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Abstract. Understanding turbulent transport in magnetised plasmas is
a subject of major importance to optimise experiments in tokamak fusion
reactors. Also, simulations of fusion plasma consume a great amount of
CPU time on today’s supercomputers. The Vlasov equation provides a
useful framework to model such plasma. In this paper, we focus on the
parallelization of a 2D semi-Lagrangian Vlasov solver on GPGPU. The
originality of the approach lies in the needed overhaul of both numerical
scheme and algorithms, in order to compute accurately and efficiently in
the CUDA framework. First, we show how to deal with 32-bit floating
point precision, and we look at accuracy issues. Second, we exhibit a
very fine grain parallelization that fits well on a many-core architecture.
A speed-up of almost 80 has been obtained by using a GPU instead of
one CPU core. As far as we know, this work presents the first semi-
Lagrangian Vlasov solver ported onto GPU.

1 INTRODUCTION

The present paper highlights the porting of a semi-Lagrangian Vlasov-Poisson
code on a GPU device. The work, described herein, follows a previous study made
on the loss code described in other papers [CLS06,CLS09,LCGS07]. A classical
approach in the Semi-Lagrangian community involves the use of cubic splines
to achieve the many interpolations needed by this scheme. The application we
describe here, uses a local spline method designed specifically to perform decou-
pled numerical interpolations, while preserving classical cubic spline accuracy.
In previous papers, this scalable method was described, and was benchmarked
in academic and industrial simulators. Only relatively small MPI inter-processor
communication costs were induced and these codes scaled well over hundreds of
cores (1D and 2D domain decompositions were investigated).

Particle-in-Cell (PIC) codes are often used in plasma physics studies and they
use substantial computer time at some of the largest supercomputer centers in
the world. Particle-in-Cell, yet less accurate, is a most commonly used numer-
ical method than the semi-Lagrangian one. Several papers has been published
on PIC codes that harness the computational power of BlueGene and GPGPU
hardwares [SDG08,BAB+08] and provide good scalability. Looking for new algo-
rithms that are highly scalable in the field of Tokamak simulations is important
to mimic plasma devices with more realism.



We will describe how to enrich the Semi-Lagrangian scheme in order to ob-
tain scalable algorithms that fits well in the CUDA framework. In the sequel,
the numerical scheme and the accuracy issues are briefly introduced and the
parallelization of the main algorithm with CUDA is described. The speedup and
accuracy of the simulations are reported and discussed.

2 MATHEMATICAL MODEL

In the present work, we consider a reduced model for two physical dimensions (in-
stead of six in the general case), corresponding to x and vx such as (x, vx) ∈ R

2.
The 1D variable x represents the configuration space and the 1D variable vx

stands for the velocity along x direction. Moreover, the self consistent magnetic
field is neglected because vx is considered to be small in the physical configura-
tions we are looking at. The Vlasov-Poisson system then reads:

∂f

∂t
+ vx .∇xf + (E + vx ×B) .∇vx

f = 0, (1)

−ε0∇
2φ = ρ(x, t) = q

∫
f(x, vx, t)d vx, E(x, t) = −∇φ. (2)

where f(x, vx, t) is the particle density function, ρ is the charge density, q is
the charge of a particle (only one species is considered) and ε0 is the vacuum
permittivity, B is the applied magnetic field.

Eq. (1) and (2) are solved successively at each time step. The density ρ is
evaluated in integrating f over vx and Eq. (2) gives the self-consistent electro-
static field E(x, t) generated by particles. Our work focuses on the resolution
of Eq. (1) using a backward semi-Lagrangian method [SRBG99]. The physical
domain is defined as D2

p = {(x, vx) ∈ [xmin, xMax]× [vxmin
, vxMax

]}. For the sake
of simplicity, we will consider that the size of the grid mapped on this physical
domain is a square indexed on D2

i = [0, 2j − 1]2 (it is easy to break this assump-
tion to get a rectangle). Concerning the type of boundary conditions, a choice
should be made depending on the test cases under investigation. At the time
being, only periodic extension is implemented.

3 ALGORITHMIC ANALYSIS

3.1 Global numerical scheme

The Vlasov Equation (1) can be decomposed by splitting. It is possible to solve
it, through the following elementary advection equations:

∂tf + vx∂xf = 0, (x̂ operator) ∂tf + v̇x∂vx
f = 0. (v̂x operator)

Each advection consists in applying a shift operator. A splitting of Strang [CK76]
is employed to keep a scheme of second order accuracy in time. We took the
sequence (x̂/2, v̂x, x̂/2), where the factor 1/2 means a shift over a reduced time
step ∆t/2. Algorithm 2 shows how the Vlasov solver of Eq. (1) is interleaved
with the field solver of Eq. (2).



3.2 Local spline method

Each 1D advection (along x or vx) consists in two substeps (Algorithm 1). First,
the density function f is processed in order to derive the cubic spline coefficients.
The specificity of the local spline method is that a set of spline coefficients
covering one subdomain can be computed concurrently with other ones. Thus, it
improves the standard approach that unfortunately needs a coupling between all
coefficients along one direction. Second, spline coefficients are used to interpolate
the function f at specific points. This substep is intrinsically parallel wether with
the standard spline method or with the local spline method: one interpolation
involves only a linear combination of four neighbouring spline coefficients.

In Algorithm 1, xo is called the origin of the characteristic. With the local
spline method, we gain concurrent computations during the spline coefficient
derivation (line 2 of the algorithm). Our goal is to port Algorithm 1 onto GPU.

Algorithm 1: Advection in x dir., dt time step

Input : f
Output: f
forall vx do1

a(.)← spline coeff. of sampled function f(., vx)2

forall x do3

x0 ← x− vx.dt4

f(x, vx)← interpolate f(x0, vx) with a(.)5

Algorithm 2: One time step

Input : ft

Output: ft+∆t

// Vlasov solver, part 1

1D Advection, operator x̂
2

on f(., ., t)1

// Field solver

Integrate f(., ., t+∆t/2) over vx2

to get density ρ(., t+∆t/2)3

Compute Φt+∆t/2 with Poisson solver4

using ρ(., t+∆t/2)5

// Vlasov solver, part 2

1D Advection, operator v̂x (use Φt+∆t/2)6

1D Advection, operator x̂
2

7

3.3 Floating point precision

Usually, semi-Lagrangian codes make extensive use of double precision float-
ing point operations. The double precision is required because pertubations of
small amplitude often play a central role during plasma simulation. For the sake
of simplicity, we focus here on the very classical linear Landau damping test
case (with k=0.5, α=0.01) which highlights the accuracy problem one can ex-
pect in Vlasov-Poisson simulation. The initial distribution function is given by

f(x, vx, 0) = e−

vx

2

2
√

2 π
(1 + α cos(k x)) . Other test cases are available in our imple-

mentation, such as strong Landau damping, or two stream instability. They are
picked to test the numerical algorithm and for benchmarking.
The problem arising with single precision computations is shown on Fig. 1. The
reference loss code (CPU version) is used here. The L2 norm of electric potential
is shown on the picture (electric energy) with logarithmic scale along the Y-axis.
The double precision curve represents the reference simulation. The difference
between the two curves indicates that single precision is insufficient; especially
for long-time simulation. With an accurate look at the figure, one can notice
that the double precision simulation is accurate until reaching a plateau value
near 10−20. To go beyond this limit, a more accurate interpolation is needed.



3.4 Improvement of numerical precision

For the time being, one has to consider mostly single precision (SP) computations
to get maximum performance out of a GPU. The double precision (DP) is much
slower than single precision (SP) on today’s devices. In addition, the use of
double precision may increase pressure on memory bandwidth.
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Fig. 1. Electric energy for Landau test
case 10242, single versus double precision
(depending on time measured as a num-
ber of plasma period ωc
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Fig. 2. Electric energy for Landau
test case 10242, using δf represen-
tation or standard representation.

The previous paragraph shows that SP leads to unacceptable numerical re-
sults. It turns out that our numerical scheme could be modified to reduce nu-
merical errors even with only SP operations during the advection steps. To do
so, a new function δf(x, vx, t) = f(x, vx, t) − fref(x, vx) is introduced. Working
on the δf function could improve accuracy if the values that we are working on
are sufficiently close to zero. Then, the reference function fref should be chosen
such that the δf function remains relatively small (in L∞ norm). convenient to
assume that fref is a constant along the x dimension. For the Landau test case,

we choose fref(vx) = 1√
2 π

e−
vx

2

2 . As the function fref is constant along x, the

x-advection applied on fref leaves fref unchanged. Then, it is equivalent to apply
x̂ operator either on function δf or on function f . Working on δf is very worth-
wile (x̂ operator): for the same number of floating point operations, we increase
accuracy in working on small differences instead of large values. Concerning the
v̂x operator however, both fref and f are modified. For each advected grid point
(x, vx) of the f⋆ function, we have (vo

x is the foot of the characteristic):

f⋆(x, vx) = f(x, vo
x) = δf(x, vo

x) + fref(v
o
x), δf⋆(x, vx) = f⋆(x, vx)− fref(vx),

δf⋆(x, vx) = δf(x, vo
x)− (fref(vx)− fref(v

o
x)).

Working on δf instead of f changes the operator v̂x. We now have to interpolate
both δf(x, vo

x) and (fref(vx)−fref(v
o
x)). In doing so, we increase the number of

computations; because in the original scheme we had only one interpolation per
grid point (x, vx), whereas we have two in the new scheme. In spite of this cost
increase, we enhance the numerical accuracy using δf representation (see Fig. 2).
A sketch of the δf scheme is shown in Algorithm 3.



4 CUDA ALGORITHMS

4.1 CUDA Framework

Designed for NVIDIA GPUs (Graphics Processing Units), CUDA is a C-based
general-purpose parallel computing programming model. Using CUDA, GPUs
can be regarded as coprocessors to the central processing unit (CPU). They
communicate with the CPU through fast PCI-Express ports. An overview of the
CUDA language and architecture could be found in [NVI09]. Over the past few
years, some success in porting scientific codes to GPU have been reported in
the literature. Our reference implementation of loss, used for comparisons, uses
Fortran 90 and MPI library. Both sequential and parallel versions of loss have
been optimized over several years. The CUDA version of loss presented here
mixes Fortran 90 code and external C calls (to launch CUDA kernels).

Algorithm 3: One time step, δf scheme

Input : δf t

Output: δf t+∆t

1D advection on δf , operator x̂
2

1

Integrate δf(., ., t+∆t/2) + fref(.)2

to get ρ(., t+∆t/2)3

Compute Φt+∆t/2,4

with Poisson solver on ρ(., t+∆t/2)5

1D advection on δf , operator v̂x6

→ stored into δf7

Interpolate fref(vx)− fref(v
o
x)8

→ results added into δf9

1D advection on δf , operator x̂
2

10

Algorithm 4: Skeleton of an advection kernel

Input : ft in global memory of GPU
Output: ft+dt in global memory of GPU

// A) Load from global mem. to shared mem.

Each thread loads 4 floats from global mem.1

Floats loaded are stored in shared memory2

Boundary conditions are set (extra floats are read)3

Synchro.: 1 thread block owns n vectors of 32 floats4

// B) LU Solver

1 thread over 8 solves a LU system (7 are idle)5

Synchro.: 1 block has n vectors of spline coeff.6

// C) Interpolations

Each thread computes 4 interpolations7

// D) Writing to GPU global memory

Each thread writes 4 floats to global mem.8

4.2 Data placement

We perform the computation on data δf of size (2j)2. Typical domain size varies
from 128× 128 (64 KB) up to 1024× 1024 (4 MB). The whole domain fits easily
in global memory of current GPUs. In order to reduce unnecessary overheads,
we decided to avoid transfering 2D data δf between the CPU and the GPU as
far as we can. So we kept data function δf onto GPU global memory. CUDA
computation kernels update it in-place. For diagnostics purposes only, the δf
function is transfered to the RAM of the CPU at a given frequency.

4.3 Spline coefficients computation

Spline coefficients (of 1D discretized functions) are computed on patches of 32
values of δf . As explained elsewhere [CLS06], a smaller patch would introduce
significant overhead because of the cost of first derivative computations on the
patch borders. A bigger patch would increase the computational grain which is
a bad thing for GPU computing that favors scheduling large number of threads.

The 2D domain is decomposed into small 1D vectors (named “patches”) of
32 δf values. To derive the spline coefficients, tiny LU systems are solved. The



assembly of right hand side vector used in this solving step can be summarized as
follows: keep the 32 initial values, add 1 more value of δf at the end of the patch,
and then add two derivatives of δf located at the borders of the patch. Once
the right hand side vector is available (35 values), two precomputed matrices L
and U are inverted to derive spline coefficients (using classical forward/backward
substitution). We decided not to parallelize this small LU solver: a single CUDA
thread is in charge of computing spline coefficients on one patch That point
could be improved in the future in order to use several threads instead of one.

4.4 Parallel interpolations

On one patch, 32 interpolations need to be done (except at domain boundaries).
These interpolations are decoupled. To maximize parallelism, one can even try
to dedicate one thread per interpolation. Nevertheless, as auxiliary computa-
tions could be factorized (for example the shift vx.dt at line 4 of Algo. 1), it is
relevant to do several interpolations per thread to reduce global computation
cost. The number of such interpolations per thread is a parameter that impacts
performance. This blocking factor is denoted K.

4.5 Data load

The computational intensity of the advection step is not that high. During the
LU phase (spline coefficients computation), each input data is read and written
twice and generates two multiplications and two additions in average. During
the interpolation step, there are four reads and one write per input data and
also four multiplications and four additions. The low computational intensity
implies that we could expect shortening the execution time in reducing loads
and writes from/to GPU global memory. So, there is a benefit to group the
spline computation and the interpolations in a single kernel. Several benchmarks
have confirmed that with two distinct kernels (one for building splines and one
for interpolations) instead of one, the price of load/store in the GPU memory
increases. Thus, we now describe the solution with only one kernel.

4.6 Domain decomposition and fine grain algorithm

We have designed three main kernels. Let us give short descriptions: KernVA
operator v̂x on δf(x, vx), KernVB adding fref(vx) − fref(v

o
x) to δf(x, vx), KernX

operator x̂ on δf(x, vx). The main steps of KernVA or KernX are given in Algo-
rithm 4. The computations of 8n threads acting on 32n real number values are
described (it means K =4 hardcoded here).
First A) substep reads floats from GPU global memory and puts them into fast
GPU shared memory. When entering the B) substep, all input data have been
copied into shared memory. Concurrently in the block of threads, small LU sys-
tem are solved (but 87% of the threads stays idle). Spline coefficients are then
stored in shared memory. In substep C), each thread computes K =4 interpola-
tions using spline coefficients. This last task is the most computation intensive
part of the simulator. Finally, results are written into global memory.



5 PERFORMANCE

5.1 Machines

In order to develop the code and perform small benchmarks, a cheap personal
computer has been used. The CPU is a dual-core E2200 Intel (2.2Ghz), 2 GB of
RAM, 4 GB/s peak bandwidth, 4 GFLOPS peak, 1 MB L2 cache. The GPU is
a GTX260 Nvidia card: 1.24 Ghz clock speed, 0.9 GB global memory, 95 GB/s
peak bandwidth, 750 GFLOPS peak, 216 cores. Another computer (at CINES,
FRANCE) has been used for benchmarking. The CPU is a bi quad-core E5472
Harpertown Intel (3 Ghz), 1GB RAM, 5GB/s peak bandwidth, 12 GFLOPS
peak, L2 cache 2×6 MB. The machine is connected to a Tesla S1070, 1.44Ghz,
4 GB global memory, 100 GB/s peak bandwidth, 1000 GFLOPS peak, 240 cores.

5.2 Small test case

Substeps in one time step CPU (deltaf 4B) GPU (deltaf 4B)

X Advection 5123 µs (1.0 ) 172 µs (29.7 )

V Advection 4850 µs (1.0 ) 144 µs (33.7 )

Field computation 133 µs (1.0 ) 93 µs (1.4 )

Complete Iteration 10147 µs (1.0 ) 546 µs (18.6 )

Table 1. Computation times inside a time step and speedup (in

parentheses) averaged over 5000 calls - 2562 Landau test case,

E2200/GTX260

Let us first have a look on performance of the δf scheme. We consider the small
testbed (E2200-GTX260), and a reduced test case (2562 domain). The simulation
ran on a single CPU core, then on the 216 cores of the GTX260. Timing results
and speedups (reference is the CPU single core) are given in Table 1. The speedup
is near 30 for the two significant computation steps, but is smaller for the field
computation. The field computation part includes two substeps: first the integral
computations over the 2D data distribution function, second a 1D poisson solver.
The timings for the integrals are bounded up by the loading time of 2D data
from global memory of the GPU (only one addition to do per loaded float). The
second substep that solves Poisson equation is a small sequential 1D problem.
Furthermore, we loose time in lauching kernels on the GPU (25 µs per kernel
launch included in timings shown).

Substeps in one time

step

CPU (deltaf 4B) GPU (deltaf 4B)

X Advections 79600 µs (1.0 ) 890 µs (90 )

V Advections 89000 µs (1.0 ) 1000 µs (89 )

Field computation 1900 µs (1.0 ) 180 µs (11 )

Complete Iteration 171700 µs (1.0 ) 2250 µs (76 )

Table 2. Computation time and speedups (in parenthe-

ses) averaged over 5000 calls - 10242 Landau test case -

E2200/GTX260

Substeps in one time

step

CPU (deltaf 4B) GPU (deltaf 4B)

X Advections 67000 µs (1.0 ) 780 µs (86 )

V Advections 42000 µs (1.0 ) 960 µs (43 )

Field computation 1500 µs (1.0 ) 200 µs ( 7 )

Complete Iteration 110000 µs (1.0 ) 2200 µs (50 )

Table 3. Computation time and speedups (in parenthe-

ses) averaged over 5000 calls - 10242 Landau test case -

Xeon/Tesla1070



5.3 Large test case

In Tables 2-3, we look at a larger test case with data size equal to 10242. Com-
pared to a single CPU core, the advection kernels have speedups from 75 to 90
for a GPU card (using 260 000 threads). Here, the field computation represents a
small computation compared to the advections and the low speedup for the field
solver is not a real penalty. A complete iteration reaches a speedup of 76.

CONCLUSION

It turns out that δf method is a valid approach to perform a Semi-Lagrangian
Vlasov-Poisson simulation using only 32-bit floating-point precision instead of
classical 64-bit precision. So, we have described the implementation on GPU
of the advection operator used in Semi-Lagrangian simulation with δf scheme
and single precision. A very fine grain parallelization of the advection step is
presented that scales well on thousands of threads. We have discussed the kernel
structure and the trade-offs made to accommodate the GPU hardware.

The application is bounded up by memory bandwidth because computational
intensity is small. It is well known that algorithms of high computational inten-
sity are able to be efficiently implemented on GPU. We have demonstrated that
an algorithm of low computational intensity can also benefit from GPU hard-
ware. Our GPU solution reaches a significant speedup of overall 76 compared to
a single core CPU execution. In the near future, we expect to have a solution for
4D semi-Lagrangian codes (2D space, 2D velocity) that runs on a GPU cluster.
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