (a list of types) g and a term t, the function
infer returns the type of t under the context g if it exists, and fails otherwise.
wt g t A means that this term has type A under g, and is just a shortcut for
“infer g t returns A”. Since we consider simply typed terms, the definition of
infer is easy.

3.2 Derivations

We now define HOL Light’s logical framework. Typically, Coq’s induction process
and dependant types are well-suited to represent such judgments. Here is an
extract of the inductive data-type that represents HOL Light derivations):

Inductive deriv : hyp_set → term → Prop :=

| Drefl : forall t A, wt nil t A → deriv

hyp_empty (heq A t t)

| Dconj: forall h1 h2 a b, deriv h1 a → deriv

h2 b → deriv (hyp_union h1 h2) (a hand b)

| Dconj1: forall h a b, deriv h (a hand b) →
deriv h a

| Dconj2: forall h a b, deriv h (a hand b) →
deriv h b

| ...

It would however be impractical to have HOL Light generate such derivations.
They would be too verbose and difficult to build (for Drefl, how to prove wt

nil t A?). Obua [19] notices that it is sufficient to build a far more compact
skeleton of the tree. This skeleton carries only minimal information; typically
which inference rules have been used.

Following his code, we record proofs in HOL Light using an ML recursive type
that represents this skeleton (which means this structure uses no dependent types
anymore). We then export it straightforwardly into its twin Coq inductive type:

Inductive proof : Type :=

| Prefl : term → proof

| Pconj : proof → proof → proof

| Pconjunct1 : proof → proof

| Pconjunct2 : proof → proof

| ...

These twin OCaml and Coq types thus establish the bridge between HOL Light

and Coq.
This structure is typed too loosely to guarantee the correctness of the deriva-

tion. Some objects of type proof do not correspond to actual proofs. For in-
stance, Pconjunct1 stands for the elimination rule of ∧ on the left. Its argument
should be a proof of a theorem that looks like Γ ⊢ A∧B, but this is not enforced
in the proof inductive type.

However, a skeleton is sufficient to reconstruct a complete derivation when it
exists, by making the necessary verifications. This is the job of the proof2deriv
function:

– If p is a well-formed proof, then proof2deriv p returns h and t, and we can
establish that deriv h t stands (this is lemma proof2deriv_correct).

– If not, proof2deriv fails.

Once more computational reflection is used to deduce deriv h t from a proof.

4 Going from the deep embedding to Coq terms

In the previous section, we show how to export HOL Light proofs and obtain in
Coq objects of type deriv h t for a certain h and t, that is to say deeply written
theorems. To interact with Coq theorems, we want to have a shallow reading of
these theorems. That is why we define a translation from deep to shallow.

This translation has already been implemented in [12] for a simply typed
λ-calculus with only named variables. Here it is trickier with De Bruijn indices
and definitions.

4.1 General idea

For the moment, we suppose given an interpretation function I to interpret
variables and definitions names. Its meaning is detailed in Section 4.3.

We first define [•]I , a translation function on types, that maps, for instance,
Bool to Prop and the arrow to the arrow of Coq (see its precise typing below).
We then define | • |I , a translation function on terms, that respects their types.
Informally, it means that when a term t has type T , then |t|I belongs to [T]I :

if Γ ⊢ t : T then |t|I ∈ [T]I

4.2 Implementation

It is important for all the types in HOL Light to be inhabited, as we noticed
in Section 2.5. We now cope with this by stating that the translation of a type
must be an inhabited Type. Inhabited Types can be represented by a record:

Record type_translation : Type :=

mkTT {ttrans :> Type; tinhab : ttrans }.

The translation function [•]I , a.k.a. tr_type, maps a HOL type to a
type_translation:

tr_type: forall I, type → type_translation

The translation function | • |I , a.k.a. sem_term, is as a refinement of the
typing function infer (see Section 3.1). In addition to typing a term, it gives its
Coq translation (note that its definition is eased by the use of dependant types):

sem_term : context → term →
option {ty: type & forall I, tr_type I ty}

4.3 The interpretation functions

Variables We have three kinds of variables to interpret: type variables, named
term variables and De Bruijn indices. We map each of them to Coq objects with
respect to their types.

Definitions The interpretation of definitions is a key point to preserve the
intelligibility of theorems. Interpretation for types and terms definitions are re-
spectively defined by:

Definition type_definition_tr := defT →
list type_translation → type_translation.

Definition term_definition_tr :=

defV → forall (A: type), tr_type I A.

Imagine we have a HOL Light term t bringing into play objects of type num, the
type for natural numbers defined with zero (_0) and successor (SUC). If we apply
sem_term to t with an object of type type_definition_tr that maps (num,[])
to nat and a object of type term_definition_tr that maps (_0,num) to O and
(SUC,num→num) to S, we obtain a Coq term that corresponds to t, but it is a
standard Coq theorem, and it would have been written that way directly in Coq.

Besides, this process is fully flexible: if instead of nat, we map num to N, the
Coq type for binary natural numbers, then we get the same term in this different
formalism of naturals.

Notation In the remaining of the article, the interpretation functions are still
abbreviated as I.

4.4 Adequacy of derivations w.r.t. semantics

We can now establish that this translation applied to correct HOL Light deriva-
tions produce correct Coq theorems. By a correct Coq theorem, we mean a term
that is locally closed, has type Bool, and whose translation is a correct Coq

proposition whatever the interpretation functions might be:

Definition has_sem (t: term) : Prop :=

match sem_term nil t with

| Some (existT Bool evT) ⇒ forall I, evT I
| _ ⇒ False end.

We can establish the following theorem:

Theorem sem_deriv : forall (h: hyp_set) (t:

term), deriv h t → forall I, sem_hyp I h →
has_sem I t.

where sem_hyp I h checks that has_sem I holds for each term of h. Since
has_sem is a function, the proofs of the translated theorems are computationally
reflexive again.

Conclusion of parts 3 and 4 When a theorem is being proved in HOL Light, its
proof is recorded. It can be exported as an object p: proof that we expect to be
correct (because it comes from a HOL Light proof). Given this object, we define a

set of hypotheses h and a conclusion t with proof2deriv. proof2deriv_correct
gives a computationally reflexive proof that these objects correspond to a deriva-
tion. If h is empty, we can apply has_sem to t, to get the Coq version of this
theorem (which is very close to one would have written directly in Coq), and we
have a computationally reflexive proof of this theorem applying sem_deriv.

5 Improving efficiency

As such this process allows, in principle, to import HOL Light theorems and
to check them. . . In practice, it would take too much time and use too much
memory. We stopped when the exported files reached 200 Gb; Obua reports a
similar experience [19].

5.1 Sharing

Proofs Obua uses the natural sharing for proofs that comes from the user:
when a piece of proof is used more than twice, it is shared. This sharing is not
optimal, and it depends on the user’s implementation, but it is very simple, it
does not need too much memory (using a hash-table to perform hash-consing
on proofs would really increase the memory consumption), and it is sufficient to
considerably reduce the size of the exported files.

In Coq, this sharing is kept by adding one constructor to the inductive type
proof:

Inductive proof : Type :=

|...| Poracle : forall h t, deriv h t → proof.

For each proof coming from HOL Light, the corresponding derivation is immedi-
ately computed. It can be called in a following proof thanks to the constructor
Poracle.

Types and terms We share types and terms using standard hash-consing
presented in [10].

5.2 Opaque proofs

In Coq, even with sharing, objects of type proof can be arbitrary big. Our idea
to avoid keeping them in memory is to:

– distribute the theorems coming from HOL Light into separate files, and when
compiling the (n+ 1)th file, load only the statements of the theorems of the
first n files, but not the opaque proofs (this can be done with the option
-dont-load-proofs of Coq’s compiler);

– put the objects of type proof inside Coq opaque proofs.

5.3 Computation

In addition to its internal reduction mechanism, Coq includes an optimized
bytecode-based virtual machine to evaluate terms. It is less tunable, but rather
more efficient that the internal mechanism. It is well suited for the full evaluation
required by computational reflection.

6 Results

6.1 Implementation

Our implementation is free software and can be found online [1]. Looking back
at the two main objectives of this work, efficiency and usability, we observe some
limitations to the first goal, while the second one is rather fulfilled.

6.2 Tests

The tests were realized on a virtual machine that is installed on a DELL server
PowerEdge 2950, with 2 processors Intel Xeon E5405 (quad-core, 2GHz) and 8
Gb RAM, with CentOS (64 bits). We are able to import and to check in Coq

HOL Light proofs from:

– The standard library: what is loaded by default when launching HOL Light.
– The Model directory: a proof of consistency and soundness of HOL Light in

HOL Light [16] (which, again, enforces the confidence in HOL Light).
– The elementary linear algebra tools developed in Multivariate/vectors.ml.

The results are summed up in Table 1. For each benchmark, we report the
number of theorems that were exported, the number of lemmas generated by
sharing, the time to interpret theorems and record their proofs in HOL Light,
the time to export theorems to Coq, the time of compilation in Coq, the size of
the generated Coq files, the maximal virtual memory used by OCaml, and the
maximal virtual memory used by Coq. In the next two paragraphs, we analyze
the origins of compilation time and memory consumption, and present some
possible solutions.

Time and memory in Coq Our proof sharing system has the major drawback
to lead to a complete blow-up of the number of exported statements, as the first
two columns of Table 1 attest. Moreover, all these statements need to be kept
in memory because all the theorems depend on one another.

The time of Coq’s compilation thus cannot be less than quadratic in the
number of Coq files, since compiling the (n + 1)th file imports files 1 to n. The
other operations that are expensive in time are:

– the parsing of the proof objects;
– the evaluation of the computationally reflexive proofs.

Bench.
Number Time Memory

Theorems Lemmas Rec. Exp. Comp. H.D.D. Virt. OCaml Virt. Coq

Stdlib 1,726 195,317 2 min 30 6 min 30 10h 218 Mb 1.8 Gb 4.5 Gb

Model 2,121 322,428 6 min 30 29 min 44h 372 Mb 5.0 Gb 7.6 Gb

Vectors 2,606 338,087 6 min 30 21 min 39h 329 Mb 3.0 Gb 7.5 Gb

Table 1. Benchmarking the standard library and Model.

Concerning this last item, it is important to notice that Coq’s virtual machine
can run such a big computation. Computational reflection sounds thus a good
way to import proofs, at least in Coq.

In other words: sharing limits the memory consumed by proof objects, but
the resulting number of statements then becomes a problem. The compilation
time is not too restrictive, since the incoming theorems have to be compiled once
for all. Moreover, it requires far less human work to automatically export some
theorems and compile it with our tool than to prove them from scratch in Coq.
Memory is a large limitation for a user though, since he or she needs to import
all the Coq files even to use only the last theorem. It would be convenient to be
able not to load the intermediary lemmas, but it does not seem possible with
our present proof objects implementation.

Memory in OCaml The fact that proofs are kept is not the only limiting factor
for OCaml’s memory: during exportation, we create big hash-tables to perform
hash-consing and to remember theorem statements. If we keep the present proof
format, we definitely would have to reduce the extra-objects we construct for
exportation.

Conclusion Now that we have something reliable for a rather simple proof
format, a next step is to switch to a more compact format such as the ones
presented in [8] or [17].

6.3 Usability

We now give an example from integer arithmetic of an interaction between HOL

Light and Coq’s theorems. We map HOL Light’s definitions as stated in Table

2.
Given the usual notation to say “a divides b”:

Notation "a|b" := (Nmod b a = 0).

we import the theorem MOD_EQ_0 from HOL Light:

HOL Light num + * DIV MOD

Coq N Nplus Nmult Ndiv Nmod

Table 2. Mapping of definitions. In Coq, N is the type of binary natural numbers, and
is defined in NArith. In HOL Light, num is the type of unary natural numbers.

Theorem hollight_MOD_EQ_0_thm :

forall x x0 : N, x0 <> 0 →
x0 | x = (exists a : N, x = a * x0).

and combine it with one Coq’s theorem using tactics to prove:

Lemma div_mult : forall a b, a <> 0 → a | b →
forall k, a | k*b.

The proof is only five lines long, because it is straightforward from
hollight_MOD_EQ_0_thm. As Coq’s standard library does not have any lemmas
about division and modulo in N, proving this statement from scratch would
certainly not be trivial.

7 Conclusion and future work

The new way to translate theorems and proofs from HOL Light to Coq presented
in this paper fills the gap between those two interactive theorem provers. We
solve both theoretical and practical problems coming from the different frame-
works the two provers are based on. Relying on the computational power of Coq
(reflection), our translation is both able to restore theorems meanings in Coq

and give a small proof of them.
The implementation scales up to non trivial libraries. We are limited by usual

performance issues, but at a much later point. To manage to import even larger
developments, like the geometric properties used in the Flyspeck project [3], we
need to reduce compilation time and virtual memory used. This may be possible
by improving the proof format and changing the way we perform sharing.

Possible future directions include:

– translating HOL proofs to other systems with rich computation capabilities;
– integrating other external tools in Coq, such as other interactive theorem

provers or automatic theorem provers, without compromising its soundness.

Acknowledgments We are particularly grateful to Carlos Simpson who sug-
gested the use of normalization by evaluation for translating HOL proofs to
Coq and provided the stimulus for this work. We also thank John Harrison and
Steven Obua who provided useful help with the code of HOL Light. We finally
thank the anonymous reviewers for their useful remarks.

References

1. Our implementation, http://perso.ens-lyon.fr/chantal.keller/Recherche/

hollightcoq.html

2. Dedukti, a universal proof checker, http://www.lix.polytechnique.fr/dedukti
3. The Flyspeck project, http://www.flyspeck-blog.blogspot.com
4. Aagaard, M., Harrison, J. (eds.): Theorem Proving in Higher Order Logics, 13th

International Conference, TPHOLs 2000, Portland, Oregon, USA, August 14-18,
2000, Proceedings, Lecture Notes in Computer Science, vol. 1869. Springer (2000)

5. Aydemir, B., Charguéraud, A., Pierce, B., Pollack, R., Weirich, S.: Engineering
formal metatheory. In: Necula, G., Wadler, P. (eds.) POPL. pp. 3–15. ACM (2008)

6. Barras, B., Boutin, S., Cornes, C., Courant, J., Filliatre, J., Gimenez, E., Herbelin,
H., Huet, G., Munoz, C., Murthy, C., et al.: The Coq proof assistant: reference
manual. Rapport technique - INRIA (2000)

7. Berger, U., Schwichtenberg, H.: An inverse of the evaluation functional for typed
lambda-calculus. In: LICS. pp. 203–211. IEEE Computer Society (1991)

8. Berghofer, S., Nipkow, T.: Proof terms for simply typed higher order logic. In:
Aagaard and Harrison [4], pp. 38–52

9. Denney, E.: A prototype proof translator from hol to coq. In: Aagaard and Harrison
[4], pp. 108–125

10. Filliâtre, J.C., Conchon, S.: Type-safe modular hash-consing. In: Kennedy, A.,
Pottier, F. (eds.) ML. pp. 12–19. ACM (2006)

11. Furbach, U., Shankar, N. (eds.): Automated Reasoning, Third International Joint
Conference, IJCAR 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings,
Lecture Notes in Computer Science, vol. 4130. Springer (2006)

12. Garillot, F., Werner, B.: Simple types in type theory: Deep and shallow encodings.
In: Schneider, K., Brandt, J. (eds.) TPHOLs. Lecture Notes in Computer Science,
vol. 4732, pp. 368–382. Springer (2007)

13. Gonthier, G., Mahboubi, A.: A Small Scale Reflection Extension for the Coq sys-
tem. Tech. rep., INRIA (2007)

14. Gordon, M., Melham, T.: Introduction to HOL: A theorem proving environment
for higher order logic. Cambridge University Press New York (1993)

15. Harrison, J.: HOL Light: A tutorial introduction. In: Srivas, M., Camilleri, A. (eds.)
FMCAD. Lecture Notes in Computer Science, vol. 1166, pp. 265–269. Springer
(1996)

16. Harrison, J.: Towards self-verification of HOL Light. In: Furbach and Shankar [11],
pp. 177–191

17. Hurd, J.: OpenTheory: Package Management for Higher Order Logic Theories.
PLMMS09 p. 31 (2009)

18. Leroy, X.: The OCaml Programming Language (1998)
19. Obua, S., Skalberg, S.: Importing HOL into Isabelle/HOL. In: Furbach and Shankar

[11], pp. 298–302
20. Wiedijk, F.: Encoding the HOL Light logic in Coq. Unpublished notes (2007)
21. Wong, W.: Recording and checking HOL proofs. In: Schubert, E., Windley, P.,

Alves-Foss, J. (eds.) TPHOLs. Lecture Notes in Computer Science, vol. 971, pp.
353–368. Springer (1995)

22. Zammit, V.: A comparative study of Coq and HOL. In: Gunter, E., Felty, A. (eds.)
TPHOLs. Lecture Notes in Computer Science, vol. 1275, pp. 323–337. Springer
(1997)

