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1. Introduction

In a recent paper (see [2]) the authors have introduced a new functional of calculus of

variations to preserve point-like and curve-like singularities in biological images corrupted by

noise. More precisely the energy they deal with, was the following

F(u) : =

∫
Ω
f(∆u)dx+

∫
Ω
f∞(

dµa

d|µa|
)d|µa|+

∫
Ω
f∞(

dµ0

d|µ0|
)d|µ0|+

∫
Ω
g(∇u)dx

+

∫
Ω
|u− u0|2dx,(1.1)
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where Ω ⊂ RN , N ∈ {2, 3}, u ∈ ∆Mp(Ω) with 2N
N+2 ≤ p < N

N−1 . ∆Mp(Ω) is the space of

W 1,p
0 -functions whose gradient is an Lp-vector �eld with distributional divergence given by a

Radon measure; the measures µa, µ0 are given by the p-capacitary decomposition applied to

the singular part of the divergence measure of ∇u, that is

Div∇u = ∆udx+ µa + µ0;

dµa

d|µa| ,
dµ0

d|µ0| are the Radon-Nikodym derivatives of the measures µa and µ0 with respect to

their total variation The restriction p < N
N−1 is needed to allow singularities on curves and

points (see [3, 15] on this issue). The integrands f , g are convex functions and f∞ is the

recession function (see Section 2 for a precise de�nition of all these quantities and references

on p-capacity). Finally u0 is a given data. In [2], under suitable growth assumptions on the

integrands f and g, an existence result was proven. It was also shown that functional (1.1)

coincides with the lower semicontinuous envelope, with respect to W 1,p
0 (Ω)-weak convergence

of the following functional

F (u) :=

{∫
Ω f(∆u)dx+

∫
Ω g(∇u)dx+

∫
Ω |u− u0|2dx on W 1,p,1

0 (Div; Ω),

+∞ on ∆Mp(Ω) \W 1,p,1
0 (Div; Ω).

W 1,p,1
0 (Div; Ω) is the space of W 1,p

0 -functions whose gradient is an Lp-vector �eld whose dis-

tributional divergence is a L1-function.

For the applications it can be crucial to allow a dependence with respect to the spatial

variable x in the integrand f . Indeed in the damaged image reconstruction problem one might

like to emphasize the singularities contained in a given region of Ω by giving appropriate

values to the integrand. Moreover such x-dependence, in most cases, does not satisfy strong

regularity property, as strong di�erentiability for instance. Typical examples are integrand of

type f(x, ξ) = a(|x|)f(ξ). For instance when ξ = ∇u (i.e. in the BV -setting) anisotropic total

variation has important applications in image processing problems such as edge linking (see

[5]). Therefore it makes sense, even from an experimental point of view, to consider integrand

of type f(x,∆u). However in this work we have limited ourselves to a pure theoretical analysis.

We refer to [2] for numerical applications in the isotropic case.

As a �rst step in view of integral representation formula, it is natural to investigate lower

semicontinuity property when such an x-dependence is allowed. Indeed the lower semiconti-

nuity of functional F corresponds to obtain the so called �lim inf� inequality (see subsection

2.6) for the relaxed functional of F .
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Therefore in this paper we �rst study the lower semicontinuity, with respect to theW 1,p
0 (Ω)-

weak convergence, of the following anisotropic version of functional (1.1):

F(u) =

∫
Ω
f(x,∆u)dx+

∫
Ω
f∞(x,

dµa

d|µa|
)d|µa|+

∫
Ω
f∞(x,

dµ0

d|µ0|
)d|µ0|+

∫
Ω
g(∇u)dx

+

∫
Ω
|u− u0|2dx.(1.2)

In order to prove W 1,p
0 (Ω)-weak lower semicontinuity result we use a successful technique,

developed in these last years, to address the L1-lower semicontinuity of integral functional

(even if the integrand depends on the variable u) de�ned on the space BV (Ω). It permits to

prove lower semicontinuity theorems by dropping the coerciveness assumptions and under weak

di�erentiability requirements on the integrand f(x, u,∇u). The main tools of this approach

are a chain rule formula and an approximation result for a convex function due to E.De Giorgi

(see Theorem 2.2). There is by now a vast literature on this topic. Without claiming of being

exhaustive we refer to [14, 17] and references therein for an overview on this subject.

Very roughly speaking, by De Giorgi's Theorem, one can write functional F as a supremum

of a�ne functionals involving the scalar product between certain coe�cients (the so-called De

Giorgi's coe�cients) and the derivatives of u. Then if {un} ⊂ ∆Mp(Ω) is a sequence which

converges to a function u ∈ ∆Mp(Ω), one can recover the convergence of the derivatives of un

, by switching the derivatives to suitable test functions and so proving the continuity of those

a�ne functionals and therefore the lower semicontinuity of F .
In this paper we adapt this strategy to our di�erent variational framework in order to obtain

W 1,p
0 -weak lower semicontinuity under weak regularity conditions on the integrand with respect

to the spatial variable x. In particular a new Leibniz rule for the product between a proper

scalar function b and u ∈ ∆Mp(Ω) is established. Besides in order to deal with the right

duality involving the W 1,p
0 (Ω)-weak convergence, we assume that the integrand f belongs to

W 1,p′(Ω) with ∇xf ∈ Lp
′

loc(Ω× R), 1
p + 1

p′=1 (see assumption (4.1)).

The last part of the paper is devoted to provide the so called �lim sup� inequality for the

relaxed functional of F , which, combined with the �lim inf� inequality, gives the integral rep-

resentation SC−F = F (see subsection 2.6 and Theorem 5.1). The proof is based on an

approximation result for lower semicontinuous functions contained in [13]. This result, under a

suitable uniform lower semicontinuity condition with respect to the spatial variable (see Theo-

rem 2.3), permits to write a convex integrand f as a supremum of functions which are split as

a product of a function depending only on the spatial variable times a function only depending

on the second variable. Then in order to prove �lim sup� inequality we can adapt the technique

used in [2] for the isotropic functional (1.1). Moreover to attain the upper bound we need, as
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in the case of integral functional de�ned on BV -space, to require a linear growth from above

on the integrand f .

The paper is organized as follows. Section 2 is devoted to notations, preliminary de�nitions

and results. In Section 3 we address the new Leibniz rule formula. In section 4 we prove the

lower semicontinuity result. Finally in section 5 we provide the integral representation formula.

2. Definition and main properties

2.1. Distributional divergence and classical spaces. In this subsection we recall the def-

inition of the distributional space Lp,q(Div; Ω) and DMp(Ω), 1 ≤ p, q ≤ +∞, (see [1, 7, 8]). In

all the paper Ω ⊂ RN is an open bounded set with Lipschitz boundary. N ∈ {2, 3} is the space
dimension. Ln and dx will denote the Lebesgue measure on RN . The bracket 〈·, ·〉 stands for
the duality product in some distributional space.

De�nition 2.1. We say that U ∈ Lp,q(Div; Ω) if U ∈ Lp(Ω;RN ) and if its distributional

divergence DivU ∈ Lq(Ω). If p = q the space Lp,q(Div; Ω) will be denoted by Lp(Div; Ω).

We say that a function u ∈W 1,p(Ω) belongs to W 1,p,q(Div; Ω) if ∇u ∈ Lp,q(Div; Ω). We say

that a function u ∈W 1,p
0 (Ω) belongs to W 1,p,q

0 (Div; Ω) if ∇u ∈ Lp,q(Div; Ω).

Finally We say that a function u ∈W 1,p(Ω) belongs to W 1,p,q
loc (Div; Ω) if ∇u ∈ Lp,q(Div;A),

for every open set A ⊂⊂ Ω.

De�nition 2.2. For U ∈ Lp(Ω;RN ), 1 ≤ p ≤ +∞, set

|DivU |(Ω) := sup{〈U,∇ϕ〉 : ϕ ∈ C∞0 (Ω), |ϕ| ≤ 1}.

We say that U is an Lp-Divergence measure �eld, i.e. U ∈ DMp(Ω), if

‖U‖DMp(Ω) := ‖U‖Lp(Ω;RN ) + |DivU |(Ω) < +∞.

We recall that U ∈ Lp(Ω;RN ) belongs to DMp(Ω) if and only if there exists a Radon

measure denoted by DivU such that

〈U,∇ϕ〉 = −
∫

Ω
DivUϕ ∀ϕ ∈ C∞0 (Ω),

and the total variation of the measure DivU is given by |DivU |(Ω)

Let us recall the following classical result (see [8] Proposition 3.1).

Theorem 2.1. Let {Uh}h ⊂ DMp(Ω) be such that

(2.1) Uh ⇀ U in Lp(Ω;RN ), as h→ +∞ for 1 ≤ p < +∞.

Then

‖U‖Lp(Ω;RN ) ≤ lim inf
h→+∞

‖Uh‖Lp(Ω;RN ), |DivU |(Ω) ≤ lim inf
h→+∞

|DivUh|(Ω).
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Finally we de�ne the following space

(2.2) ∆Mp(Ω) := {u ∈W 1,p
0 (Ω), ∇u ∈ DMp(Ω)}.

2.2. p-capacity. If K ⊂ RN is a compact set and χK denotes its characteristic function, we

de�ne:

Capp(K,Ω) = inf{
∫

Ω
|∇f |pdx, f ∈ C∞0 (Ω), f ≥ χk}.

If U ⊂ Ω is an open set and K ⊂ U is a compact set, its p-capacity is given by

Capp(U,Ω) = sup
K⊂U

Capp(K,Ω).

Finally if A ⊂ U ⊂ Ω with A Borel set and U open, then

Capp(A,Ω) = inf
A⊂U⊂Ω

Capp(U,Ω).

For general properties we refer the reader to [12, 16, 18].

It is known (see [9]) that given a Radon measure µ the following decomposition holds

(2.3) µ = µa + µ0,

where the measure µa is absolutely continuous with respect to the p-capacity and µ0 is singular

with respect to the p-capacity, that is concentrated on sets with zero p-capacity. Besides it is

also known (see [9]) that every measure which is absolutely continuous with respect to the p-

capacity can be characterized as an element of L1 +W−1,p′ , leading to the �ner decomposition:

(2.4) µ = f −DivG+ µ0,

where G ∈ Lp′(Ω;R2) with 1
p+ 1

p′ = 1 and f ∈ L1(Ω). In particular if u ∈ ∆Mp(Ω) by applying

the classical Radon-Nikodym decomposition together with (2.4) to the measure Div∇u we have:

(2.5) Div∇u = ∆udx+ µa + µ0 = ∆udx+ f −DivG+ µ0.

2.3. Preliminary Lemmas. We recall a classical result due to E.De Giorgi, G.Buttazzo and

G.Dal Maso (see [11]).

Lemma 2.1. Let µ be a positive Radon measure on an open set Ω ⊂ RN . Consider a sequence

{ul} of Borel measurable functions such that for every l ∈ N, ul : Ω→ [0,∞]. Then∫
Ω

sup
l
ul dµ = sup

l∈N

{ l∑
k=1

∫
Ak

uk dµ},

where Ak ⊂ Ω are open and pairwise sets disjoint with compact closure in Ω.
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2.4. Convex Functions. We brie�y recall the classical approximation theorem due to E.De

Giorgi (see [10]). The result states that a given integrand f(x, t) convex with respect to t,

can be approximated by means of a sequence of a�ne functions. We state this result in the

particular form we will use in the sequel. For more general statement we refer to [10].

Theorem 2.2. Let f : Ω × R → [0,+∞), (x, t) 7→ f(x, t), be a Borel function convex with

respect to t for all x ∈ Ω. There exists a sequence {ξl} ⊂ C∞0 (R) with ξl ≥ 0 and
∫
R ξ(t)dt = 1,

such that

f(x, t) = sup
l∈N

(αl(x) + βl(x)t)+,

where

αl(x) :=

∫
R
f(x, t)

(
2ξl(t) + ξ′l(t)t

)
dt(2.6)

bl(x) := −
∫
R
f(x, t)ξ′l(t)dt.(2.7)

It is worth noticing that the coe�cients αl and βl explicitly depend on the function f .

The explicit formulas permit to deduce regularity properties of the coe�cients αl and βl from

proper hypotheses satis�ed by f .

We conclude this section with another approximation result for convex function contained

in [13]. Also in this case we state the result in a simpler case and we refer the reader to Lemma

8 of [13] for a more general statement.

Theorem 2.3. Let f : Ω×R→ [0,+∞) be a lower semicontinuos function in (x, t) such that

f(x, ·) is convex for all x ∈ Ω. Assume in addition that for all ε > 0 and for all x0 ∈ Ω there

exists δ > 0 such that

(2.8) f(x0, t) ≤ f(x, t) + ε(1 + f(x, t)) for all (x, t) ∈ Ω× R such that |x− x0| < δ.

Then there exist {ak} ⊂ C∞0 (Ω) and {ψk} ⊂ C∞0 (Ω) satisfying, for all k ∈ N, 0 ≤ ak ≤ 1, ψk

convex satisfying 0 ≤ ψk(t) ≤ Λk(1 + |t|), for some Λk ≥ 0, such that

f(x, t) = sup
k∈N

ak(x)ψk(t) for all (x, t) ∈ Ω× R.

2.5. Functionals and their properties. Let f : Ω × R be a Borel function convex in the

second variable. We shall consider the following functionals de�ned on ∆Mp(Ω):

(2.9)

F (u) :=

{∫
Ω f(x,∆u)dx+

∫
Ω g(∇u)dx+

∫
Ω |u− u0|2dx on W 1,p,1

0 (Div; Ω),

+∞ on ∆Mp(Ω) \W 1,p,1
0 (Div; Ω);
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F(u) : =

∫
Ω
f(x,∆u)dx+

∫
Ω
f∞(x,

dµa

d|µa|
)d|µa|+

∫
Ω
f∞(x,

dµ0

d|µ0|
)d|µ0|+

∫
Ω
g(∇u)dx

+

∫
Ω
|u− u0|2dx,(2.10)

where f∞ is the recession function given by lim
t→+∞

f(x, tξ)

t
, with ξ ∈ R and the measure µa

and µ0 are given by decomposition (2.5) applied to the measure Div∇u. dµa

d|µa| ,
dµ0

d|µ0| are the

Radon-Nikodym derivatives of the measures µa and µ0 with respect to their total variation. We

recall that since f is convex f∞ is a well de�ned Borel function convex in the second variable.

Finally we assume the restriction 2N
N+2 ≤ p <

N
N−1 in order to give sense to the L2-�delity term

and to allow singularities on curves and points (see [3, 15]).

2.6. Relaxation. Let F be the functional de�ned in (2.9). For every u ∈ ∆Mp(Ω), we

de�ne the lower semicontinuous envelope or relaxed functional with respect to the W 1,p
0 -weak

convergence of F given by:

(2.11) SC−F (u) := inf
uh⊂W 1,p,1

0 (Div;Ω)
{lim inf
h→+∞

F (uh) uh ⇀ u}.

Since we deal with W 1,p
0 -weak convergence, functional (2.11) is characterized by the two fol-

lowing inequalities:

- for every u ∈ ∆Mp(Ω) and every {uh}h ⊂ W 1,p,1
0 (Div; Ω), such that uh → u weakly in

W 1,p
0 (Ω),

(2.12) SC−F (u) ≤ lim inf
h→+∞

F (uh),

- for every u ∈ ∆Mp(Ω) there exists {uh}h ⊂ W 1,p,1
0 (Div; Ω), such that uh → u weakly in

W 1,p
0 (Ω),

(2.13) SC−F (u) ≥ lim sup
h→+∞

F (uh).

For general properties of the relaxation we refer to [4, 6].

3. Leibniz Rule

For our purpose the Leibniz rule here below plays a crucial role.
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Lemma 3.1. Let 1 < p < N
N−1 . Let b be a scalar function belonging toW 1,p′(Ω), with 1

p+ 1
p′=1.

Then for every u ∈ ∆Mp(Ω) and for every φ ∈ C∞0 (Ω), the following formula holds:∫
Ω
b(x)∆u(x)φdx+

∫
Ω
b(x)

dµa

|dµa|
(x)φ(x)d|µa|

+

∫
Ω
b(x)

dµ0

|dµ0|
(x)d|µa| = −

∫
Ω

(
b(x)∇u(x)

)
· ∇φ(x)dx

−
∫

Ω
∇b(x) · ∇u(x)φ(x)dx

The proof is based on approximation argument.

Proof. Let {ρε} be a standard sequence of molli�ers. We set bε = b∗ρε. Then from Proposition

3.4 of [8] applied to the product between bε and ∇u we obtain in the sense of distribution:

〈Div(bε∇u), φ〉D′(Ω) = 〈∇bε∇u, φ〉D′(Ω) + 〈bεDiv∇u, φ〉D′(Ω),

which writes as ∫
Ω
bε(x)∆u(x)φdx+

∫
Ω
bε(x)

dµa

|dµa|
(x)φ(x)d|µa|

+

∫
Ω
bε(x)

dµ0

|dµ0|
(x)φ(x)d|µ0| = −

∫
Ω

(
bε(x)∇u(x)

)
· ∇φ(x)dx

−
∫

Ω
∇bε(x) · ∇u(x)φ(x)dx(3.1)

Since b ∈W 1,p′(Ω) and p < N
N−1 , it is easy to check that p′ > N . Then from classical Sobolev

embedding it follows that b is continuous. Therefore we have that bε → b everywhere as ε→ 0.

Then by the Lebesgue's dominated convergence theorem we obtain:

lim
ε→0

∫
Ω
bε(x)∆u(x)φdx =

∫
Ω
b(x)∆u(x)φdx,

lim
ε→0

∫
Ω
bε(x)

dµa

|dµa|
(x)φ(x)d|µa| =

∫
Ω
b(x)

dµa

|dµa|
(x)φ(x)d|µa|

and

lim
ε→0

∫
Ω
bε(x)

dµ0

|dµ0|
(x)φ(x)d|µ0| =

∫
Ω
b(x)

dµ0

|dµ0|
(x)φ(x)d|µ0|.

We now focus on the right-hand side of identity (3.1). By taking into account that ∇bε
converges Lp

′
-weakly to ∇b we infer

lim
ε→0

∫
Ω

(
bε(x)∇u(x)

)
· ∇φ(x)dx =

∫
Ω

(
b(x)∇u(x)

)
· ∇φ(x)dx

and

lim
ε→0

∫
Ω
∇bε(x) · ∇u(x)φ(x)dx =

∫
Ω
∇b(x) · ∇u(x)φ(x)dx.

Therefore by taking the limit as ε→ 0 in (3.1) we achieve the proof. �
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4. Lower semicontinuity

In this section the lower semicontinuity result for functional (2.10) is addressed. The result

is obtained by means of Theorem 2.2 and Lemma 3.1.

Let Ω ⊂ RN be a bounded open set. Let f : Ω× R→ [0,+∞) be a Borel function, convex

in the second variable, which satis�es the following condition:

(4.1)

{
f(·, t) ∈W 1,p′(Ω) with:

∇xf ∈ Lp
′

loc(Ω× R).

Theorem 4.1. Let f : Ω × R → [0,+∞) be a Borel function convex in the second variable

satisfying (4.1). Let g : RN → [0,+∞) be a convex function. Then functional (2.10) is lower

semicontinuous on ∆Mp(Ω) with respect to the W 1,p
0 -weak convergence.

Proof.

Let us set

G(u) :=

∫
Ω
f(x,∆u)dx+

∫
Ω
f∞(x,

dµa

d|µa|
)d|µa|+

∫
Ω
f∞(x,

dµ0

d|µ0|
)d|µ0|.

By Theorem(2.2) there exists a sequence {ξl} ⊂ C∞0 (R) with ξl ≥ 0 and
∫
R ξldx = 1 such that

for any (x, t) ∈ R we have

f(x, t) = sup
l∈N

(
αl(x) + βl(x)t

)+
and

f∞(x, t) = sup
l∈N

(
βl(x)t

)+
,

where, recalling (2.6) and (2.7)

αl(x) =

∫
R
f(x, )

(
2ξl(t) + ξ

′
l(t)
)
dt

βl(x) = −
∫
R
f(x, t)ξ

′
l(t)dt.(4.2)

Then for every u ∈ ∆Mp(Ω), we have

G(u) =

∫
Ω

sup
l∈N

(
αl(x) + βl(x)∆u(x)

)+
dx+

∫
Ω

sup
l∈N

(
βl(x)

dµa

d|µa|
(x)
)+
d|µa|

+

∫
Ω

sup
l∈N

(
βl(x)

dµ0

d|µ0|
(x)
)+
d|µ0|.(4.3)

Since the measures dx, |µa|, |µ0| are mutually singular we have:

G(u) =

∫
Ω

sup
l∈N

((
αl(x) + βl(x)∆u(x)

)+
+
(
βl(x)

dµa

d|µa|
(x)
)+

+
(
βl(x)

dµ0

d|µ0|
(x)
)+)

d|Divu|.
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Hence, by applying Lemma 2.1, with µ = |Div∇u|(Ω), we obtain

G(u) = sup
l∈N

l∑
k=1

(∫
Ak

(
αk(x) + βk(x)∆u(x)

)+
dx+

∫
Ak

(
βk(x)

dµa

d|µa|
(x)
)+
d|µa|

+

∫
Ak

(
βk(x)

dµ0

d|µ0|
(x)
)+
d|µ0|

)
,(4.4)

where Ak ⊂ Ω are open and pairwise disjoint. Let now for all k, ηk be a test function in

C∞0 (Ak) with 0 ≤ η ≤ 1. As dx, |µa|, |µ0| are mutually singular measures

G(u) = sup
l∈N

l∑
k=1

(
sup

0≤ηk≤1

( ∫
Ω
αk(x)ηk(x)dx+

∫
Ω
βk(x)ηk(x)∆u(x)dx

+

∫
Ω
βk(x)

dµa

d|µa|
(x)ηk(x)d|µa|+

∫
Ω
βk(x)

dµ0

d|µ0|
(x)ηk(x)d|µ0|

))
.(4.5)

Let us de�ne

H(u) :=

∫
Ω
αk(x)ηk(x) +

∫
Ω
βk(x)∆u(x)ηk(x)dx+

∫
Ω
βk(x)

dµa

d|µa|
(x)ηk(x)d|µa|

+

∫
Ω
βk(x)

dµ0

d|µ0|
(x)ηk(x)d|µ0|.

We are going to prove the continuity of H(u) with respect to the W 1,p
0 (Ω)-weak topology , by

applying Lemma 3.1 with βk and u. Therefore, we need to check �rst that βk(x) satis�es the

hypotheses of Lemma 3.1. For every test Φ ∈ C∞0 (Ω;RN ) we have that

〈∇βk(x),Φ(x)〉D′(Ω) = −
∫

Ω
βk(x)DivΦ(x)dx = −

∫
Ω

(∫
R
f(x, t)ξ

′
k(t)dt

)
DivΦ(x)dx.

Since ∇xf ∈ Lp
′
(Ω× R) we can apply Fubini's theorem to get that

〈∇βk(x),Φ(x)〉D′(Ω) = −
∫
R
ξ′k(t)dt

∫
Ω
f(x, t)DivΦ(x)dx

=

∫
R
ξ′k(t)dt

∫
Ω
∇xf(x, t) · Φ(x)dx.

Hence, we conclude that

〈∇βk(x),Φ(x)〉D′(Ω) =

∫
Ω

(∫
R
∇xf(x, t)ξ′k(t)dt

)
· Φ(x)dx,

and therefore we have the identi�cation:

∇βk =

∫
R
∇xf(x, t)ξ′k(t)dt.

Finally since ξ ⊂ C∞0 (R) and ∇xf ∈ Lp
′

loc(Ω× R) we infer βk ∈W 1,p′(Ω).
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We are now position of proving the continuity of H(u). Let {un} ⊂ ∆Mp(Ω) be a sequence

W 1,p
0 (Ω)-weakly converging to u ∈ ∆Mp(Ω). By applying Lemma 3.1

lim
n→+∞

H(un) =

+

∫
Ω
αk(x)ηk(x)dx+ lim

n→+∞
−
∫

Ω

(
βk(x)∇un(x)

)
· ∇ηk(x)dx

−
∫

Ω
∇βk(x) · ∇un(x)ηk(x)dx

=

∫
Ω
αk(x)ηk(x)dx+

∫
Ω

(
βk(x)∇u(x)

)
· ∇ηk(x)dx

−
∫

Ω
∇βkb(x) · ∇u(x)ηk(x)dx = H(u).(4.6)

where in the last equality we have used again Lemma 3.1.

Therefore (4.6) implies that G, being the supremum of the sum of supremum of lower

continuous functionals is lower semicontinuous itself. Then since g is convex and the term∫
Ω |u− u0|2 is continuous, it easy to see that F is lower semicontinuous too.

5. RELAXATION

This section is devoted to the relaxation result. This result will be attained, once we will have

proved inequalities (2.12) and (2.13). The �rst one is a consequence of the lower semicontinuity

result proved in Theorem 4.1. In order to achieve upper bound (2.13) we will strengthen the

assumptions on the integrand f , by requiring uniform lower semicontinuity condition with

respect to x.

5.1. Integral representation formula. We will assume that the integrands f : Ω × R →
[0,+∞) and g : RN → [0,+∞) satisfy the following assumptions:

(5.1) f(x, t) ≤ C1(1 + |t|) ∀(x, t) ∈ Ω× R,

where 0 < C1 < +∞ is a constant;

(5.2) g(ξ) ≤ C2(1 + |ξ|p) ∀ξ ∈ RN ,

where 0 < C2 < +∞ is a constant. Moreover from assumption (5.1) it follows that

(5.3) f∞(x, t) ≤ C1(|t|) ∀(x, t) ∈ Ω× R.

We also assume that for all ε > 0 there exists δ > 0 such that for all x ∈ Ω

(5.4) f(x, t) ≤ f(y, t) + ε(1 + f(y, t)) ∀(y, t) ∈ Ω× R such that |x− y| ≤ δ
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which implies that for all ε > 0 there exists δ > 0 such that for all x ∈ Ω

(5.5) f∞(x, t) ≤ f∞(y, t) + εf∞(y, t) ∀(y, t) ∈ Ω× R such that |x− y| ≤ δ.

Remark 5.1. Let us note that assumption (5.4) holds whenever the integrand f is coercive

and satis�es the following stronger condition:

for all ε > 0 there exists δ > 0 such that for all x ∈ Ω

f(x, t)− f(y, t) < εt ∀(y, t) ∈ Ω× R such that |x− y| ≤ δ.

This is the case, for instance, if f(x, t) = |x|t.

Theorem 5.1. Let f : Ω × R → [0,+∞) be a Borel function convex in the second variable

satisfying (4.1). Assume that (5.1),(5.2) and (5.4) hold. Then we have

F(u) = SC−F (u) ∀u ∈ ∆Mp(Ω).

Proof. Step one: We start by proving inequality (2.12).

Since SC−F is the greatest lower semicontinuous functional not greater than F , F ≤ F ,

and by Theorem 4.1 F is W 1,p
0 -weak lower semicontinuous, we have F(u) ≤ SC−F (u) for all

u ∈ ∆Mp(Ω). Therefore for every u ∈ ∆Mp(Ω) and every {uh}h ⊂W 1,p,1
0 (Div; Ω), such that

uh → u weakly in W 1,p
0 (Ω),

F(u) ≤ SC−F (u) ≤ lim inf
h→+∞

F (uh).

Step two: We now prove inequality (2.13).

Let u ∈ ∆Mp(Ω). Let {uh} ⊂ C∞0 (Ω) de�ned as uh = u ∗ ρh with ρh a standard mollifying

sequence, whose support is Ωh. Note that as f(·, t) ∈ W 1,p′Ω) with p′ > N (p < N
N−1) and

f(, t) is convex with linear growth, we have that f is continuous in (x, t). Then by taking

into account assumption (5.4) we can apply Theorem 2.3 to the function f . So we have for all

(x, t) ∈ Ω× R

(5.6) f(x, t) = sup
k
ak(x)ψk(t), f∞(x, t) = sup

k
ak(x)ψ∞k (t),

where ψk are convex functions. Therefore it follows that there exist {αlk}, {βlk} ⊂ R such that

for all (x, t) ∈ Ω× R

(5.7) f(x, t) = sup
k
ak(x)

(
sup
l

(αlk + βlkt)
)

f∞(x, t) = sup
k
ak(x)

(
sup
l
βlkt
)
.

Then

ak(x)
(
αkl + βlk∆uh(x)

)
= ak(x)

(∫
Ωh

ρh(x− y)αlk + βlk∆u(y)dy

+

∫
Ωh

ρh(x− y)βlk
dµa

|dµa|
(y)d|µa|+

∫
Ωh

ρh(x− y)βlk
dµ0

|dµ0|
(y)d|µ0|

)
.
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By taking into account (5.6) and (5.7) we get:

ak(x)
(
αkl + βlk∆uh(x)

)
≤
∫

Ωh

ρh(x− y)f(x,∆u(y))dy

+

∫
Ωh

ρh(x− y)f∞(x,
dµa

|dµa|
(y))d|µa|+

∫
Ωh

ρh(x− y)f∞(x,
dµ0

|dµ0|
(y))d|µ0|.

Let δ be given by assumption (5.4). Then for h large enough we have, for x, y ∈ Ωh, that

|x− y| ≤ 1
h ≤ δ. Hence from (5.4), (5.5) it follows that for all ε > 0

ak(x)
(
αkl + βlk∆uh(x)

)
≤
∫

Ωh

ρh(x− y)f(y,∆u(y))dy

+

∫
Ωh

ρh(x− y)f∞(y,
dµa

|dµa|
(y))d|µa|+

∫
Ωh

ρh(x− y)f∞(y,
dµ0

|dµ0|
(y))d|µ0|

+ ε

∫
Ωh

ρh(x− y)(1 + f(y,∆u(y))dy + ε

∫
Ωh

ρh(x− y)f∞(y,
dµa

|dµa|
(y))d|µa|

+ ε

∫
Ωh

ρh(x− y)f∞(y,
dµ0

|dµ0|
(y))d|µ0|(5.8)

By taking the supremum �rstly over l and over k on the left hand side of (5.8), performing

an integration over Ω ,with respect to the variable x, and by taking into account the growth

conditions (5.1) and (5.3) we get∫
Ω
f(x,∆uh(x))dx ≤

∫
Ω
dx

∫
Ωh

ρh(x− y)f(y,∆u(y))dy

+

∫
Ω
dx

∫
Ωh

ρh(x− y)f∞(y,
dµa

|dµa|
(y))d|µa|

+

∫
Ω
dx

∫
Ωh

ρh(x− y)f∞(y,
dµ0

|dµ0|
(y))d|µ0|

+ ε
(∫

Ω
dx

∫
Ωh

ρh(x− y)dy +

∫
Ω
dx

∫
Ωh

ρh(x− y)d|Div∇u|
)

≤
∫

Ω
dx

∫
Ωh

ρh(x− y)f(y,∆u(y))dy +

∫
Ω
dx

∫
Ωh

ρh(x− y)f∞(y,
dµa

|dµa|
(y))d|µa|

+

∫
Ω
dx

∫
Ωh

ρh(x− y)f∞(y,
dµ0

|dµ0|
(y))d|µ0| + εLn(Ω)C1(1 + 3|Div∇u|(Ω)).(5.9)

Finally by applying Fubini's Theorem and taking into account that ε is arbitrary we conclude

(5.10)

lim sup
h→+∞

∫
Ω
f(x,∆uh)dx ≤

∫
Ω
f(x,∆u)dx+

∫
Ω
f∞(x,

dµa

d|µa|
)d|µa|+

∫
Ω
f∞(x,

dµ0

d|µ0|
)d|µ0|,

Finally, since ∇uh converges in measure to ∇u, from the convexity of g together with (5.2),

and Vitali's convergence theorem it follows that:

(5.11) lim
h→+∞

∫
Ω
g(∇uh)dx =

∫
Ω
g(∇u)dx.
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Then (5.10) and (5.11) imply

lim sup
h→+∞

F (uh) ≤ F(u),

where we have used the fact that term
∫

Ω |u− u0|2dx is a continuous perturbation. So (2.12)

and (2.13) are achieved. �

As a consequence of the relaxation result we obtain the following theorem.

Corollary 5.1. Let f : Ω × R → [0,+∞) g : RN → [0,+∞) be a convex functions satisfying

(4.1), (5.1), (5.2) and (5.4). Assume that for every minimizing sequences {uh}h ⊂ ∆Mp(Ω)

of Fh the following compactness property holds:

(5.12) Fh(uh) ≤M ⇒ ∃{uhk}k, u ⊂ ∆Mp(Ω) with uhk ⇀ u

Then there exists a minimum u ∈ ∆Mp(Ω) of functional F . Moreover the following equality

holds

(5.13) inf
u∈∆Mp(Ω)

F (u) = min
u∈∆Mp(Ω)

F(u).

Proof. By Theorem 4.1, functional F is lower semicontinuous with respect to the W 1,p
0 -weak

convergence. Then the existence of a minimum follows via the direct method of the calculus of

variations.

Finally thanks to growth conditions (5.1) and (5.2) the in�mum is �nite. Then property

(5.13) can be achieved by standard arguments (see for instance [6]). �

Remark 5.2. A su�cient condition to ensure property (5.12) is to assume the classical coer-

civity assumptions on the integrand f and g:

(5.14) f(x, t) ≥ c1|t| ∀(x, t) ∈ Ω× R,

where 0 < c1 < +∞ is a constant;

(5.15) g(ξ) ≥ c2|ξ|p ∀ξ ∈ RN ,

where 0 < c2 < +∞ is a constant. Indeed by taking into account Theorem 2.1 it is not di�cult

to prove property (5.12).
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