
HAL Id: inria-00548306
https://inria.hal.science/inria-00548306

Submitted on 20 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Camera Pose Revisited – New Linear Algorithms
Marc-André Ameller, Bill Triggs, Long Quan

To cite this version:
Marc-André Ameller, Bill Triggs, Long Quan. Camera Pose Revisited – New Linear Algorithms. 2000.
�inria-00548306�

https://inria.hal.science/inria-00548306
https://hal.archives-ouvertes.fr

Camera Pose Revisited — New Linear

Algorithms

Marc-André Ameller, Bill Triggs, and Long Quan

GRAVIR-INRIA-CNRS
655 avenue de l’Europe

38330 Montbonnot, France
Email: {Marc-Andre.Ameller,Bill.Triggs,Long.Quan}@ inrialpes.fr

Abstract. Camera pose estimation is the problem of determining the
position and orientation of an internally calibrated camera from known
3D reference points and their images. We briefly survey several existing
methods for pose estimation, then introduce four new linear algorithms.
The first three give a unique linear solution from four points by SVD
null space estimation. They are based on resultant matrices: the 24× 24
method is the raw resultant matrix, and the 12 × 12 and 9 × 9 methods
are compressed versions of this obtained by Gaussian elimination with
pivoting on constant entries. The final method returns the four intrinsic
solutions to the pose from 3 points problem. It is based on eigendecom-
position of a 5 × 5 matrix. One advantage of all these methods is that
they are simple to implement. In particular, the matrix entries are simple
functions of the input data. Numerical experiments are given comparing
the performance of the new algorithms with several existing algebraic
and linear methods.

Keywords: Calibration, Camera Pose Estimation / Space Resection,
Polynomial Solving, Resultant Matrices.

1 Introduction

Camera pose estimation is the problem of determining the position and orienta-
tion of an internally calibrated camera from known 3D reference points and their
images. It is also called space resection in the photogrammetry community. It is
one of the oldest and commonest tasks in computer vision and photogrammetry,
and has often been studied in the past. With 3 points, the problem generically
has four possible solutions. Many closed form methods are known for finding
these. The earliest was perhaps by Lagrange in 1795. See [17, 6–8, 15]. Fischler
& Bolles [6] gave a method that has become popular in computer vision when
they introduced their RANSAC paradigm for detecting outliers in the data.
Haralick et al [8] review many old and new variants of the basic 3-point method

Submitted to ECCV’00. This work was supported in part by Esprit LTR project 21914
Cumuli.

and carefully examine their numerical stabilities under different orders of sub-
stitution and elimination. For handling redundant data, iterative methods have
also been developed in [12, 18, 3]. Methods for camera pose from line segments
instead of point features have also been developed [9, 4, 2, 13, 11].

3 point methods intrinsically give multiple solutions. If a unique solution is re-
quired, additional information must be given. A fourth point generically suffices,
but even with an infinite number of points there are certain degenerate cases for
which no unique solution is possible. These critical configurations are known
precisely. See [16, 17] for details, but briefly, all 3D points including the camera
centre must lie on a special twisted cubic space curve (the horopter) that wraps
around a circular cylinder (the dangerous cylinder). Notable degenerate cases
of this geometry include: (i) all object points at infinity (camera translation
not estimable); (ii) the projection center is coplanar with any three of the four
object points; (iii) a 3D line and a circle in an orthogonal plane touching the
line. This last case is particularly troublesome for pose from any three points,
or from a square or rectangle of four coplanar points, when the camera is in the
region directly above the points. We will show its effect on the pose methods
tested below.

Motivated by a lack of methods that directly provide the unique pose solution
in the redundant data case, a family of linear algorithms was presented in [14].
Unfortunately these methods are similar to algebraic ones in the sense that the
matrix entries are complicated coefficients extracted from fourth degree poly-
nomials. This makes implementation somewhat cumbersome. In this paper, we
propose: (i) three new linear algorithms for pose from 4 points, based on find-
ing the null vectors of 9 × 9, 12 × 12 and 24 × 24 linear systems with simple
matrix entries; (ii) a new linear algorithm for pose from 3 points, based on the
eigenspace of a 5 × 5 matrix obtained using the Bezout-Cayley-Dixon resultant
method.

The paper is organized as follows. In §2, the basic geometry of camera pose
is reviewed and discussed. In §3 we present the linear algebra based resultant
matrix approach to solving redundant polynomial equations, and also the three
new 4 point algorithms. The 3 point eigenspace method is presented in §4. §5
gives some initial experimental results evaluating the new pose methods against
some old ones on simulated data. Finally, §6 summarizes the contributions and
gives some conclusions.

2 Geometry of camera pose from points

Given a calibrated camera centered at c and correspondences between some 3D
reference points pi and their images ui, each pair of correspondences i and j

gives a constraint on the unknown camera-point distances xi = ||pi − c|| (cf.

2

u

u

p

p

c

i

j

i

j

Fig. 1. The basic geometry of camera pose determination for each pair of correspon-
dences pi ↔ ui and pj ↔ uj between the 3D reference points and their images.

Figure 1):

Pij(xi, xj) ≡ xi
2 + xj

2 + cij xi xj − dij
2 = 0 (1)

cij ≡ −2 cos θij (2)

where dij = ||pi − pj || is the known inter-point distance between the i-th and
j-th reference points and θij is the 3D viewing angle subtended at the camera
center by the i-th and j-th points. The cosine of this viewing angle is directly
computed from the image points and the calibration matrix K of the internal
parameters of the camera as

cos θij =
uT

i Cui
√

(uT
i Cui)(ujCuj)

,

where C = (KKT)−1.

For n = 3, we obtain the following polynomial system






P12(x1, x2) = 0,

P13(x1, x3) = 0,

P23(x2, x3) = 0

for the three unknown distances x1, x2, x3. This system has a Bezout bound of
8 = 2 × 2 × 2 solutions. However since it has no odd-order terms, xi 7→ −xi

preserves its form and the solutions occur in four xi ↔ −xi pairs. Using the
classical Sylvester resultant twice, x2 and x3 can be eliminated to obtain an 8th
degree polynomial in x1 with only even terms, i.e. a 4th degree polynomial in
x = x2

1 :

g(x) = a4 x4 + a3 x3 + a2 x2 + a1 x + a0 = 0.

This has at most four solutions for x and can be solved in closed form. As xi is
positive, x1 =

√
x. Then x2 and x3 are uniquely determined from x1.

3

In this method and all of those below, the recovered camera-point distances xi are
used to estimate the coordinates of the 3D reference points in a camera-centered
3D frame: p̃i = xi K

−1ui. To find the camera pose, the rigid 3D motion that best
aligns these points with their known world-frame coordinates is then estimated.
The centres of gravity of the two point clouds are aligned by translation, then
the aligning rotation(s) are found by the quaternion or SVD methods [10, 5].

3 Linear algorithms for pose from 4 points

3.1 Linear methods for polynomial system solving

Linear algebra is a useful tool for manipulating polynomials. A polynomial
Pi(x) =

∑

α cα,i xα in variables x = (x1, . . . , xn) is a finite sum of coefficients

cα,i times monomials xα = xα1

1 · xα2

2 · . . . · xαn
n . Here α = (α1, . . . , αn) ∈ Z

n

is called a multi-index or exponent vector. The basic idea is to fix a sufficiently
large set of working monomials, and to regard polynomials as row vectors of co-
efficients times this column vector of monomials. Similarly, a list of polynomials
is regarded as a coefficient matrix containing the row vectors of the polynomials,
times the column vector of monomials. The internal structure of the vector of
monomials is only enforced indirectly — a kind of over-parametrization of the
problem, but one that has the advantage of being linear.

Consider a general polynomial system :











P1(x1, . . . , xn) = 0
...

Pq(x1, . . . , xn) = 0,

We can form its matrix — called a resultant matrix — which has the interesting
property that the monomial vector corresponding to any root of the system lies
in its null space. But usually there will be many more monomials than input
polynomials so this will not help us much — the matrix will have quite low
column rank and hence a large null space. We can do better by including addi-
tional polynomials selected from the algebraic ideal generated by the inputs, i.e.

the set of all sums of polynomial multiples of the input polynomials. Although
this forces the number of columns (monomials) to increase, the number of addi-
tional ideal polynomials that can be found within that set of monomials increases
faster, so the null space tends to reduce in size as we add further monomials. If
the original system has only a single solution, with luck we will eventually reduce
the null space of the matrix to just one dimension giving the monomials of that
root, from which the root itself is easily extracted. The required ideal elements
can be guessed by hand (as here), or generated more systematically using several
classical and modern resultant-building methods [1]. Although they give gener-
ically sufficient monomial sets, these constructions are often far from minimal,
and also may not suffice for certain special values of the input coefficients.

4

3.2 Linear algorithms for pose estimation from 4 points

Now we apply the resultant principal to the problem of camera pose. For 4
points, the input system is 6 equations (1) in 4 variables: {Pij(xi, xj) = 0 | 1 ≤
i < j ≤ 4}. Any solution of this system trivially also satisfies:

{ xi Pjk(xj , xk) = 0 | i, j < k = 1, 2, 3, 4}

This new system contains 24 polynomials in 24 monomials: 4 x3
i , 12 x2

i xj xk and 4
xi xj xk (where i, j, k are distinct), and finally 4 xi. It turns out that (if the inputs
cij and dij are correct) the corresponding 24 × 24 resultant matrix generically
has a 1D null space, which contains the two possible algebraic solutions x and
−x, and also a spurious solution x = 0 that arose when we multiplied the Pjk by
xi. But it is easy to pick the desired solution, as the depths xi must be positive.
In detail, the 24× 24 matrix and the list of monomials labeling its columns are:



























































































1 0 0 0 c12 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 d
2

12 0 0 0
0 1 0 0 1 0 0 c12 0 0 0 0 0 0 0 0 0 0 0 0 0 d

2

12 0 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 c12 0 0 0 0 0 d

2

12 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 c12 0 0 0 0 0 d

2

12

1 0 0 0 0 c13 0 0 0 0 0 1 0 0 0 0 0 0 0 0 d
2

13 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 c13 0 0 0 0 d

2

13 0 0
0 0 1 0 0 1 0 0 0 0 0 c13 0 0 0 0 0 0 0 0 0 0 d

2

13 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 c13 0 0 0 0 d

2

13

1 0 0 0 0 0 c14 0 0 0 0 0 0 0 0 1 0 0 0 0 d
2

14 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 c14 0 0 0 d

2

14 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 c14 0 0 0 d

2

14 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 c14 0 0 0 0 0 0 0 d

2

14

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 c23 0 0 0 d
2

23 0 0 0
0 1 0 0 0 0 0 0 c23 0 1 0 0 0 0 0 0 0 0 0 0 d

2

23 0 0
0 0 1 0 0 0 0 0 1 0 c23 0 0 0 0 0 0 0 0 0 0 0 d

2

23 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 c23 0 0 0 d

2

23

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 c24 0 0 d
2

24 0 0 0
0 1 0 0 0 0 0 0 0 c24 0 0 0 1 0 0 0 0 0 0 0 d

2

24 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 c24 0 0 d

2

24 0
0 0 0 1 0 0 0 0 0 1 0 0 0 c24 0 0 0 0 0 0 0 0 0 d

2

24

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 c34 0 0 d
2

34 0 0 0
0 0 0 0 0 0 0 0 0 c34 1 0 0 1 0 0 0 0 0 0 0 d

2

34 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 c34 0 0 d

2

34 0
0 0 0 1 0 0 0 0 0 0 0 0 1 c34 0 0 0 0 0 0 0 0 0 d

2

34





















































































































































































x
3

1

x
3

2

x
3

3

x
3

4

x
2

1 x2

x
2

1 x3

x
2

1 x4

x
2

2 x1

x
2

2 x3

x
2

2 x4

x
2

3 x2

x
2

3 x1

x
2

3 x4

x
2

4 x2

x
2

4 x3

x
2

4 x1

x1 x2 x3

x1 x2 x4

x1 x3 x4

x2 x3 x4

−x1

−x2

−x3

−x4



























































































= 0

The matrix entries are very simple functions of the input data. Once the null
space monomial vector v is found by SVD of the input matrix, the solution for
the depths x can be calculated as follows. We could simply take some fixed ratios
of elements, such as

(x1, x2, x3, x4) =

(√

v1

v21
,

√

v2

v22
,

√

v3

v23
,

√

v4

v24

)

.

5

A somewhat more accurate method is to divide the components into 6 blocks,
each containing (something) · (x1, x2, x3, x4) (the xi xj xk block gives instead
x1 x2 x3 x4 · (1

x1
, 1

x2
, 1

x3
, 1

x4
)). Choose the block with the largest entries and read

off the ratios x1 : x2 : x3 : x4 from this. Then estimate the overall scale by

taking xi =
√

x2

i
xj

xj
where x2

i xj and xj are components of v chosen to be as

large as possible, and j may equal i. The aim is to select vector components of
largest possible size for all calculations, as these are less affected by noise.

Generically, if the coefficients ci,j and di,j fail to correspond to a coherent 3D
geometry, the matrix will have full rank. So the determinant of the 24×24 matrix
is a (nontrivial) multiple of the resultant polynomial of the system.

3.3 The 12 × 12 and 9 × 9 linear methods

The 24×24 matrix can be reduced to a smaller matrix by partial symbolic Gaus-
sian elimination. Any of the resulting reduced submatrices (i.e. lower right hand
corners, with zeros to the left of them in the elimination matrix) can be used as
resultant matrices, simply by ignoring the monomials that do not appear. The
fact that the input matrix is very sparse and has a large number of constant
entries that can be used as known-stable pivots, allows symbolic elimination to
go quite far before the coefficients get too complicated for convenient imple-
mentation and/or numerical conditioning is lost. This is mainly a compromise
between the complexity of the entries and the size of the resulting matrix, but
the elimination should probably not go so far that it becomes difficult to extract
the solution from the remaining monomials. Also, reduction changes the effec-
tive error metric, so it may affect the precision of the results (either upwards of
downwards).

In this case, we experimented with 12× 12 and 9× 9 reductions. At each step of
Gaussian reduction we chose a constant pivot so that polynomial division was
avoided, and permuted the rows accordingly. The 12 × 12 version eliminates all
terms with x1, x2 or x3 squared or cubed. Eliminating also the x2

4 and x3
4 terms

would give an 8×8 matrix in (x1 x2 x3, . . . , x2 x3 x4, x1, . . . , x4). But we judged
the coefficients to be inconveniently complex, and eliminating the x3

4 term makes
scale recovery for the solution more difficult, so we preferred to leave x3

4 in and
have a 9× 9 resultant matrix. The 12× 12 and 9× 9 matrices are a little too big
to display here, but are available from the authors.

6

4 Eigenvector algorithm for 3 points

4.1 The Bezout-Cayley-Dixon Method

Another linear algebra method for solving redundant polynomial systems is the
Bezout-Cayley-Dixon method [1]. Consider a general polynomial system:











P1(x1, . . . , xn) = 0
...

Pn+1(x1, . . . , xn) = 0.

Introduce new variables y1, . . . , yn and construct the matrix:

M =







P1(x1, x2, . . . , xn) P1(y1, x2, . . . , xn) . . . P1(y1, y2, . . . , yn)
...

...
...

Pn+1(x1, x2, . . . , xn) Pn+1(y1, x2, . . . , xn) . . . Pn+1(y1, y2, . . . , yn)






.

Each column converts one more x to a y (the results in general depend on the
variable ordering chosen for this). If (x1, . . . , xn) is a solution of the system, the
first column vanishes and hence det(M) = 0. The determinant is in fact divisible
by (x1 − y1) . . . (xn − yn) because Pi(. . . , xi, . . .) − Pi(. . . , yi, . . .) vanishes at
yi = xi and hence contains a multiple of (xi −yi), and adding a previous column
to each column of a determinant does not change it. If we do this division and
split the resulting polynomial P (x, y) into monomials in x and monomials in y

we have

P (x, y) =
∑

cα,βxαyβ = wT Cv

where v = (. . . xα . . .)T and w = (. . . yβ . . .)T are monomial vectors and C

is a matrix of coefficients cα,β . Solving the polynomial system reduces to the
resolution of the linear system

C · v = 0.

The y’s can take arbitrary values, so each monomial yα is linearly independent
of all the others.

4.2 Pose from 3 points

We now apply the Bezout-Cayley-Dixon method to pose estimation from 3
points. We consider the three polynomials P12, P13, P23 to be polynomials in
x2, x3 with coefficients in x1 and cij , dij . The above construction in (x2, x3)
gives a 5 × 5 C whose entries turn out to be linear in x2

1. We can write it as

C(x2
1) = C0 + x2

1 C2,

7

If there is a solution then C has a null vector Cv = 0, as the above determi-
nant vanishes. C2 is always singular, but C0 is generically nonsingular. Multiply
through by its inverse and divide by x2

1 6= 0 to give

(

C−1
2 C0 + x−2

1 I
)

v = 0

This is an eigenvector problem. The five eigenvalues are 0 (a false root) and the
x−2

1 of the four solutions of the pose problem. The corresponding eigenvectors
give x2, x3. The matrices are:

C2 =





−d23 c12 c13 −d13 c12 c23+c13 (d12−d23) c12 (−d23+d13) −d23+d13+d12 −d13 c23

c13 (d12−d23) −d13 c23 −d23+d13+d12 0 0
−d12 c13 c23+c12 (d13−d23) −d23+d13+d12 −d12 c23 0 0

−d12 c23 0 0 0 0
−d23+d13+d12 0 0 0 0





C0 =





0 c12 c23−c13 −c12 −2 c23

−c13 c23−c12 c13 −2 −c12 0
−c12+c13 c23 −2+c13 c12 c23 c23−c12 c13 −c13 c13 c23

c23 c12 c23 0 0 c23

−2 −c12 −c13 −c23 0



 v =

(1
x1

x2

1

x2

x1 x2

)

5 Experimental results

This section presents comparative experiments testing the new algorithms de-
veloped here against some old ones. The methods are given abbreviated names
as follows

4pt 3 × 3 The 4 point algorithm presented in [14].
3pt The classical elimination based 3 point method [14].
3pt 5 × 5 The 5 × 5 eigensystem 3 point method.
4pt 9 × 9 The 9 × 9 method for 4 points.
4pt 12 × 12 The 12 × 12 method for 4 points.
4pt 24 × 24 The 24 × 24 method for 4 points.

We have also tested a variant of each of the algorithms that heuristically reorders
the input points so that any of the reference points that are used especially by
the algorithm are as widely spread as possible in the image.

In all experiments, the points are projected with a focal length of 1024 pixels
into a 512×512 image. Gaussian noise is added, with default sigma 1 pixel. Each
data point represents 200 trials on 3D points generated randomly in a Gaussian
cloud of standard deviation 1 unit, seen from about 5 units away. However, in the
singularity experiment, there were 500 trials per point and only the noise varied
between trials, not the 3D points. In the coplanarity experiment, the cloud is
flattened onto a plane. The results represent median errors, relative to the total
size of the translation and to 1 radian rotation. The failure rate was measured
rather arbitrarily, as the percentage of total trials where either the rotation or
the translation error was over 0.5.

8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Noise level in pixel

R
el

at
iv

e
er

ro
r

4pt 3x3
3pt
3pt 5x5
4pt 9x9
4pt 12x12
4pt 24x24

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

70

Noise level in pixel

Fa
ilu

re
 ra

te
 (%

)

4pt 3x3
3pt
3pt 5x5
4pt 9x9
4pt 12x12
4pt 24x24

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Noise level in pixel

R
el

at
iv

e
er

ro
r

4pt 3x3
3pt
3pt 5x5
4pt 9x9
4pt 12x12
4pt 24x24

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

70

Noise level in pixel

Fa
ilu

re
 ra

te
 (%

)

4pt 3x3
3pt
3pt 5x5
4pt 9x9
4pt 12x12
4pt 24x24

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Noise level in pixel

R
el

at
iv

e
er

ro
r

4pt 3x3
3pt
3pt 5x5
4pt 9x9
4pt 12x12
4pt 24x24

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

Noise level in pixel

Fa
ilu

re
 ra

te
 (%

)

4pt 3x3
3pt
3pt 5x5
4pt 9x9
4pt 12x12
4pt 24x24

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Noise level in pixel

R
el

at
iv

e
er

ro
r

4pt 3x3
3pt
3pt 5x5
4pt 9x9
4pt 12x12
4pt 24x24

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35

40

45

50

Noise level in pixel

Fa
ilu

re
 ra

te
 (%

)

4pt 3x3
3pt
3pt 5x5
4pt 9x9
4pt 12x12
4pt 24x24

Fig. 2. The relative translation error and failure rate versus noise level in pixels, for 4
points. The first two rows are for non-coplanar, the second two for coplanar data. The
first and third row use the input point ordering, the second and fourth heuristically
reorder the points for better stability before running the pose methods. The trend of
the rotation error is broadly similar to that of the translation error, and is not shown
for lack of space.

9

2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of points

R
el

at
iv

e
er

ro
r

4pt 3x3
3pt
3pt 5x5

2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

45

Number of points

F
ai

lu
re

 r
at

e
(%

)

4pt 3x3
3pt
3pt 5x5

Fig. 3. Relative translation error and failure rate versus number of input points.

0 0.5 1 1.5 2 2.5 3
10

−3

10
−2

10
−1

10
0

10
1

10
2

Position of the camera

R
el

at
iv

e
er

ro
r

4pt 3x3
3pt
3pt 5x5
4pt 9x9
4pt 12x12
4pt 24x24

0 0.5 1 1.5 2 2.5 3
10

−3

10
−2

10
−1

10
0

10
1

10
2

Position of the camera

R
el

at
iv

e
er

ro
r

4pt 3x3
3pt
3pt 5x5
4pt 9x9
4pt 12x12
4pt 24x24

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

90

100

Position of the camera

R
el

at
iv

e
er

ro
r

4pt 3x3
3pt
3pt 5x5
4pt 9x9
4pt 12x12
4pt 24x24

Fig. 4. Relative translation and rotation error and failure rate as the camera moves
through two critical configurations for the pose problem, at position parameter 0 and√

2.

10

Figure 2 shows the behaviour of the various methods with 4 input points, as the
noise level is increased. Figure 3 shows the behaviour as additional points are
added to the data set, for those methods that can handle additional points.

As mentioned in the introduction, the pose problem has some obtrusive singular
cases that often cause problems in practice. Figure 4 shows error and failure
rate results for one such configuration. The data is 4 coplanar points in a square
[−1, 1]×[−1, 1] and the camera starts at ‘position=0’, at a singular point directly
above their centre. The camera then moves sideways parallel to one edge of the
square. At position=

√
2 units it crosses the side of the vertical circular cylinder

through the 4 data points, where another singularity occurs. (The situation is
even less well conditioned if the camera moves diagonally to a point above one
vertex of the square — not shown).

The main conclusion from these experiments is that — setting aside the fact
that they return multiple possible solutions which may be inconvenient — the
3-point algorithms significantly outperform all of the current linear 4-point ones.
Even though the linear methods use more data and have built in redundancy,
their relative errors and failure rates are often 2 to 10 times higher than those
of the 3 point methods. This is disappointing as it means that the linear model
has managed to capture only a very crude approximation to the underlying error
surface. We are currently trying to understand this and correct it. Conventional
data normalization does not seem to help here, but more sophisticated methods
may be possible.

Coplanar points are not a singular case for any of the methods tested here,
and on the whole their performance is similar to the non-coplanar case, except
that the performance advantage of the 3 point methods is decreased. Increasing
the number of points for the linear algorithms does improve the results slightly,
but not by enough to equal the 3 point methods. For the methods that treat
points asymmetrically, choosing well spread image points as the basis points does
seem to help on average, but only very irregularly in individual cases. There
are probably better heuristics than simple image spread for finding stable basis
configurations. In particular, with many points from a Gaussian cloud, there is
a slight tendancy for image spreading to choose configurations near the ‘camera
above circle of points’ degeneracy, which reduces the average stability.

Traditional elimination and the new eigenvector based 3-point method have very
similar performance in all cases tested, with the eigenvector method having per-
haps a slight edge.

The performance of the 24×24, 12×12 and 9×9 linear methods is also similar,
with 24×24 having a slight advantage in overall accuracy, but being significantly
slower than the 9 × 9 method. These are only statistical trends — in any one
problem it is very difficult to guess which will work best.

The errors and especially the failure rates of all of the methods are significantly
higher than one would like, especially for the 4 points methods. This is in part due
to the randomly generated data happening to fall near a singular configuration,

11

and to the wide zone that these seem to occupy, but a large part of the failure
must certainly be algorithmic.

6 Conclusions

We have presented three new linear algorithms for pose estimation from 4 points,
and an eigenspace based one that finds the 4 solutions of pose from 3 points.
The main advantage of the linear algorithms is that they generate a unique
solution from the outset. However the present implementations still seem quite
far from the optimal accuracy and reliability. None of the methods degenerate
for (generic) coplanar points. All of the methods developed here are easy to
implement in the sense that their matrices are relatively simple functions of the
input coordinates.

We believe that the linear methods are still far from their full potential, and in
future work we will look more closely at performance issues in an attempt to
improve them.

Acknowledgments

This work was partly supported by European project Cumuli.

References

1. V.Y. Pan B. Mourrain. Multivariate polynomials, duality and structured matrices.
Technical report, INRIA Sophia-Antipolis, October 1998.

2. H.H. Chen. Pose determination from line-to-plane correspondence: Existence con-
dition and closed-form solutions. In Proceedings of the 3rd International Conference

on Computer Vision, Osaka, Japan, pages 374–378, 1990.
3. D. Dementhon and L.S. Davis. Model-based object pose in 25 lines of code. Inter-

national Journal of Computer Vision, 15(1/2):123–141, 1995.
4. M. Dhome, M. Richetin, J.T. Lapresté, and G. Rives. Determination of the attitude

of 3D objects from a single perspective view. ieee Transactions on Pattern Analysis

and Machine Intelligence, 11(12):1265–1278, December 1989.
5. O. Faugeras and M. Hebert. The representation, recognition, and locating of 3D

objects. The International Journal of Robotics Research, 5:27–52, 1986.
6. M.A. Fischler and R.C. Bolles. Random sample consensus: A paradigm for model

fitting with applications to image analysis and automated cartography. Graphics

and Image Processing, 24(6):381 – 395, June 1981.
7. W. Förstner. Reliability analysis of parameter estimation in linear models with ap-

plications to mensuration problems in computer vision. Computer Vision, Graphics

and Image Processing, 40:273–310, 1987.
8. R.M. Haralick, C. Lee, K. Ottenberg, and M. Nölle. Analysis and solutions of the

three point perspective pose estimation problem. In Proceedings of the Conference

on Computer Vision and Pattern Recognition, Maui, Hawaii, USA, pages 592–598,
1991.

12

9. R. Horaud, B. Conio, O. Leboulleux, and B. Lacolle. An analytic solution for the
perspective 4-point problem. Computer Vision, Graphics and Image Processing,
47:33–44, 1989.

10. B.K.P. Horn. Closed form solution of absolute orientation using unit quaternions.
Journal of the Optical Society of America, 5(7):1127–1135, 1987.

11. Y. Liu, T.S. Huang, and O.D. Faugeras. Determination of camera location from
2D to 3D line and point. ieee Transactions on Pattern Analysis and Machine

Intelligence, 12(1):28–37, January 1990.
12. D. Lowe. Fitting parameterized three-dimensional models to images. ieee Trans-

actions on Pattern Analysis and Machine Intelligence, 13(5):441–450, May 1991.
13. D.G. Lowe. Perceptual Organization and Visual Recognition. Kluwer Academic

Publishers, Norwell, Massachusets, 1885.
14. L. Quan and Z.D. Lan. Linear n-point camera pose determination. ieee Transac-

tions on Pattern Analysis and Machine Intelligence, 21(8):774–780, August 1999.
15. C.C. Slama, editor. Manual of Photogrammetry, Fourth Edition. American Society

of Photogrammetry and Remote Sensing, Falls Church, Virginia, USA, 1980.
16. E.H. Thompson. Space resection: Failure cases. Photogrammetric Record,

X(27):201–204, 1966.
17. B.P. Wrobel. Minimum solutions for orientation. In Proc. of the Workshop on

Calibration and Orientation of Cameras in Computer Vision, Washington D.C.,

USA. Springer-Verlag, August 1992.
18. J.S.C. Yuan. A general phogrammetric solution for the determining object position

and orientation. ieee Transactions on Robotics and Automation, 5(2):129–142,
April 1989.

13

