Reconciling competing models: a case study of wine fermentation kinetics

Rodrigo Assar

INRIA Bordeaux project-team MAGNOME joint with Université Bordeaux and CNRS Rodrigo.Assar@inria.fr
Felipe A. Vargas, David J. Sherman

ANB 2010: RISC, Castle of Hagenberg, Austria, July 31-August 2

Wine fermentation

$$\frac{dX}{dt} = \mu X_A$$

$$\frac{dX_A}{dt} = \mu X_A - k_d X_A$$

$$\frac{dN}{dt} = -\frac{\mu X_A}{Y_{X/N}}$$

$$\frac{dE}{dt} = \beta X_A$$

Need: more general model that better adapts to different conditions

Need: general method for this kind of reconciliation

Talk Structure

- Introduction
 - Motivation and Goal
- Methods
 - System
 - Analyzed models
 - Steps of the approach
- Results
- Statistical results
- Constructive step
- Analysis
- Summary and Perspectives

Introduction: Motivation

- Wine industry: 5 mill. of tonnes/ year in France
- Losses from fermentation problems (stuck and sluggish): 7 billion of euros/year
- Many different models to explain the wine fermentation process
- Not good results on not training data

Goal

- Input: models defined by equations and methods validated on specific training data
- Goal: reconciled and generalized model with good predictions of reality, recovering biological behaviors
- Tool: combined model selecting best equations for environmental conditions

Common equations

System

Agent: yeast

Resources: sugar and

nitrogen

Other environmental factors: nutrient, pH, yeast populations and flora

Product: alcohol

By-products: carbon dioxide gas, heat

Analyzed models

Coleman et al., 2007

$$\frac{dX}{dt} = \mu X_A$$

$$\frac{dX_A}{dt} = \mu X_A - k_d X_A$$

$$\frac{dN}{dt} = -\frac{\mu X_A}{Y_{X/N}}$$

$$\frac{dE}{dt} = \beta X_A$$

$$\begin{aligned} \frac{\mathrm{d}X}{\mathrm{d}t} &= \frac{e^{-(CO_2 - CO_{2.95})}}{e^{(CO_2 - CO_{2.95})} + e^{-(CO_2 - CO_{2.95})}} A \mu_{\mathrm{m}} \frac{S}{S + Ks \ B^{\alpha}} X \left(1 - \frac{X}{A \mu_{\mathrm{m}} \frac{S}{(S + Ks \ B^{\alpha})\beta}} \right) \\ &+ \left[1 - \frac{e^{-(CO_2 - CO_{2.95})}}{e^{(CO_2 - CO_{2.95})} + e^{-(CO_2 - CO_{2.95})}} \right] \left(CX \frac{\mathrm{d}S}{\mathrm{d}t} - DX \right) \end{aligned}$$

al., 2009

Scaglia et
$$\frac{dS}{dt} = \frac{1}{Y_{X/S}} \left[-X \left(\mu_m \frac{S}{S + Ks B^b} - EX \right) \right] - FX$$

$$\frac{dCO_2}{dt} = G\mu_{\rm m} \frac{S}{S + Ks B^c} X + \frac{d}{dt} \left(H \mu_{\rm m} \frac{S^2}{(S + Ks B^d)(S + Ks B^e)} X + I X \right)$$

$$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{1}{Y_{CO_2/P}} \frac{\mathrm{d}CO_2}{\mathrm{d}t}$$

Pizarro et al., 2007

$$\begin{aligned}
&\min\{-\nu_{j}\}\\ &\text{subject to}\\ &T \cdot \nu = 0\\ &\nu_{i}^{\text{LB}} \leq \nu_{i} \leq \nu_{i}^{\text{UB}}
\end{aligned}$$

feedback

Glucose:
$$\frac{d[Glu]}{dt} = -v_{glu} \cdot Xv$$

$$Ammonia: \frac{d[NH_4]}{dt} = -v_{NH4} \cdot Xv$$

$$Viable Cells: \frac{d[Xv]}{dt} = \mu \cdot Xv$$

$$Ethanol: \frac{d[EtOH]}{dt} = v_{EtOH} \cdot Xv$$

$$Glycerol: \frac{d[Gly]}{dt} = v_{gly} \cdot Xv$$

Steps of our approach

 Symbolic step: obtaining homogenous form, separating linear and secondary effects

• Statistical step: classifying the simulation results according to adjustment of experimental results

Constructive step: building the combined model

Identifying effects

Effects represented by coefficient equations:

 μ_A , ε_A , σ_A : linear effect of X_A on X, EtOH and S rate.

 $\mu^{(1)}$, $\epsilon^{(1)}$, $\sigma^{(1)}$: linear effect of X on X, EtOH and S.

 ε_{co2} : linear effect of dCO2/dt on EtOH.

 $\mu^{(2)}$ and $\sigma^{(2)}$: quadratic effect of X on S.

Rewriting models

Coleman et al., 2007

$$\frac{dX}{dt} = \mu \cdot X_A$$

$$\frac{dX_A}{dt} = (\mu - \tau) \cdot X_A$$

$$\frac{dN}{dt} = -v_N \cdot X_A$$

$$\frac{d[EtOH]}{dt} = v_{EtOH} \cdot X_A$$

$$\frac{dS}{dt} = -v_S \cdot X_A$$

Scaglia et al., 2009 Pizarro et al., 2007

$$\frac{d[EtOH]}{dt} = v_{EtOH} \cdot X_A \qquad \frac{d[EtOH]}{dt} = \frac{1}{Y_{CO_2/EtOH}} \cdot \frac{dCO_2}{dt} \qquad \frac{d[EtOH]}{dt} = v_{EtOH} \cdot X_A \qquad \frac{dS}{dt} = -\left((v_S + v_{S_0}) \cdot X - \frac{0.00002}{Y_{X/S}} \cdot X^2\right) \qquad \frac{dS}{dt} = -v_S \cdot X_A \qquad \frac{dCO_2}{dt} = v_{CO_2} \cdot X + \frac{d(CO2Form)}{dt}$$

$$\frac{dX}{dt} = \mu \cdot X$$

$$\mu^{(1)}$$

$$\frac{dN}{dt} = -v_N \cdot X$$

$$\frac{d[EtOH]}{dt} = v_{EtOH} \cdot X$$

$$\frac{dS}{dt} = -v_S \cdot X$$

$$\frac{d[Gly]}{dt} = v_{Gly} \cdot X$$

Experimental data

Temperature	Sugar	Nitrogen	Biomass	Ethanol	Sugar	
	M	M (50-240 mg/l)				
L	(160-240 g/l)	H (240-551 mg/l)	100		1	
(0-19 °C)	Н	M				
	(240-308 g/l)	Н	2		3	
K. I.V. 110.00		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	M	M	1	1	1	
М		Н	1	1	6 1	
(20-27 °C)	Н	М	1			
		Н	1		2	
100						
	M	М	1	1	1	
Н		Н	2	1	2	
(28-35 °C)	Н	M				
(20 00 0)					1	

Pizarro et al., 2007 Malherbe et al., 2004 M-F et al., 2007

- We identified **configuration levels L:** Low, **M:** Moderate, **H:** High
- Statistical information: data sets per configuration, standard deviation
- Biological information: fermentations of *S. cerevisiae*, different strains

Statistical results

	Local: p-	Global	: r ²	
	Transient	Stable	Transient	Stable
Coleman et al., 2007	0.13	0.15	0.93	0.98
Scaglia et al., 2009	0.14	0.27	0.98	0.98
Pizarro et al., 2007	0.06	0.02	0.99	0.97

Example: MMH configuration, sugar consumption

Local criterion: p-value estimates the probability of error at rejecting that experimental and simulated results coincide, computed at each time point, we show the average

Global criterion: linear correlation index measures the similarity between experimental and simulated log-profiles

Statistical conclusions

There is no best model for all conditions

 Quality depends on configuration of factors: level of temperature, sugar and nitrogen; temporal phase

 For all the variables there exist models of good adjustment to experimental data

Combined model

$$\frac{\frac{dX}{dt}}{\frac{dt}{dt}} = \mu_A \cdot X_A + \mu^{(1)} \cdot X - \mu^{(2)} \cdot X^2$$

$$\frac{\frac{d[EtOH]}{dt}}{\frac{dS}{dt}} = \epsilon_A \cdot X_A + \epsilon^{(1)} \cdot X + \epsilon_{CO_2} \cdot \frac{dCO_2}{dt}$$
Canonical representation

Factors-dependent coefficients

		Configuration of initial conditions									
Coefficient	Meaning	LMH	LHH	MMM	MMH	MHM	MHH	HMM	HMH	HHH	
$\mu_A = \frac{max(\mu) \cdot N}{K_N + N}$	linear effect of X_A	-	Ø	$\forall t$	Ø	Ø	Ø	$\forall t$	<i>t</i> ≤ 30	-	
$\mu^{(1)} = FBA,$	linear effect of X	-	t > 110	<i>t</i> ≤ 96	$\forall t$	$\forall t$	$\forall t$	Ø	t > 30	-	
$(F_{\mu} \cdot \mu + F_{\tau} \cdot \tau)$											
$\mu^{(2)} = F_{\mu} \cdot \beta$	quadratic effect of X	-	0	0	<i>t</i> ≤ 51	$t \leq 27$	$\forall t$	Ø	Ø	-	
$\varepsilon_A = \frac{max(v_{EtOH}) \cdot S}{K_S + S}$	linear effect of X_A	-	-	<i>t</i> ≤ 96	<i>t</i> ≤ 51	-	-	t > 300	<i>t</i> ≤ 30	-	
$\varepsilon^{(1)} = FBA$	linear effect of X	-	-	0	$\forall t$	-	-	$t \le 300$	$\forall t$	-	
$\varepsilon_{CO_2} = \frac{1}{Y_{CO_2/E_IOH}}$	linear effect of $\frac{dCO_2}{dt}$	-	-	Ø	<i>t</i> ≤ 51	-	-	Ø	<i>t</i> ≤ 30	-	
$\sigma_A = \frac{VE_IOH}{Y_{E_IOH/S}}$	linear effect of X_A	0	Ø	$\forall t$	Ø	-	t > 107	0	$t \leq 30$	0	
$\sigma^{(1)} = FBA,$	linear effect of X	$\forall t$	$\forall t$	<i>t</i> ≤ 96	$\forall t$	-	$t \le 107$	$\forall t$	t > 30	$\forall t$	
0.008 +											
$\frac{max(\mu) \cdot S}{Y_{X/S} \cdot (S + K_S \cdot 93.0231.508)}$											
$\sigma^{(2)} = \frac{2 \cdot 10^{-5}}{Y_{X/S}}$	quadratic effect of X	Ø	$\forall t$	Ø	<i>t</i> ≤ 51	-	<i>t</i> ≤ 107	Ø	Ø	t > 103	

Initial condition-dependent equations

$$\frac{dX}{dt} = \mu_A \cdot X_A + \mu^{(1)} \cdot X - \mu^{(2)} \cdot X^2$$

$$\frac{d[EtOH]}{dt} = \varepsilon_A \cdot X_A + \varepsilon^{(1)} \cdot X + \varepsilon_{CO_2} \cdot \frac{dCO_2}{dt}$$

$$\frac{dS}{dt} = -(\sigma_A \cdot X_A + \sigma^{(1)} \cdot X - \sigma^{(2)} \cdot X^2)$$

$$\frac{dX}{dt} = \mu^{(1)} \cdot X - 1_{t \le 51} \cdot \mu^{(2)} \cdot X^{2}$$

$$\frac{d[EtOH]}{dt} = 1_{t \le 51} \cdot \varepsilon_{A} \cdot X_{A} + \varepsilon^{(1)} \cdot X + 1_{t \le 51} \cdot \varepsilon_{CO_{2}} \cdot \frac{dCO_{2}}{dt}$$

$$\frac{dS}{dt} = -(\sigma^{(1)} \cdot X - 1_{t \le 51} \cdot \sigma^{(2)} \cdot X^{2})$$

$$\frac{dS}{dt} = -\left(\sigma^{(1)} \cdot X - 1_{t>103} \cdot \sigma^{(2)} \cdot X^2\right)$$

Example: sugar uptake in MMH

Summary

- Combined model of wine fermentation kinetics
- Reconciling models steps:
 - Symbolic: obtention of homogenous form.
 Polynomial for ODE systems
 - Statistical: region-based analysis
 - Constructive:
 - Criterion to select best models
 - Combined model, coefficients depend of factors levels: initial configuration and temporal phase

Perspectives

Automatically homogenizing and combining of models without revalidating

Automatically finding regions

Adding strain-specific effects

Considering competing populations

Acknowledgements

David J. Sherman

Pascal Durrens

Elisabeth Bon

Nicolás Loira

Natalia Golenetskaya

Anasua Sarkar

Aurelie Goulielmakis

Tiphaine Martin

Alice Garcia

Eduardo Agosin

Biotechnology Laboratory of

Pontificia Universidad

Católica de Chile

Jean-Marie Sablayrolles

Equipe de Microbiologie et

Technologies des

Fermentations, INRA

Thanks for your attention!!!

	Coleman							Scaglia							Pizarro					
Temp.	Sug.	Nit.	Biomass	3	Ethanol		Sugar		Biomas	Biomass		Ethanol		Sugar		S	Ethanol		Sugar	
			Trans.	Stable	Trans.	Stable	Trans.	Stable	Trans.	Stable	Trans.	Stable	Trans.	Stable	Trans.	Stable	Trans.	Stable	Trans.	Stable
L	М	М																		1
		Н																		
	Н	М																		
		Н																		
				76	100		W 16										17/4			
М	М	М																		
		Н																		
	Н	М																		
		Н																		
Н	М	М																		
		Н																		
	Н	М																		
		Н																		

Colema			n mode	nodel I			Pizarro model			Scagli	a model		Combined mod			1	
		Transient Sta		ble	ole Transient		Stable		Transient		Stable		Transient		Stable		
Config.	Variable	C.1	C.2	C.1	C.2	C.1	C.2	C.1	C.2	C.1	C.2	C.1	C.2	C.1	C.2	C.1	C.2
MMM	X	0.006	1	0.006	0.92	0.109	1	0	1	0.012	0.96	0	0.77	0.033	1	0.006	
	EtOH	0.001	1	0	0.97	0	1	0	1	0	1	0	0.93	0.001	1	0	0.97
	S	0.07	0.97	0.001	0.93	0.022	1	0	0.98	0.017	0.95	0	0.98	0.063	1	0.001	0.93
MMH	X	0.045	0.98	0.001	0.90	0.006	1	0.483	1	0.113	0.98	0.06	0.99	0.256	0.99	0.483	1
	EtOH	0.047	1	0	0.97	0.001	1	0.053	1	0.048	1	0.149	0.92	0.049	1	0.053	1
	S	0.129	0.93	0.152	0.98	0.140	0.98	0.27	0.98	0.064	0.99	0.015	0.97	0.129	0.99	0.27	0.98
HMM	X	0.388	0.99	0.476	0.97	0.102	0.83	0.027	1	0.082	0.99	0	0.87	0.388	0.99	0.476	0.97
	EtOH	0.049	0.95	0.155	0.97	0.129	0.95	0	1	0.08	0.92	0	-0.97	0.129	0.95	0.155	0.97
	S	0.171	0.79	0	-0.7	0.238	1	0.272	0.97	0.107	0.91	0.032	0.73	0.238	1	0.272	0.97
HMH	X	0.203	0.97	0	0.28	0.156	0.98	0.048	0.97	0.197	0.96	0	0.91	0.203	0.97	0.048	0.97
	EtOH	0.275	1	0.089	0.80	0.162	0.99	0.214	0.99	0.264	0.98	0.001	1	0.339	0.99	0.214	0.99
	S	0.327	1	0	0.59	0.135	0.98	0.167	0.99	0.197	0.95	0.001	1	0.327	1	0.167	0.99

Very good: local and global criterion very favorable: p≥0.1 and corr≥0.98.

Good: one criterion very favorable, other only favorable: 0.05≤p<0.1 or 0.95 ≤corr<0.98

Little wrong: one unfavorable (p< 0.05 or corr< 0.95) and other favorable or superior.

Wrong: both criteria are unfavorable.

The limit cases: If local criterion is absolutely unfavorable (p= 0) we qualified in Wrong, if local criterion is unfavorable (but not absolutely) and global criterion is optimum (corr= 1) we considered it Good.

		Configuration of initial conditions										
Coefficient	Meaning	LMH	LHH	MMM	MMH	MHM	MHH	HMM	HMH	HHH		
$\mu_A = \frac{max(\mu) \cdot N}{K_N + N}$	linear effect of X_A	-	Ø	$\forall t$	Ø	Ø	Ø	$\forall t$	<i>t</i> ≤ 30	-		
$\mu^{(1)} = FBA,$	linear effect of X	-	t > 110	<i>t</i> ≤ 96	$\forall t$	$\forall t$	$\forall t$	0	t > 30	-		
$(F_{\mu} \cdot \mu + F_{\tau} \cdot \tau)$												
$\mu^{(2)} = F_{\mu} \cdot \beta$	quadratic effect of X	-	0	Ø	<i>t</i> ≤ 51	<i>t</i> ≤ 27	$\forall t$	Ø	Ø	-		
$\varepsilon_A = \frac{max(v_{EtOH}) \cdot S}{K_S + S}$	linear effect of X_A	-	-	<i>t</i> ≤ 96	<i>t</i> ≤ 51	-	-	t > 300	<i>t</i> ≤ 30	-		
$\varepsilon^{(1)} = FBA$	linear effect of X	-	-	Ø	$\forall t$	-	-	$t \le 300$	$\forall t$	-		
$\varepsilon_{CO_2} = \frac{1}{Y_{CO_2/E_IOH}}$	linear effect of $\frac{dCO_2}{dt}$	-	-	Ø	<i>t</i> ≤ 51	-	-	Ø	<i>t</i> ≤ 30	-		
$\sigma_A = \frac{v_{EiOH}}{v_{EiOH/S}}$	linear effect of X_A	Ø	Ø	$\forall t$	Ø	-	t > 107	Ø	$t \leq 30$	0		
$\sigma^{(1)} = FBA,$	linear effect of X	$\forall t$	$\forall t$	<i>t</i> ≤ 96	$\forall t$	-	<i>t</i> ≤ 107	$\forall t$	t > 30	$\forall t$		
0.008 +												
$\frac{max(\mu) \cdot S}{Y_{X/S} \cdot (S + K_S \cdot 93.023^{1.508})}$												
$\sigma^{(2)} = \frac{2 \cdot 10^{-5}}{Y_{X/S}}$	quadratic effect of X	Ø	$\forall t$	0	<i>t</i> ≤ 51	-	<i>t</i> ≤ 107	Ø	Ø	t > 103		