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1 Introduction
This document describes the logical solver introduced in [Genevès, 2006; Genevès et
al., 2007] and provides informal documentation for using its implementation.

The solver allows automated verification of properties that are expressed as logical
formulas over trees. A logical formula may for instance express structural constraints
or navigation properties (like e.g. path existence and node selection) in finite trees.

A decision procedure for a logic traditionally defines a partition of the set of logical
formulas: formulas which are satisfiable (there is a tree which satisfies the formula)
and remaining formulas which are unsatisfiable (no tree satisfies the given formula).
Alternatively (and equivalently), formulas can be divided into valid formulas (formu-
las which are satisfied by all trees) and invalid formulas (formulas that are not satisfied
by at least one tree). The solver is a satisfiability-testing solver: it allows checking
satisfiability (or unsatisfiability) of a given logical formula. Note that validity of a
formula ϕ can be checked by testing ¬ϕ for unsatisfiability.

The solver can be used for reasoning over finite ordered trees whatever these
trees do actually represent. In particular, the logic and the solver are specifically
adapted for formulating and solving problems over XML tree structures [Bray et al.,
2004]. The logic can express navigational properties like those expressed with the
XPath standard language [Clark and DeRose, 1999] for navigating and selecting sets
of nodes from XML trees. Additionally, the logic is expressive enough to encode
any regular tree language property (it subsumes finite tree automata). It can en-
code constraints definable with common XML tree type definition languages (such
as DTD [Bray et al., 2004], XML Schema [Fallside and Walmsley, 2004], and Relax
NG [Clark and Murata, 2001]). The logic provides high-level constructs specifically
designed for reasoning directly with such XML concepts: the user can directly write
an expression using XPath notation in the logic, or even refer to an XML type in the
logic. These characteristics make the system especially useful for solving problems
like those encountered in the static analysis of XML code, static verification of XML
access control policies, XML data security checking, XML query optimization, and
the construction of static type-checkers, and optimizing compilers for a wide variety
of tree-manipulating programs and XML processors.

Outline This user manual is organized as follows: Section 2 describes the basics for
using the solver without requiring any logical knowledge; Section 3 gives some insights
on the logic, especially on the simple yet general data tree model used by the logic
(Section 3.1) and on the syntax of logical formulas (Section 3.2) including high-level
constructs for embedding XPath expressions and XML tree types directly in the logic.
Finally, Section 4 provides an overview of the background theory underlying the logic
and its solver, with related references.

2 Getting Started

2.1 Accessing the Solver
Online version. A web interface to the logical solver is available from:

http://wam.inrialpes.fr/websolver/
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4 Genevès, Layaïda, & Knyttl

Offline version. The logical solver is shipped as a compressed file which, once
extracted, provides binaries along with all required libraries. The “solver.jar” ex-
ecutable file takes a filename as a parameter1. The filename refers to a text file
containing the logical formula to solve. For example, provided a recent2 Java runtime
engine is installed, the following command line:

java -jar solver.jar formula.txt

runs the solver on the logical formula contained in “formula.txt”. The full syntax
of logical formulas is given in Section 3.2. The following examples introduce the
logical formulation of some simple yet fundamental XML problems, and how the
solver output should be interpreted.

2.2 XML Applications
Example 1: emptiness test for an XPath expression. The most basic deci-
sion problem for a query language is the emptiness test of an expression: whether or
not a query is self contradictory and always yields an empty result. This test is im-
portant for error-detection and optimization of host languages implementations, i.e.
implementations that process languages in which XPath expressions are used. For in-
stance, if one can decide at compile time that a query result is empty then subsequent
bound computations can be ignored. For checking emptiness of the XPath expression
a/b[following-sibling::c/parent::d], the contents of the “example1.txt” file
simply consists of the following line:

example1.txt
select("a/b[following-sibling::c/parent::d]")

Running the solver with “ example1.txt” as parameter yields the following trace:
Output for example1.txt

Reading example1.txt

Satisfiability Tested Formula:
(mu X5.(((b & (mu X2.(<-1>(a & (mu X1.(<-1>T | <-2>X1))) | <-2>X2)))
& (mu X4.(<2>((mu X3.(<-1>d | <-2>X3)) & c) | <2>X4)))|(<1>X5|<2>X5)))

Computing Relevant Closure
Computed Relevant Closure [1 ms].
Computed Lean [1 ms].
Lean size is 20. It contains 14 eventualities and 6 symbols.
Computing Fixpoint.....[4 ms].
Formula is unsatisfiable [14 ms].

The input XPath expression is first parsed and compiled into the logic. The corre-
sponding logical translation whose satisfiability is going to be tested is printed. The

1Running the command “java -jar solver.jar” prints the list of required and optional argu-
ments.

2A Java virtual machine version 1.5.0 (or further) and a Java compiler compliance level version
5.0 (or further).

INRIA
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solver then computes the Fisher-Ladner closure and the Lean of the formula: the
set of all basic subformulas that notably defines the search space that is going to be
explored by the solver (see [Genevès et al., 2007] for details). The solver attempts to
build a satisfying tree in a bottom-up way, in the manner of a fixpoint computation
that iteratively updates a set of tree nodes. This computation is performed in at most
2O(n) steps with respect to size n of the Lean.

In this example, no satisfying tree is found: the formula is unsatisfiable (in other
terms, no matter on which XML document this XPath expression is evaluated, it
will always yield an empty result). Intuitively, that is because this XPath expression
contains a contradiction: according to the query, the same node is required to be
named both “a” and “d”, which is not allowed for an XML tree.

Empty queries often come from the use of an XPath expression in a constrained
setting. The combination of navigational information of the query and structural
constraints imposed by a DTD (or XML Schema) may rapidly yield contradictions.
Such contradictions can also be detected by checking a logical formula for satisfiability.

Example 2: checking XPath emptiness in the presence of tree constraints.
Suppose we want to check emptiness of the XPath expression

descendant::switch[ancestor::head]/descendant::seq/
descendant::audio[preceding-sibling::video]

over the set of documents defined by the DTD of the SMIL language [Hoschka, 1998].
The following formula is used:

example2.txt
select("descendant::switch[ancestor::head]/descendant::seq/

descendant::audio[preceding-sibling::video]",
type("sampleDTDs/smil.dtd", "smil"))

The first argument for the predicate type() is a path to the DTD file (here the DTD
is assumed to be located in a subdirectory called “sampleDTDs”), and the second
argument is the name of the element to be considered as top-level start symbol.
Running the solver with this “example2.txt” file as parameter yields the following
trace:

Output for example2.txt
Reading example2.txt
Converted tree grammar into BTT [169 ms].
Translated BTT into Tree Logic [60 ms].

Satisfiability Tested Formula:
(mu X22.(((audio & (mu X20.(<-1>((seq & (mu X19.(<-1>(((switch
& (mu X17.(<-1>(

(let_mu
X1=(((meta & ~(<1>T)) & ~(<2>T)) | ((meta & ~(<1>T)) & <2>X1)),
...
X16=((smil & (~(<1>T) | <1>X15)) & ~(<2>T))

in
X16) | X17) | <-2>X17))) & (mu X18.(<-1>(head | X18) | <-2>X18)))
| X19) | <-2>X19))) | X20) | <-2>X20))) &

RR n° 6726



6 Genevès, Layaïda, & Knyttl

(mu X21.(<-2>video | <-2>X21))) | (<1>X22 | <2>X22)))

Computing Relevant Closure
Computed Relevant Closure [39 ms].
Computed Lean [1 ms].
Lean size is 50. It contains 31 eventualities and 19 symbols.
Computing Fixpoint......[37 ms].
Formula is satisfiable [99 ms].
A satisfying finite binary tree model was found [52 ms]:
smil(head(switch(seq(video(#, audio), layout), meta), #), #)
In XML syntax:
<smil xmlns:solver="http://wam.inrialpes.fr/xml" solver:context="true">

<head>
<switch>

<seq>
<video/>
<audio solver:target="true"/>

</seq>
<layout/>

</switch>
<meta/>

</head>
</smil>

The referred external DTD (tree grammar) is first parsed, converted into an internal
representation on binary trees (called “BTT” and that corresponds to the mapping
described in 3.1), and then compiled into the logic. The XPath expression is also
parsed and compiled into the logic so that the global formula can be composed. In
that case, the formula is satisfiable (the XPath expression is non-empty in the presence
of this DTD). The solver outputs a sample tree for which the formulas is satisfied.
This sample tree is enriched with specific attributes: the “solver:target” attribute
marks a sample node selected by the XPath expression when evaluated from a node
marked with “solver:context”.

Example 3: checking containment and equivalence between XPath expres-
sions. One of the most essential problem for a query language is the containment
problem: whether or not the result of one query is always included into the result of
another one. Containment for XPath expressions is for instance needed for the static
type-checking of XPath queries, for the control-flow analysis of XSLT [Clark, 1999],
for checking integrity constraints in XML databases, for XML data security...
Suppose for instance that we want to check containment between the following XPath
expressions:

descendant::d[parent::b]/following-sibling::a

and:

ancestor-or-self::*/descendant-or-self::b/a[preceding-sibling::d]

INRIA
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Since containment corresponds to logical implication, we actually want to check
whether the implication of the two corresponding formulas is valid. Since we use
a satisfiability-testing algorithm, we verify this validity by checking for the unsatisfi-
ability of the negated implication, as follows:

example3.txt
~( select("descendant::d[parent::b]/following-sibling::a",#)

=> select("ancestor-or-self::*/descendant-or-self::b
/a[preceding-sibling::d]",#))

Note that XPath expressions must be compared from the same evaluation context,
which can be any set of nodes, but should be the same set of nodes for both ex-
pressions. This is denoted by “#”. Running the solver with this “example3.txt” file
results in the following trace:

Output for example3.txt
Reading example3.txt

Satisfiability Tested Formula:
(mu X26.(((a & (mu X15.((<-2>T & (~(<-2>T) | <-2>((d & (mu X13.((<-1>T
& (~(<-1>T) | <-1>(_context | X13))) | (<-2>T & (~(<-2>T) | <-2>X13)))))
& (mu X14.((<-1>T & (~(<-1>T) | <-1>b)) | (<-2>T & (~(<-2>T)
| <-2>X14))))))) | (<-2>T & (~(<-2>T) | <-2>X15))))) & ((~(a) |
(mu X22.((~(<-1>T) | <-1>(~(b) | ((~(_context) & (~(<1>T) |
<1>(mu X18.((~(_context) & (~(<1>T) | <1>X18)) & (~(<2>T) |
<2>X18))))) & (mu X20.((~(<-1>T) | <-1>((~(_context) & (~(<1>T) |
<1>(mu X19.((~(_context) & (~(<1>T) | <1>X19)) & (~(<2>T) |
<2>X19))))) & X20)) & (~(<-2>T) | <-2>X20)))))) &(~(<-2>T) |
<-2>X22)))) | (mu X25.((~(<-2>T) | <-2>~(d)) & (~(<-2>T) |
<-2>X25))))) | (<1>X26 | <2>X26)))

Computing Relevant Closure
Computed Relevant Closure [4 ms].
Computed Lean [1 ms].
Lean size is 29. It contains 23 eventualities and 6 symbols.
Computing Fixpoint.....[8 ms].
Formula is unsatisfiable [22 ms].

The tested formula is unsatisfiable (in other terms: the implication is valid), so one can
conclude that the first XPath expression is contained in the second XPath expression.

A related decision problem is the equivalence problem: whether or not two queries
always return the same result. It is important for reformulation and optimization of an
expression, which aims at enforcing operational properties while preserving semantic
equivalence. Equivalence is reducible to containment (bi-implication) and is noted <=>
in the logic. Note that the previous XPath expressions are not equivalent. The reader
may check this by using the solver, that will generate the following counter-example
tree:

<b xmlns:solver="http://wam.inrialpes.fr/xml">
<d/>
<a solver:context="true" solver:target="true"/>

</b>

RR n° 6726
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3 Logical Insights

3.1 Data Model for the Logic
An XML document is considered as a finite tree of unbounded depth and arity, with
two kinds of nodes respectively named elements and attributes. In such a tree, an
element may have any number of children elements, and may carry zero, one or more
attributes. Attributes are leaves. Elements are ordered whereas attributes are not,
as illustrated on Figure 1. The logic allows reasoning on such trees. Notice that from
an XML perspective, data values are ignored.

<r c="␣" a="␣" b="␣">
<s d="␣">
<v/><w/><x e="␣"/>

</s>
<t/>
<u/>

</r>
XML Notation

a
b c

d

e

r

s t u

v w x

Figure 1: Sample XML Tree with Attributes.

Unranked and Binary Trees There are bijective encodings between unranked
trees (trees of unbounded arity) and binary trees. Owing to these encodings binary
trees may be used instead of unranked trees without loss of generality. The logic
operates on binary trees. The logic relies on the “first-child & next-sibling” encoding
of unranked trees. In this encoding, the first child of a node is preserved in the binary
tree representation, whereas siblings of this node are appended as right successors in
the binary representation. The intuition of this encoding is illustrated on Figure 2 for
a sample tree. Trees can be seen as terms or function calls. More formally, a binary
tree t can be defined by the recursive syntax t ::= σ(t, t′) | ε where σ is a node label and
ε denotes the empty tree. Similarly unranked trees can be defined as t ::= σ(h) where
h is a hedge (a sequence of unranked trees) defined as h ::= σ(h), h′ | ε. The function
f that translates unranked trees into binary trees is then defined by f(σ(h), h′) =
σ(f(h), f(h′)) and f(ε) = ε. The reverse mapping used for reconstructing unranked
trees from binary trees can be expressed as: f−1(σ(t, t′)) = σ(f−1(t)), f−1(t′) and
f−1(ε) = ε.

In the remaining part of this manual, the binary representation of a tree is implic-
itly considered, unless stated otherwise. From an XML point of view, notice that only
the nested structure of XML elements (which are ordered) is encoded into binary form
like this. XML attributes (which are unordered) are left unchanged by this encoding.
For instance, Figure 3 presents how the sample tree of Figure 1 is mapped.

INRIA
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1
2

3

0

0
1
2
3

Figure 2: Binary Encoding Principle.

a
b c

d

e

r

s

t

u

v

w

x

Figure 3: Binary Encoding of Tree of Figure 1.
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Sample Formula Satisfying Binary Tree XML syntax

a & <1>b

a

b <a><b/></a>

a & <2>b

a

b <a/><b/>

a & <1>(b & <2>c)

a

b

c <a><b/><c/></a>

e & <-1>(d & <2>g)

d

e g <d><e/></d><g/>
f & <-2>(g & ˜<2>T) none none

Table 1: Sample Formulas using Modalities.

3.2 Syntax of Logical Formulas
Modal Formulas for Navigating in Trees The logic uses two programs for nav-
igating in binary trees: the program 1 allows to navigate from a node down to its
first successor and the program 2 for navigating from a node down to its second suc-
cessor. The logic also features converse programs -1 and -2 for navigating upward
in binary trees, respectively from the first and second successors to the parent node.
Some basic logical formulas together with corresponding satisfying binary trees are
shown on Table 1. When using XPath expressions, like e.g. select("a[b]"), the
XPath expression is automatically compiled into a logical formula over the binary
tree representation (see Section 3.2).

The set of logical formulas is defined by the syntax given on Figure 4, where the
meta-syntax 〈X〉� means one or more occurences of X separated by commas. Models
of a formula are finite binary trees for which the formula is satisfied at some node.
The semantics of logical formulas is formally defined in [Genevès, 2006; Genevès et
al., 2007]. Table 1 gives basic formulas that use modalities for navigating in binary
trees and node names.

Recursive Formulas The logic allows expressing recursion in trees through the
use of a fixpoint operator. For example the recursive formula:

let $X = b | <2>$X in $X

means that either the current node is named b or there is a sibling of the current
node which is named b. For this purpose, the variable $X is bound to the subformula
b | <2>$X which contains an occurence of $X (therefore defining the recursion). The
scope of this binding is the subformula that follows the “in” symbol of the formula,
that is $X. The entire formula can thus be seen as a compact recursive notation for a
infinitely nested formula of the form:

INRIA



XML Reasoning Solver User Manual 11

ϕ ::= formula
T true

| F false
| l element name
| p atomic proposition
| # start context
| ϕ | ϕ disjunction
| ϕ & ϕ conjunction
| ϕ => ϕ implication
| ϕ <=> ϕ equivalence
| (ϕ) parenthesized formula
| ϕ̃ negation
| <p>ϕ existential modality
| <l>T attribute named l
| $X variable
| let 〈$X = ϕ〉� in ϕ binder for recursion
| predicate predicate (See Section 3.3)

p ::= program inside modalities
1 first child

| 2 next sibling
| -1 parent
| -2 previous sibling

Figure 4: Syntax of Logical Formulas.

RR n° 6726



12 Genevès, Layaïda, & Knyttl

b | <2>(b | <2>(b | <2>(...)))

Recursion allows expressing global properties. For instance, the recursive formula:

˜ let $X = a | <1>$X | <2>$X in $X

expresses the absence of nodes named a in the whole subtree of the current node
(including the current node). Furthermore, the fixpoint operator makes possible to
bind several variables at a time, which is specifically useful for expressing mutual
recursion. For example, the mutually recursive formula:

let $X = (a & <2>$Y) | <1>$X | <2>$X, $Y = b | <2>$Y in $X

asserts that there is a node somewhere in the subtree such that this node is named a
and it has at least one sibling which is named b. Binding several variables at a time
provides a very expressive yet succinct notation for expressing mutually recursive
structural patterns (that may occur in DTDs for instance).

The combination of modalities and recursion makes the logic one of the most
expressive (yet decidable) logic known. For instance, regular tree grammars can be
expressed with the logic using recursion and (forward) modalities. The combination
of converse programs and recursion allows expressing properties about ancestors of a
node for instance. The possibility of nesting recursive formulas allow XPath expres-
sions to be translated into the logic. Note that use of variables in bound formulas
must be guarded by a program <α>; expressions of the following form are not allowed:

let $X = $Y in $X

Cycle-Freeness Restriction There is a restriction on the use of recursive formulas.
Only formulas that are cycle-free are allowed. Intuitively a formula is cycle-free if it
does not contain both a program and its converse inside the same recursion. For
instance, the formula

let $X = a | <-1>$X | <1>$X in $X

is not cycle-free since 1 and -1 occur in front of the same variable bound by the same
binder. A formula is cycle-free if one cannot find both a program and its converse
by starting from a variable and going up in the formula tree to the binder of this
variable. For instance, the following formula is cycle-free:

let $X = a & (let $X = b | <1>$X in $X) | <-1>$X in $X

since variable binders are properly nested and a program and its converse never appear
in front of the same variable bound by the same binder.

Translations of XPath expressions and XML tree types into the logic always gen-
erate cycle-free formulas, whatever the translated XPath or XML type is. The cycle-
freeness restriction only matters when one directly writes recursive logical formulas.
From a theoretical perspective the cycle-freeness restriction comes from the fact that
converse programs may interact with recursion in a subtle manner such that the finite
model property is lost, so the cycle-freeness restriction ensures that the negation of
every formula can also be expressed in the logic, or in other terms, that the logic is
closed under negation and all other boolean operations (a detailed discussion on this
topic can be found in [Genevès et al., 2007]).

INRIA
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spec ::=
ϕ formula (see Fig. 4)

| def ;ϕ
def ::=

predicate-name(〈l〉�) = ϕ′ custom definition
| def ; def list of definitions

Figure 5: Global Syntax for Specifying Problems.

Supported XPath Expressions The logic provides high-level constructions for
facilitating the formulation of problems involving XPath expressions. The construct
select("e", ϕ) where e is an XPath expression provides a way of embedding XPath
expression directly into the logic (e is automatically compiled into a logical formula,
see [Genevès et al., 2007] for details on the compilation technique). The second
parameter ϕ denotes the context from which the XPath is applied; it can be any
formula. The other construct select("e") is simply a shorthand for select("e", #),
where # is the initial context node mark. The syntax of supported XPath expressions
is given on Figure 6. We observed that, in practice, many XPath expressions contain
syntactic sugars that can also fit into this fragment. Figure 7 presents how our XPath
parser rewrites some commonly found XPath patterns into the fragment of Figure 6,
where the notation (a::nt)k stands for the composition of k successive path steps of
the same form: a::nt/.../a::nt︸ ︷︷ ︸

k steps

.

Supported XML Types The logic is expressive enough to allow for the encoding
of any regular tree grammar. The logical construction type("filename", start) pro-
vides a convenient way of referring to tree grammars written in usual notations like
DTD, XML Schema, or Relax NG. The referred tree type is automatically parsed and
compiled into the logic, starting from the given start symbol (which can be the root
symbol or any other symbol defined by the tree type).

3.3 Predicates
We build on the aforementioned query and schema compilers, and define additional
predicates that facilitate the formulation of decision problems at a higher level of
abstraction. Specifically, these predicates are introduced as logical macros with the
goal of allowing system usage while focusing (only) on the XML-side properties, and
keeping underlying logical issues transparent for the user. Ultimately, we regard the
set of basic logical formulas (such as modalities and recursive binders) as an assembly
language, to which predicates are translated. Default predicates are defined as follows:

3.3.1 nempty|non_empty(query, ϕ)

Test for non-emptiness of xpath query posed on type formula ϕ.

RR n° 6726



14 Genevès, Layaïda, & Knyttl

query ::=
/path absolute path

| path relative path
| query | query union
| query ∩ query intersection

path ::=
path/path path composition

| path[qualifier] qualified path
| a::nt step

qualifier ::=
qualifier and qualifier conjunction

| qualifier or qualifier disjunction
| not(qualifier) negation
| path path
| path/@nt attribute path
| @nt attribute step

nt ::= node test
σ node label

| ∗ any node label
a ::= tree navigation axis

self | child | parent
| descendant | ancestor
| descendant-or-self
| ancestor-or-self
| following-sibling
| preceding-sibling
| following | preceding

Figure 6: XPath Expressions.

nt [position() = 1]  nt [not(preceding-sibling::nt)]
nt [position() = last()]  nt [not(following-sibling::nt)]

nt [position() = k︸︷︷︸
k>1

]  nt [(preceding-sibling::nt)k−1]

count(path) = 0  not(path)
count(path) > 0  path

count(nt) > k︸︷︷︸
k>0

 nt/(following-sibling::nt)k

preceding-sibling::∗[position() = last() and qualifier]
 preceding-sibling::∗[not(preceding-sibling::∗) and qualifier]

Figure 7: Syntactic Sugars and their Rewritings.

INRIA



XML Reasoning Solver User Manual 15

Example.
non_empty("//body", type("xhtml11.dtd","html")

3.3.2 added_elements(ϕ,ψ)

Nodes which appears in type formula ψ, but not in ϕ.

Example.
added_elements(b|c|d, a|b|c|d|e)

3.3.3 added_elements(schema1, schema2, root)

Nodes which appears in schema2, but not in schema1 (with common root).

Example.
added_elements("mathml.dtd", "mathml2.dtd", "math")

3.3.4 new_elements(query, schema1, schema2, root)

Nodes which are selected by query posed on schema2, but not on schema1.

Example.
new_elements("//*", "mathml.dtd", "mathml2.dtd", "math")

3.3.5 new_elements(query1, query2, schema1, schema2, root)

Nodes which are selected by query2 posed on schema2, but not by query1 on schema1.

Example.
new_elements("//*", "//*", "mathml.dtd",

"mathml2.dtd", "math")

3.3.6 new_regions(query, schema1, schema2, root)

Nodes selected by the query on schema2 which appear in new context with respect
to schema1.

Example.
new_region("//apply[*[1][self::eq]]",

"mathml.dtd", "mathml2.dtd","math")
& exclude(added_elements(

type("mathml.dtd", "math"),
type("mathml2.dtd", "math")))

& exclude(declare)
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Example.
new_region("//sin[preceding-sibling::*[position()=last()

and (self::compose or self::inverse)]]",
"mathml.dtd","mathml2.dtd","math")

& exclude(added_elements(
type("mathml.dtd", "math"),
type("mathml2.dtd", "math")))

& exclude(declare)

3.3.7 new_parents(query1, query2, schema, root)

Predicate select parents of target nodes for query2 on given schema, which were not
parent nodes for target nodes of query1.

3.3.8 new_parents(query1, query2, schema1, schema2, root)

Predicate select parents of target nodes for query2 on given schema2, which were not
parent nodes for target nodes of query1 posed on schema1. This predicate can either
be used for query evolution on new schemas, or even simply for testing structural
properties with respect to one single schema:

Example.
new_parents("//img","//div", "xhtml-basic10.dtd", "html")

Predicate is equivalent to:

child(select(query2, type(schema2, root)) &
(target_elements(child(select(query1, type(schema1, root)))

3.3.9 new_siblings(query, schema1, schema2, root)

Potentional siblings of nodes selected by query on schema2 which were not siblings
of nodes selected on schema1.

3.3.10 new_siblings(query1, query2, schema1, schema2, root)

Potentional siblings of nodes selected by query2 on schema2 which were not siblings
of nodes selected by query1 on schema1.

3.3.11 new_contents(query, schema1, schema2, root)

Satisfiable if the content model of the selected nodes by query have changed.

Example.
new_contents("//apply[*[1][self::apply]/inverse]","mathml.dtd",

"mathml2.dtd","math")
& exclude(added_elements(type("mathml.dtd", "math"),
type("mathml2.dtd", "math")))
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3.3.12 new_children(query1, query2, schema, root)

Predicate selects nodes, which are children of query2 posed on schema, that are not
children of query1.

3.3.13 new_children(query1, query2, schema1, schema2, root)

Predicate selects nodes, which are children of query2 posed on schema2, that are not
children of query1 posed on schema1. This predicate can either be used for query
evolution on new schemas, or even simply for testing structural properties with respect
to one single schema:

Example.
new_children("//tbody", "//table", "xhtml1-strict.dtd", "html")

Predicate is equivalent to:

parent(select(query2, type(schema2, root)) &
(target_elements(parent(select(query1, type(schema1, root)))

3.3.14 backward_incompatible(schema1, schema2, root)

Predicate is satisfiable if schema2 is bacward-incompatible with schema1.

Example.
backward_incompatible("xhtml-basic10.dtd",

"xhtml-basic11.dtd.dtd", "html")

User might consider following conjuction to consider only elements, which appeared
in both schemas:

Example.
& exclude(added_elements(

type("xhtml-basic10.dtd","html"),
type("xhtml-basic11.dtd", "html")))

3.3.15 forward_incompatible(schema1, schema2, root)

Predicate is satisfiable if schema2 is forward-incompatible with schema1.

3.3.16 exclude(ϕ)

Predicate which guarantees, that ϕ will never be satisfied in the whole considered
tree. Predicate is equivalent to:

(ancestor-or-self(descendant-or-self(ϕ))

Example.
exclude(added_elements(

type("xhtml-basic10.dtd","html"),
type("xhtml-basic11.dtd", "html")))
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3.3.17 ncontain|non_containment(query1, query2)

Predicate is satisfiable if the xpath expression query2 describes a path, which is not
contained in expression query2. Predicate is equivalent to:

select(query1) & select(query2)

Example.
non_containment("descendant::d[parent::b]/following-sibling::a",

"ancestor-or-self::*/descendant-or-self::b/a[preceding-sibling::d]")

3.3.18 ncontain|non_containment(query1, query2, schema, root)

Predicate is satisfiable, if there exists an element, which is selected by query2, but
not by query1. Predicate is equivalent to:

select(query1, type(schema, root)) & select(query2, type(schema, root))

3.3.19 nequiv|non_equivalence(query1, query2)

Predicate is satisfiable, if there exists an element selected by one of the queries, but
not with the other one. Equivalent to:

non_containment(query1, query2) & non_containment(query2, query1)

3.3.20 ncover|non_coverage(query, node_name, schema, root)

Predicate is satisfiable, if the query does not select all the nodes node_name in the
schema. Predicate is equivalent to:

non_containment("//"+node_name, query, schema, root)

Example.
non_coverage("//tbody/tr", "tr", "xhtml-basic10.dtd", "html")

3.3.21 nsubtype|non_subtype(ϕ, ψ)

Semantic subtyping test predicate. More information can be found in [Gesbert et al.,
2011].

3.3.22 isd()

Predicate defined for Parametric polymorphism and semantic subtyping [Gesbert et
al., 2011].
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3.3.23 target_elements(ϕ)

Return union of all possible target node names. Note that this predicate will run the
solver as many times as there are target nodes.

Example.
target_elements(<2>(<-2>a)|<1>(<-1>b))

Following use of target_elements will show all possible nodes, which can have <tr>
as a child.

Example.
target_elements(ancestor(type("xhtml1-strict.dtd", "html")) & child(tr))

3.3.24 satisfiable(ϕ)

Predicate returns TRUE in case of satisfiability of ϕ. Otherwise it returns FALSE.
Note that this predicate requires additional run of the solver.

Example.
satisfiable(a & b) => satisfiable(a | b)

3.3.25 reg_exp(expression)

Interprets given regular expression. Square bracket notation "[a-z]" is not supported,
please use union as "(a|b|...|z)" instead. Complement is defined only for character
union as "ˆ(a|b|...)". Intersection of two regular expressions:

Example.
reg_exp("a+b{2,4}(a|b|c|d)*") & reg_exp("abb((ab)|(ad)){3}")

Non equivalence of two regular expressions:

Example.
~(reg_exp("(ab)+a") <=> reg_exp("a(ba)+"))

Example.
~(reg_exp("(a|b|c)+") <=> reg_exp("(a|b|c){1,3}"))

3.4 Custom Predicates
Following the spirit of predicates presented in the previous section, users may also
define their own custom predicates. The full syntax of XML logical specifications to
be used with the system is defined on Figure 5, where the meta-syntax 〈X〉� means
one or more occurrence of X separated by commas. A global problem specification
can be any formula (as defined on Figure 4), or a list of custom predicate definitions
separated by semicolons and followed by a formula. A custom predicate may have
parameters that are instanciated with actual formulas when the custom predicate is
called. A formula bound to a custom predicate may include calls to other predicates,
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but not to the currently defined predicate (recursive definitions must be made through
the let binder shown on Figure 4).

Example.
sibling($x) = preceding_sibling($x) | following_sibling($x);
sibling(table)

4 Overview of the Background Theory
The logic and its solver are formally described in [Genevès, 2006; Genevès et al., 2007]. The
logic is a modal logic of trees, more specifically an alternation-free µ-calculus with converse for
finite trees. The logic is equipped with forward and backward modalities, which are notably
useful for capturing all XPath (including reverse) axes. The logic is also equipped with a
fixed-point operator for expressing recursion in finite trees. A n-ary fixed-point operator is
also provided so that mutual recursion occurring in XML types can be succintly expressed
in the logic. The logic is also able to express any propositional property, for instance about
nodes labels (XML element and attribute names). Last but not least, the logic is closed under
negation [Genevès, 2006; Genevès et al., 2007], that is, the negation of any logical formula
can be expressed in the logic too (this property is essential for checking XPath containment
which corresponds to logical implication). All these features together: propositions, forward
and backward modalities, recursion (fixed-points operators), and boolean connectives yield
a logic of very high expressive power. Actually, this logic is one of the most expressive yet
decidable known logic. It can express properties of regular tree languages. Specifically, it
is as expressive as tree automata (which notably provide the foundation for the Relax NG
language in the XML world) and monadic second-order logic of finite trees (often referred as
WS2S or “MSO” in the literature) [Thatcher and Wright, 1968; Doner, 1970]. However, the
logical solver is considerably (orders of magnitude) faster than solvers for monadic second-
order logic, like e.g., the MONA solver [Klarlund et al., 2001] (the MONA solver nevertheless
remains useful when one wants to write logical formulas using MSO syntax). Technically, the
truth status of a logical formula (satisfiable or unsatisfiable) is automatically determined in
exponential time, and more specifically in time 2O(n) where n is proportional to (and smaller
than) the size of the logical formula [Genevès, 2006; Genevès et al., 2007]. In comparison,
the complexity of monadic second-order logic is much higher: it was proved in the late 1960s
that the best decision procedure for monadic second order logic is at least hyper-exponential
in the size of the formula [Thatcher and Wright, 1968; Doner, 1970] that is, not bounded
by any stack of exponentials. The tree logic described in this document currently offers the
best balance known between expressivity and complexity for decidability. The acute reader
may notice that the complexity of the logic is optimal since it subsumes tree automata and
less expressive logics such as CTL [Clarke and Emerson, 1981], for instance.

XPath expressions and regular tree types can be linearly translated into the logic. This
observation allows to generalize the complexity of the algorithm for solving the logic to a
wide range of problems in the XML world.

The decision procedure for the logic is based on an inverse tableau method that searches
for a satisfying tree. The algorithm has been proved sound and complete in [Genevès, 2006;
Genevès et al., 2007]. The solver is implemented using symbolic techniques like binary
decision diagrams (BDDs) [Bryant, 1986]. It also uses numerous optimization techniques
such as on-the-fly formula normalization and simplification, conjunctive partitioning, early
quantification.

Finally, another benefit of this method (illustrated in Section 2.2) is that the solver can
be used to generate an example (or counter-example) XML tree for a given property, which
allows for instance to reproduce a program’s bug in the developer environment, independently
from the logical solver.
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