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ABSTRACT
Deterministic regular expressions are widely used in XML
processing. For instance, all regular expressions in DTDs
and XML Schemas are required to be deterministic. In this
paper we show that determinism of a regular expression e
can be tested in linear time. The best known algorithms,
based on the Glushkov automaton, require O(σ|e|) time,
where σ is the number of distinct symbols in e. We fur-
ther show that matching a word w against an expression e
can be achieved in combined linear time O(|e| + |w|), for a
wide range of deterministic regular expressions: (i) star-free
(for multiple input words), (ii) bounded-occurrence, i.e., ex-
pressions in which each symbol appears a bounded number
of times, and (iii) bounded plus-depth, i.e., expressions in
which the nesting depth of alternating plus (union) and con-
catenation symbols is bounded. Our algorithms use a new
structural decomposition of the parse tree of e. For match-
ing arbitrary deterministic regular expressions we present an
O(|e|+ |w| log log |e|) time algorithm.

Categories and Subject Descriptors: F.2.2, I.1.1

General Terms: Algorithms

Keywords: DTD, XML Schema, Deterministic Regular
Expression, Glushkov Automaton, Linear Time.

1. INTRODUCTION
Deterministic regular expressions are widely used in XML

processing. For instance, all regular expressions in DTDs
and in XML Schemas are required to be deterministic. The
idea stems from the earlier SGML standard where right-
hand sides of context-free productions (“content models”)
are deterministic regular expressions. Such expressions can
be parsed more efficiently than unrestricted ones.

Within XML databases and XML processing, the two
main tasks performed over regular expressions are (1) test-
ing determinism and (2) matching (= parsing) against (child
sequences of) the given input document.
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Testing Determinism. The original terminology used in
SGML was to restrict content models to be “unambiguous”;
it means that at any position in the regular expression (po-
sitions are labeled by symbols, such as a or b, but not by
operators such as ∗) and for each symbol there may be at
most one position that follows. For instance, the expres-
sion ab∗b is ambiguous because the a-position is followed
by two b-positions. Intuitively, the parser upon reading ab
has to choose against which b to parse. There exist many
translations from regular expressions to finite automata, see
e.g. [16]. The particular translation due to Glushkov [12]
(see also [2]) associates to each position a state of the au-
tomaton. As Brüggemann-Klein shows [8], a regular expres-
sion is unambiguous if and only if its Glushkov automaton
is deterministic. We therefore use the term “deterministic
regular expression.” Brüggemann-Klein’s result allows to
test determinism of an expression e as follows: (i) build the
Glushkov automaton A of e and (ii) test determinism of A.
The worst-case size of A is O(σ|e|), where σ is the number of
distinct symbols in e, and A can be built and checked for de-
terminism in this time bound. Thus, this test has quadratic
time complexity in the size of e. It is a general miscon-
ception in the literature that testing determinism of regular
expressions can be performed in linear time (cf. e.g., the
abstract of [8]). The known algorithms build the Glushkov
automaton in quadratic worst-case time. Note that large al-
phabets appear in practice, and that the quadratic behavior
of building the Glushkov automaton is experienced even for
very simple expressions such as E = (a1 + a2 + · · ·+ am)∗.

For the expression E, determinism can easily be checked in
linear time (by checking distinctness of the ai). The “mixed
content” of XML, for instance, is similar to E and some
XML validators such as Xerces [11] use specialized linear
time procedures for this case. For more complicated expres-
sions, however, it has remained open whether linear time
determinism testing is possible. Here we close the problem
affirmatively and show that all regular expressions can be
tested for determinism in time O(|e|). Our idea is a new
decomposition of e’s parse tree. For each distinct symbol
a of e we build its “skeleton”; roughly speaking, it is a tree
consisting of all positions labeled a, plus their iterated LCAs
(lowest common ancestors) in e’s parse tree; skeleton trees
can be obtained in linear time [7] using preprocessing and
constant time LCA [1] queries. By adding more nodes and
pointers into the skeleton trees, we are able to test deter-
minism in linear time.

Matching. Consider now matching a deterministic regu-
lar expression e against an input word w. What makes it
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difficult to match e against w? We identify several “easy”
cases: (i) Star-free: in this case, |w| ≤ |e|, and we can match
easily during one traversal over the parse tree of e. (ii)
Bounded number of distinct symbols in e: we simply build
the Glushkov automaton. (iii) Bounded number of occur-
rences of each symbol in e (k-occurrence): Here we use our
first technical lemma. It says that testing if two positions fol-
low each other in e (this means the Glushkov automaton has
a transition between the positions) can be realized in con-
stant time. This is achieved by preprocessing e’s parse tree
for LCA [1] and by using LCA queries to realize a structural
relationship of follow positions known from [9, 25]. Hence,
we do not build the Glushkov automaton. Since at most k
positions need to be checked for the follow relationship when
matching against a k-occurrence expression, the lemma im-
plies linear time O(|e|+k|w|). Note that for real world DTDs
it has been reported that a large percentage of regular ex-
pressions is k-occurrence for small k [3, 21].

One finding is that plus-symbols (union) play an essential
role in the combined complexity of matching. For instance, if
no plus-symbols in e are nested, then we show that matching
can be done in time O(|e| + |w|). The idea is to annotate
particular nodes in e’s parse tree with candidates of follow-
positions in e. The determinism requirement of e then allows
to amortize the number of annotated nodes that have to be
visited in order to go from one symbol in w to the next.

Our amortization argument fails when the depth of alter-
nation of plus and concatenation symbols is not bounded.
Such expressions seem the hardest to match, and finding a
time O(|e|+ |w|) algorithm remains an open problem. Note
that the alternation depth is small in practice: Grijzenhout’s
large collection of real-world DTDs [13] does not contain a
single expression with alternation depth larger than 4. We
present an algorithm with time O(|e| + |w| log log |e|) com-
plexity that works for arbitrary deterministic expressions.
It is derived from our linear time determinism test which
assigns colors (i.e., labels in Σ) to nodes of e’s parse tree.
At a position p, the next position labeled a is obtained by a
lookup at the lowest ancestor of p with color a. The expres-
sion e is preprocessed for lowest colored ancestor queries, us-
ing [23] (based on van Emde Boas trees). Note that for arbi-
trary (nondeterministic) regular expressions, the best known
time complexities are time O(nm/ logn+(n+m) logn) [24]

which was improved recently toO(nm(log logn)/(logn)3/2+
n+m) [6], where m = |e| and n = |w|.

Our results are summarized as follows:

(1) Determinism of a regular expression e can be tested in
time O(|e|). This improves previous algorithms requir-
ing quadratic time. Besides a direct proof, we present
an alternative one which uses a fixed XPath query, and
then applies the result of Bojańczyk and Parys [7].

(2) Deterministic regular expression can be matched in
time O(|e|+ |w|) against an input word w, if

(a) each symbol occurs only a bounded number of
times in e (“k-occurrence”), or

(b) the maximal depth of alternating union and con-
catenation operations in e is bounded.

(3) Star-free deterministic regular expression can be ma-
tched against several input words w1, . . . , wn, in time
O(|e|+ |w1|+ · · ·+ |wn|).

(4) Arbitrary deterministic regular expression can be ma-
tched in time O(|e|+ |w| log log |e|).

Recently it was proved that even in the presence of nu-
meric occurrence indicators (as used in XML Schema), de-
terminism of expressions can be tested in time O(σ|e|) [18].
We show that our result extends to this case: even in the
presence of numeric occurrence indicators we can decide de-
terminism in time O(|e|). We note that all our matching
algorithms are streamable, i.e., they do not need to store w
in memory, but read w in one sequential pass, symbol by
symbol. We have implemented all our algorithms and made
them available at http://gforge.inria.fr/projects/lire/.

Related Work
The idea of our algorithm (3), and also to a lesser extent
of our determinism check (1), is similar to that of Hagenah
and Muscholl [14] in their algorithm that computes for any
regular expression an ε-free NFA in time Ω(|e| log2 |e|). They
decompose the transitions leaving each state into a few sets
and group states sharing such sets of outgoing transitions.
This decomposition is based on a heavy path decomposition
of the parse tree of e. We use another decomposition of this
parse tree in order to amortize the evaluation cost.

An orthogonal direction of research involves algorithms
for the efficient validation of huge documents against a small
DTD. Several works [27, 28] focused on obtaining space effi-
cient algorithms in a streaming framework. This is challeng-
ing when document trees are deep. Konrad and Magniez [20]
provide streaming algorithms in sublinear space for the vali-
dation against DTDs. They consider a framework where the
algorithm has access to a read-only input stream and sev-
eral auxiliary read/write streams. The algorithm is allowed
to perform read or write passes on the streams. At the be-
ginning of each pass on a stream, the algorithm decides in
which direction the stream is processed, and also decides if
the pass is a write or a read pass. The authors propose an al-
gorithm that validates a tree t against a constant-size DTD
in O(log2 |t|) passes, using space O(log |t|) and 3 auxiliary
streams, with O(log |t|) processing time per symbol. Note
that the validator checks the sibling sequences of t against
the corresponding deterministic regular expression.

In the context of DTD inference, Bex et al. identify two
classes of regular expressions which account for most of the
regular expressions in real schemas: the single occurrence
regular expressions (1-ORE) and the chain regular expres-
sions (CHARE). An expression is an 1-ORE iff no symbol
appears more than once in e, therefore 1-ORE are always de-
terministic. CHARE are a subclass of 1-ORE, and contain
the 1-ORE that consist of a sequence of factors of the form
(a1+a2+· · ·+an) where every ai is a symbol, each factor be-
ing possibly extended with a star or a question mark. 1-ORE
account for 98% of the regular expressions in real schemas,
while CHARE account for 90% of them. Bex, Neven, and
van den Bussche [4] also define simple regular expressions,
which generalize CHARE in that symbols ai in factors can
appear with a star or question mark, and the number of
occurrences of a symbol is not restricted.

The class of expressions for which our algorithm (2b) per-
forms in linear time properly contains deterministic simple
regular expressions. Moreover although stars are allowed in
simple regular expressions, which makes them unfit for algo-
rithm (3), those stars can occur only above a single symbol,
or above a union of strings (with possibly a star or question

2



mark above the strings). Therefore, an easy extension of
algorithm (3) handles simple deterministic regular expres-
sions.

2. REGULAR EXPRESSIONS
Let Σ be a finite set of symbols. Regular expressions over

Σ are defined by the following grammar, where � represents
concatenation, + union, ? choice, and ∗ the Kleene star: e :=
a(a ∈ Σ) | (e)�(e) | (e)+(e) | (e)? | (e)∗. The language L(e)
of e is defined as usual [16]. Note that L((e)?) = L(e)∪{ε},
where ε denotes the empty word. We say that e is nullable
if ε ∈ L(e). In expressions, we do not write parentheses
around words over Σ and often omit � symbols. We require
of our regular expressions e that:

(R1) e = (#e′)$ and # and $ do not appear in e′

(R2) ((e′)∗)∗ does not appear in e

(R3) if (e′)? appears in e, then ε /∈ L(e′)

An arbitrary regular expression can be changed easily (in
linear time) into an equivalent one of the required form.
Note that # and $ are tacitly present and required, but, for
better readability, are omitted in most examples.

We identify a regular expression with its parse tree (as il-
lustrated in Figure 1), and define the positions Pos(e) of e as
the leaves of e whereas Ne denotes the set of all nodes from
e. For a node n ∈ Ne we denote by e/n the subexpression
of e rooted at n. Every tree t is implemented as a pointer
structure, where Lchild t(n) (resp. Rchild t(n)) returns the
left (resp. right) child of node n in t and parentt(n) returns
the parent of n in t. The pointers return Null if the respec-
tive node does not exist. For unary nodes Rchild t(n) returns
Null . We denote by labt(n) the label of n in t, and by 4t

the (reflexive) ancestor relationship in t. If m 4t n then we
also say that n is a descendant of m. Thus, each node is
ancestor and descendant of itself.

The size of a tree t, denoted |t|, is the number of nodes in
t, whereas the depth of t depth(t) is the length of path from
the root to the deepest node in t. Our restrictions (R2) and
(R3) guarantee that |e| is linear in |Pos(e)|. We denote by e
the regular expression obtained from e by marking the i-th
position (from left to right) with subscript i. We denote by
Σ the set of symbols obtained from Σ by adding subscripts
below symbols. In particular, Pos(e) = Pos(e).

Given a position p of e, Followe(p) is the set of positions
that may follow p in e:

Followe(p) = {q | ∃u, v ∈ Σ
∗
, u · labe(p) · labe(q) · v ∈ L(e)}.

The expression e is deterministic if for all p, q, q′ ∈ Pos(e)
with q, q′ ∈ Followe(p): q 6= q′ implies that labe(q) 6=
labe(q′). Whenever the regular expression or the tree is clear
from context, we drop the subscript and write Follow , lab,
and 4.

Example 2.1. Let e1 = (ab+ b(b?)a)∗ and e2 = (a∗ba+
bb)∗. Denote by p1, . . . , p5 the positions of e1 in left-to-right
order, and by q1, . . . , q5 those of e2. Then e1 = (a1b2 +
b3(b4?)a5)∗ and Followe1(p3) = {p4, p5}. Similarly, e2 =
(a∗1b2a3 + b4b5)∗, and Followe2(q3) = {q1, q2, q4}. Expres-
sion e1 is deterministic, while e2 is non-deterministic be-
cause labe2(q2) = labe2(q4) = b.
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Figure 1: Expression e0 = (c?((ab∗)(a?c)))∗(ba).

Structure of Regular Expressions
The First and Last-positions of a regular expression e are

First(e) = {p | ∃u ∈ Σ
∗
, labe(p) · u ∈ L(e)}

Last(e) = {p | ∃u ∈ Σ
∗
, u · labe(p) ∈ L(e)}.

We also define, for a node n of e, First(n) and Last(n) as
First(e/n) and Last(e/n), respectively. Note that First(n)
and Last(n) are non-empty for every node n of e. For in-
stance, for the expression e0 in Figure 1 First(n2) = {p1, p2}
and Last(n2) = {p5}.

Given two nodes u, v of e, let LCA(u, v) denote the lowest
common ancestor of u and v in e. The next lemma was
stated before, e.g., in [9, 25], but not in terms of LCA.

Lemma 2.2. Let p, q ∈ Pos(e) and n = LCA(p, q). Then
q ∈ Follow(p) iff

(1) lab(n) = �, q ∈ First(Rchild(n)), p ∈ Last(Lchild(n)),
or

(2) q ∈ First(s) and p ∈ Last(s) where s is the lowest
∗-labeled ancestor of n.

Lemma 2.2 says that there are only two ways in which posi-
tions follow each other: (1) through a concatenation, or (2)
through a star. We write q ∈ Follow�e (p) if (1) is satisfied,
and q ∈ Follow∗e(p) if (2) is satisfied. For instance, in e0 (Fig-
ure 1), we have p4 ∈ Follow�e0(p3) and p1 ∈ Follow∗e0(p5).
Note, however, that there may exist some positions p and q
that satisfy simultaneously (1) and (2).

It was also observed earlier, e.g., [9, 25, 14], that First
and Last-sets (and nullability) can be defined in a syntax-
directed way over the parse tree of e. For instance, if lab(n) =
� and Lchild(n), Rchild(n) are non-nullable then First(n) =
First(Lchild(n)) and Last(n) = Last(Rchild(n)). We define
now the Boolean properties SupFirst and SupLast for every
node n, where n′ denotes parent(n):

SupFirst(n) iff lab(n′) = �, n = Rchild(n′), and

Lchild(n′) is non-nullable
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SupLast(n) iff lab(n′) = �, n = Lchild(n′), and

Rchild(n′) is non-nullable.

If SupFirst(n) then the First-set changes at n’s parent:
First(parent(n)) ∩ First(n) = ∅, and otherwise is a super-
set: First(parent(n)) ⊇ First(n). For instance, in e0 (Fig-
ure 1), n4 is a SupFirst-node since First(n3) = {p2} and
First(n4) = {p4, p5}. This explains the name “SupFirst”: a
node with this property is “maximal” with respect the First-
sets of its direct descendants (without the property). The
same holds for SupLast and Last . We define for any node
n, the pointers pSupFirst(n) and pSupLast(n) as the lowest
ancestors x of n such that SupFirst(x) and SupLast(x), re-
spectively. Recall that by (R1), e = (#e′)$; this implies that
for every node of e′, both pSupFirst(n) and pSupLast(n) are
defined. These definitions will never be applied to the “help
nodes” of e that are not in e′ (such as the root node of e);
note however, that the root n1 in Figure 1 is a SupFirst-
node (because of the phantom position # not shown in the
figure). We can check membership in First and Last, using
pSupFirst and pSupLast .

Lemma 2.3. Let p ∈ Pos(e) and n ∈ Ne.

(1) p ∈ First(n) iff pSupFirst(p) 4 n 4 p, and

(2) p ∈ Last(n) iff pSupLast(p) 4 n 4 p.

It is well-known, see [15, 1], that arbitrary LCA queries on
a tree t can be answered in constant time, after preprocessing
of t in linear time. For positions p and q, define the Boolean
checkIfFollow(p, q) as true iff q ∈ Follow(p).

Theorem 2.4. After preprocessing of e in O(|e|) time,
checkIfFollow(p, q) can be answered in constant time for ev-
ery p, q ∈ Pos(e).

Proof. First preprocess e for LCA queries. Next, add
to each node n of e the pointers pSupLast(n), pSupFirst(n),
and pStar(n). The latter points to the lowest ∗-labeled an-
cestor of n. Clearly, this preprocessing can be carried out in
time O(|e|). We are ready to compute checkIfFollow(p, q) in
constant time: first obtain n = LCA(p, q). By Lemmas 2.2
and 2.3 we return true (1) if lab(n) = �, pSupFirst(q) 4
Rchild(n), and pSupLast(p) 4 Lchild(n). These conditions
can be checked in constant time (n 4 n′ can be realized,
e.g., by testing if LCA(n, n′) = n). If case (1) fails then
we compute n′ = pStar(n) and check in constant time if
pSupFirst(q) 4 n′ and pSupLast(p) 4 n′. We return true if
the checks succeed and false otherwise.

The following technical lemmas state relationships between
positions and their pSupFirst and pSupLast nodes.

Lemma 2.5. Let p, q ∈ Pos(e) and q ∈ Followe(p). Then

(1) parent(pSupFirst(q)) 4 p and

(2) parent(pSupLast(p)) 4 q.

Proof. To show (1), assume that parent(pSupFirst(q))
is not an ancestor of p. Then n = LCA(p, q) is an ances-
tor of parent(pSupFirst(q)), hence pSupFirst(q) 64 n. By
Lemma 2.3(1) we obtain q 6∈ First(n) and therefore, by
Lemma 2.2, q does not follow p. Point (2) can be proved
similarly.

Lemma 2.6. Let p and q be two positions of e such that
q follows p. If pSupLast(p) 4 parent(pSupFirst(q)) then
pSupFirst(q) is nullable.

Proof. Let p, q ∈ Pos(e) such that q ∈ Follow(p) and
pSupLast(p) 4 parent(pSupFirst(q)), and let x = LCA(p, q).
Assume first that q ∈ Follow�(p). Then lab(x) = � and
there are no SupLast nodes between p and pSupLast(p) ex-
cept pSupLast(p). It means that in particular Rchild(x) is
nullable. Hence pSupFirst(q) is nullable if it is the right-
child of x. Otherwise pSupFirst(q) is an ancestor of x.
In that case, there are no SupFirst nodes between q and
pSupFirst(q), except pSupFirst(q), so that Lchild(x) is nul-
lable. Consequently, x is nullable, and there are no SupFirst
nor SupLast nodes between x and pSupFirst(q), except the
node pSupFirst(q). Therefore, pSupFirst(q) is nullable. The
case q ∈ Follow∗(p) is handled similarly: pStar(x) is nul-
lable and satisfies pSupFirst(q) 4 pStar(x) 4 x. Moreover
there are no SupFirst nor SupLast nodes between x and
pSupFirst(q), except pSupFirst(q). Thus, pSupFirst(q) is
nullable.

3. TESTING DETERMINISM
To test determinism we need to check for every a ∈ Σ and

positions q 6= q′ labeled a whether there exists a p such that
q and q′ follow p. The challenge of a linear time algorithm is
to deal with the quadratically many candidate pairs (q, q′).

3.1 Candidate Pair Reduction
We define the following condition:

(P1) for all q 6= q′ in Pos(e), pSupFirst(q) = pSupFirst(q′)
implies lab(q) 6= lab(q′).

Clearly, if (P1) is false then e is non-deterministic. To see
this, let q 6= q′ and n = pSupFirst(q) = pSupFirst(q′). Since
the First and Last sets of any node are non-empty, there
exists a p in Last(Lchild(parent(n))). Note that parent(n) =
LCA(p, q) = LCA(p, q′). By Lemma 2.2, q, q′ ∈ Followe(p),
and hence by definition of determinism, lab(q) 6= lab(q′).
Testing (P1) in linear time is straightforward: during one
traversal of e we group the positions with same pSupFirst-
pointer; for each group we check that all contained positions
have distinct labels. This can easily be achieved in linear
time, using an adapted bucket sorting algorithm. Therefore
we assume from now on that (P1) is true.

According to Lemma 2.5(1) we store information about p
in the parent of pSupFirst(p). For each position p labeled
a, we

• assign color a to the node parent(pSupFirst(p))

• say that position p is a witness for color a in the node
parent(pSupFirst(p)).

Observe that each node may be assigned several colors, but,
since (P1) holds, each node has at most one witness per
color. In Figure 1, node n3 has colors a and c. The witness
for color a (resp. c) in n3 is p4 (resp. p5). Lemma 2.5
states that a position q labeled a that follows p is a witnesses
for color a in some ancestor of p. Thus, if two positions
labeled a follow p, then each of them is witness for color a
in ancestors of p.

We say that a node n ∈ Ne has class a if n has color a, or
n is a position labeled a, or n is the lowest common ancestor
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of two nodes of class a. The a-skeleton ta of e consists of
all nodes n of class a plus their pSupLast and pStar nodes
(as defined in Section 2). The node labels in ta are taken
over from e, and the tree structure is inherited from e: n′

is the left (resp. right) child of n in ta if (1) n′ is in the
subtree of the left (resp. right) child of n in e, (2) n 4 n′,
and (3) there is no n′′ in ta with n 4 n′′ 4 n′. If a node
has no left (resp. right) child defined in this way, then the
corresponding pointer is set to Null . Note that a node in
ta can be labeled � or + and have its left (or right) child
point to Null . Figure 1 presents a regular expression and its
a-skeleton.

Lemma 3.1. The collection of a-skeleta for all a ∈ Σ can
be computed in time O(|e|).

Proof. The size of the a-skeleton is linear in the number
of positions labeled a in e. Hence the size of the collection
of a-skeleta is linear in |e|. The skeleta can be constructed
in linear time by simply applying LCA repeatedly, inserting
each position from e in left-to-right order using the linear
preprocessing so that the LCA of two nodes of e is obtained
in constant time. This construction is detailed in Proposi-
tion 4.4 of [7].

In the a-skeleton ta, we equip each node n with three
pointers: Witness(n, a), FirstPos(n, a), and Next(n, a). For
every node n in ta,

• if n has color a then Witness(n, a) is the witness for
color a in n (and is undefined otherwise)

• FirstPos(n, a) is the position p labeled a such that
p ∈ First(n) if it exists (and is undefined otherwise);
note that property (P1) guarantees that there is at
most one such position p

• Next(n, a) is the set of all positions in FollowAftere(n)
labeled a.

The set FollowAftere(n) is the extension of Follow to inter-
nal nodes n of e,

FollowAftere(n) = {q 6< n | ∃p ∈ Last(n), q ∈ Followe(p)}.

Constructing the data structures FirstPos and Witness is
straightforward: Witness is built simultaneously with the
a-skeleton; FirstPos can for instance be computed in a sin-
gle bottom-up traversal of each a-skeleton, using pointers
pSupFirst from e and ancestor queries in e. Let n be the
root node of the a-skeleton. Then BuildNext(a, n,∅) in Al-
gorithm 1 builds the data structure Next(n′, a) for all nodes
n′ of the a-skeleton.

Lemma 3.2. Calling BuildNext(n, a,∅) for each a ∈ Σ
and root node n of ta takes in total time O(|e|). If any
call returns false then e is non-deterministic. Otherwise,
the set Next(n, a) defined during the execution consists of
all positions in FollowAftere(n) labeled a, for n ∈ Nta and
a ∈ Σ.

Proof. The O(|e|) time is achieved because (1) Build-
Next is called at most m-times, where m is the number of
nodes of all skeleta, and m ∈ O(|e|) by Lemma 3.1, and
(2) each line of the algorithm runs in constant time because
|Y | ≤ 2 at each call, due to Line 10. To see the correct-
ness consider the execution along a path in ta. If at Line 7

Algorithm 1 Computing Next(n, a), if e is deterministic.

procedure BuildNext(a : Σ, n : Node, Y : Set(Node)) : Bool
1 if SupLast(n)
2 then Y ← ∅
3 if n is the left child in ta of a �-node and
4 n has a right sibling n′ in ta and
5 (¬SupLast(n) or parentta(n) = parente(n))
6 then Y ← Y ∪ {FirstPos(n′, a)}
7 Next(n, a)← {p ∈ Y | n 64 p}
8 if lab(n) = ∗
9 then Y ← Y ∪ {FirstPos(n, a)}

10 if |Y | > 2
11 then return false
12 if Lchild ta(n) = Null
13 then return true
14 else B ← BuildNext(a,Lchild ta(n), Y )
15 if Rchild ta(n) = Null
16 then return B
17 else return B ∧ BuildNext(a,Rchild ta(n), Y )
end procedure

the current node n has an ancestor u labeled ∗ with no
SupLast-node on their path, then Y contains FirstPos(u, a);
if n is in the left subtree of an ancestor u labeled � with no
SupLast-node on their path, and n has a right sibling n′ in
ta, then Y contains FirstPos(n′, a). These conditions imply
that the set defined in Line 7 holds all a-labeled positions in
FollowAftere(n). Clearly, e is non-deterministic if |Y | > 2
in Line 10.

We define another condition:

(P2) for every a ∈ Σ and n ∈ Nta , Next(n, a) contains at
most one element.

Clearly, (P2) can be tested in linear time (for instance by
incorporating it into Algorithm 1). If (P2) is false, then e
is non-deterministic. Thus, from now on we assume that
both (P2) and (P1) are true. We identify Next(n, a) with q
if Next(n, a) = {q}, and let it be undefined otherwise.

Lemma 3.3. Let p, q ∈ Pos(e) with labe(q) = a. If q ∈
Followe(p) then the lowest ancestor n of p having color a
exists and satisfies q = Witness(n, a) or q = FirstPos(n, a)
or q ∈ Next(n, a).

Proof. By Lemma 2.2, Lemma 2.5 (1), and Lemma 3.2:
q = Witness(n, a) if Rchild(n) 4e q, q = FirstPos(n, a) if
Lchild(n) 4e q, and q = Next(n, a) if n 64e q.

From Lemma 3.3 and the definition of (P1) and (P2) we
obtain the following result.

Lemma 3.4. The expression e is non-deterministic iff (P1)
or (P2) is false, or there exist a ∈ Σ, n ∈ Nta of color a,
and q, q′ ∈ {FirstPos(n, a), Witness(n, a),Next(n, a)} such
that q 6= q′ and Follow−1

e (q) ∩ Follow−1
e (q′) 6= ∅.

3.2 Determinism Testing Algorithm
To check determinism using Lemma 3.4 we need to check

for a ∈ Σ and n ∈ Nta of color a, and for every pair of
distinct positions q and q′ in {FirstPos(n, a),Witness(n, a),
Next(n, a)} whether or not

Follow−1
e (q) ∩ Follow−1

e (q′) 6= ∅.

Three combinations can occur for a position p:
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(1) Witness(n, a) and Next(n, a) follow p, or

(2) Witness(n, a) and FirstPos(n, a) follow p, or

(3) FirstPos(n, a) and Next(n, a) follow p.

The third combination, however, reduces to the other two
and therefore needs not be considered: let F and N denote
the nodes Next(n, a) and FirstPos(n, a), and let nF and nN

denote the parent of their SupFirst-node. We can prove that
either nF 4 nN 4 n, in which case F = FirstPos(nN , a)
(and N = Witness(nN , a)), or nN 4 nF 4 n, in which
case N is one of FirstPos(nF , a) or Next(nN , a) (and F =
Witness(nF , a)).

To understand the first combination, consider the expres-
sion e = (c(b?a?))a, and let n be the parent of the c node
in e. Thus, n is of color a, with the left a in e as witness.
Clearly e is non-deterministic: take p as the c position, then
both Witness(n, a) and Next(n, a) follow p. The same holds
for the expressions e′ = (c(a?b?))a and e′′ = (c(b?a)∗)a.
However, expression e′′′ = (c(b?a))a is deterministic; this
is because n’s right subtree is non-nullable, which prevents
that Next(n, a) and Witness(n, a) both follow a same posi-
tion p. It is not hard to see, and is formally shown in the
proof of Theorem 3.5, that the first combination occurs if
and only if the right-child of n is nullable.

Let us now consider combination (2). This combination
can only occur if there is a ∗-node S = pStar(n) above n,
and pSupLast(n) is above this node S. Let e = (a(b?a))∗

and let n be the parent of the first a-position. As we can
see, this expression is deterministic. This is for a similar rea-
son as before: because the right child of n is non-nullable.
If we consider e′ = (a(b?a?))∗ then this expression is in-
deed non-deterministic and it holds that both FirstPos(n, a)
and Witness(n, a) follow position p, where p is for instance
the b-position. Thus, combination (2) requires that the
right child of n is nullable, and also that FirstPos(S, a) =
FirstPos(n, a). The latter guarantees that on the path from
S to FirstPos(n, a) there is nothing non-nullable “to the
left”, and hence, that FirstPos(n, a) follows the same po-
sition p that Witness(n, a) follows.

To check determinism of e we check (P1), (P2), and then
we execute for every a ∈ Σ and every node n with color
a, CheckNode(n, a) of Algorithm 2; if any call returns false,
then e is non-deterministic.

Theorem 3.5. Determinism of a regular expression e can
be decided in time O(|e|).

Proof. Let S, W , N , and F denote the nodes pStar(n),
Witness(n, a), Next(n, a), and FirstPos(n, a) respectively.
Since (P1) and (P2) can be tested in O(|e|) time, it suffices,
by Lemma 3.4, to prove the following two statements.

(i) Follow−1
e (W )∩Follow−1

e (N) 6= ∅ iff Rchilde(n) is nul-
lable and N 6= Null ,

(ii) Follow−1
e (W ) ∩ Follow−1

e (F ) 6= ∅ iff F 6= Null , S 6=
Null , Rchilde(n) is nullable, FirstPos(S, a) = F , and
pSupLast(n) 4 S.

Let us prove statement (i) first. If N 6= Null and Rchilde(n)
is nullable then Lchilde(n) is not a SupLast-node. Therefore
any position in Last(Lchilde(n)) belongs to Follow−1

e (W ) ∩
Follow−1

e (N). For the only-if direction, let q be a posi-
tion in Follow−1

e (W ) ∩ Follow−1
e (N). Then in particular

N 6= Null . Node n is a strict ancestor of q since q ∈
Follow−1

e (W ) and n = parente(pSupFirst(W )). As q be-
longs to Follow−1

e (N), pSupLast(q) is an ancestor of n. This
implies that Rchild(n) is nullable according to Lemma 2.6,
since Rchild(n) = pSupFirst(W ) and W follows q.

Proof of (ii): If F 6= Null , S 6= Null , Rchilde(n) is nul-
lable, FirstPos(S, a) = F , and pSupLast(n) 4 S, then any
q in Last(Lchild(n)) is in (Follow�e )(W ) ∩ (Follow∗e)−1(F ).
Conversely, let q be a position in Follow−1

e (W )∩Follow−1
e (F ).

As q belongs to Follow−1
e (W ), node n is a strict ancestor

of q. If Rchilde(n) 4e q then q ∈ (Follow∗e)−1(F ), hence
FirstPos(S, a) = F and pSupLast(n) 4 S, and furthermore
pSupLast(q) 4 S, so that Rchilde(n) is nullable according
to Lemma 2.6. Assume now that Lchilde(n) is an ances-
tor of q, and let x = LCA(q, F ). As an ancestor of both q
and F , Lchilde(n) is an ancestor of x. Furthermore, there
is no SupLast-node between q and Lchilde(n), except possi-
bly Lchilde(n), and there is no SupFirst-node between F
and Lchilde(n). Consequently, x is non-nullable because
Lchilde(n) is, and, there is no ∗-labeled node between x and
Lchilde(n). Hence q 6∈ (Follow�e )−1(F ), and, more generally,
Follow−1

e (W ) ∩ (Follow�e )−1(F ) is empty. This means that
q ∈ (Follow∗e)−1(F ). Thus S = pStar(x) is not Null , satis-
fies FirstPos(S, a) = F , and is an ancestor of n since there is
no ∗-labeled nodes between x and Lchilde(n). Accordingly,
pSupLast(q) 4 S and hence Rchilde(n) is non-nullable.

Algorithm 2 Checking determinism.

procedure CheckNode(n : Node, a : Σ) : Bool
1 F ← FirstPos(n, a)
2 S ← pStar(n)
3 if Rchilde(n) is nullable and
4 (Next(n, a) 6= Null or
5 (FirstPos(S, a) = F and pSupLast(n) 4 S))
6 then return false
7 return true
end procedure

3.3 Testing Numeric Occurrences
Regular expression occurring in XML Schema may con-

tain numeric occurrence indicators. Following the defini-
tions in [19], regular expressions with numeric occurrence
indicators extend regular expressions with ei..j where i ∈ N,
j ∈ N ∪ {∞}, and i ≤ j. The expression ei..j denotes the
union of L(e� e · · · � e︸ ︷︷ ︸

k-times

) for i ≤ k ≤ j. Also ei denotes

ei..i. The definition of determinism in presence of numeric
occurrence indicators must take into accounts the iterations.
Informally, e is deterministic if for every word w there ex-
ists at most one position that can be reached after reading
w. For instance, e = (ab)2..2a(b + d) is deterministic, but
e′ = (ab)1..2a is not, because w = aba can lead to two a-
labeled positions in e′. We refer the reader to [19] for the no-
tion of determinism in regular expressions with numeric oc-
currence indicators. Note that nested iterations can interact
with each other: consider the expression e5 = ((a2..3+b)2)2b
from [19]. This expression is non-deterministic because word
w = a8b can lead to the two b-labeled positions: to the first
one if we decompose it into (a3)2a2b, and to the second one
with decomposition ((a2)2)2b.
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In order to deal with those interactions between iterations,
Kilpeläinen and Tukhanen [19] define the flexibility of f in
e, for every subexpression f of e. They explain how to an-
notate, in time O(|e|), every node n of e with a Boolean
value indicating the flexibility of n. Essentially, flexible iter-
ations are the only ones we have to consider when assessing
determinism (in particular ∗ expressions are flexible). The
authors give a (more accurate) characterization for deter-
minism of numeric occurrences as Theorem 5.5 in [19]. This
characterization can be verified in linear time using a case
study similar to the one above (but with flexible iterations
instead of ∗ expressions). Therefore, given a regular expres-
sion e with numeric occurrence indicators we can decide in
time O(|e|) whether or not e is deterministic.

This improves upon the complexity O(σ|e|) from [18],
where σ = |Σ|. Actually, in Theorem 3.3 from [18], the com-
plexity is stated as n2/(log(n)), with n representing the size
of the binary representation of the regular expression. But
with our notations, this translates into a quadratic O(σ|e|).
Kilpeläınen obtains this complexity by a merging-based ex-
amination of First and Follow sets, similar to the approach
in [19], but relying on a more careful analysis of the Follow
sets. Interestingly, he observes after his Theorem 3.3 that it
seems difficult to go below O(σn) using his approach. We
believe that our skeleton-based algorithm offers a good so-
lution to the limitations of the merging-based approach.

3.4 Alternative Determinism Test
Determinism of e can be formulated as follows:

¬(∃p, p1, p2 ∈ Pos(e). labe(p1) = labe(p2) ∧
p1 ∈ Followe(p) ∧ p2 ∈ Followe(p)).

A natural question arises: Is there a logic that allows to cap-
ture determinism, and at the same time, has efficient model
checking that yields a procedure for checking determinism
in linear time? The answer is positive: It is possible with
X=

reg , the language of Regular XPath expressions with data
equality tests for binary trees with data values as defined
in [7].

Trees with data values allow to store with every node its
label, drawn form a finite set, and additionally, a data value,
drawn form an infinite set. Regular XPath allows to navi-
gate the nodes of the tree using regular expressions of sim-
ple steps (e.g., parent to the left child) and filter expres-
sions. Filter expressions with data equality allow essentially
to test whether two nodes have the same data value. In [7]
Bojańczyk and Parys show that an X=

reg -expression ϕ can be
evaluated over a tree t in time 2O(|ϕ|)|t|.

We wish to construct an X=
reg -expression ϕdet that captures

determinism and whose size is constant i.e., does not depend
on the regular expression e. The main challenge is to handle
position labels of e that can be drawn from an alphabet of
arbitrary size. This is accomplished by: 1) storing the labels
of positions of e as data values and 2) using data equality
to check whether two positions have the same label.

Theorem 3.6. There exists an X=
reg -expression ϕdet such

that for any regular expression e, ϕdet is satisfied in e if and
only if e is deterministic.

Proof. We present only the construction of ϕdet . Let
SupFirst and SupLast denote X=

reg -expressions that are sat-

isfied only in SupFirst- and SupLast-nodes, respectively.

D = (child/[not SupFirst ])∗/P P = [not child]

U = ([not SupLast ]/parent)∗ F = ([lab()=�])/to-right/D

ϕ�� = child∗/[not SupLast ]/from-left/[F =(U/from-left/F )]

ϕ∗∗ = child∗/[lab()=∗]/
[D =(U/[SupFirst ]/parent/U/[lab()=∗]/D)]

ϕ�∗ = child∗/[not SupLast ]/from-left/

[(to-right/[SupFirst ]/D)=(parent/U/[lab()=∗]/D)]

∪ child∗/[lab()=∗]/[D =(U/from-left/F )]

ϕP1 = child∗/[(to-left/[not SupFirst ]/D) =

(to-right/[not SupFirst ]/D)]

ϕdet = [not (ϕP1 or ϕ�� or ϕ�∗ or ϕ∗� or ϕ∗∗)].

Basically, ϕP1 checks if (P1) is violated in e and the expres-
sion ϕ``′ for {`, `′} ⊆ {∗,�} checks whether there exist two
distinct positions p1 and p2 of e such that lab(p1) = lab(p2)
and (Follow `

e)−1(p1) ∩ (Follow `′
e )−1(p2) 6= ∅.

4. MATCHING
In this section we present a collection of algorithms match-

ing a word w against e. First, we present an algorithm for
arbitrary deterministic regular expressions that uses the con-
structions from Section 3 and lowest color ancestor queries
to achieve expected time complexity O(|e| + |w| log log |e|).
Next, we present a matching algorithm for k-occurrence reg-
ular expressions in time O(|e|+ k|w|), which is linear if k is
a constant. The most intricate matching algorithm that we
present in this paper is the path-decomposition algorithm.
It works in time O(|e| + ce|w|), where ce is the maximal
depth of alternating union and concatenation operators in
e. The three algorithms above perform matching by provid-
ing a transition simulation procedure: given a position p and
a symbol a return the position q labeled a that follows p, or
Null if no such position exists. If e = (#e′)$, matching a
word w against e′ is straightforward: begin with position #,
use the transition simulation procedure iteratively on subse-
quent symbols of w, and finally test if the position obtained
after processing the last symbol of w is followed by $.

The algorithms above allow to match multiple input words
w1, . . . , wN against one regular expression e: the correspond-
ing running times are obtained by replacing the factor |w| by
|w1|+ . . .+ |wN |. We also present an algorithm that runs in
time O(|e|+ |w1|+ . . .+ |wN |) for star-free deterministic reg-
ular expressions e, a setting in which none of the previously
mentioned algorithms guarantee linear complexity.

In the reminder of this section, we fix a deterministic reg-
ular expression e, and when talking about positions and
nodes, we implicitly mean positions and nodes of e.

4.1 Lowest Colored Ancestor Algorithm
Our previous construction that tests determinism in linear

time, provides an efficient procedure for transition simula-
tion. Recall that we color the parent of any SupFirst-node
n with the labels of the positions that belong to First(n).
By Lemma 3.3, given a position p and a symbol a the a-
labeled position q that follows p is one of: Witness(n, a),
FirstPos(n, a), and Next(n, a), where n is the lowest ances-
tor of p with color a. We use the checkIfFollow test (Theo-
rem 2.4) to select the correct following position q among the
three candidates.
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Example 4.1. Consider the expression in Figure 1, posi-
tion p3, and the symbol c. The lowest ancestor of p3 with
color c is n3. Here, Witness(n3, c) = p5, Next(n3, c) = p1,
and FirstPos(n3, c) = Null . Using checkIfFollow we find
that it is p5 that follows p3. This ends the transition simula-
tion procedure. Now, at position p5 we read the next symbol
a. The lowest ancestor of p5 with color a is again n3. This
time it is FirstPos(n3, a) = p2 that follows p5.

The basic ingredient of this procedure is an efficient algo-
rithm for answering lowest colored ancestor queries. Recall
from [23, 10], that given a tree t with colors assigned to
its nodes (some nodes possibly having multiple colors), we
can preprocess t in expected time O(|t| + C), where C is
the total number of color assignments, so that any lowest
colored ancestor query is answered in time O(log log |t|). In
this way, the transition simulation is accomplished in time
O(log log |e|), which gives us the following result.

Theorem 4.2. For any deterministic regular expression
e, after preprocessing in expected time O(|e|), we can decide
for any word w whether w ∈ L(e) in time O(|w| log log |e|).

4.2 Bounded Occurrence Algorithm
A regular expressions e is called k-occurrence (k-ORE for

short) if each symbol a ∈ Σ occurs at most k times in e.
While every regular expression is k-ORE for a sufficiently
large k, Bex et al. [5] report that the majority of regular
expressions in real-life XML schemas are in fact 1-OREs.
Given a position p and a symbol a, to find the following a-
labeled position q we only need to perform the checkIfFollow
test (Theorem 2.4) on all a-labeled positions in e, which are
gathered into a designated list during preprocessing of e.
Thus, transition simulation is performed in time O(k).

Theorem 4.3. For any deterministic k-ORE e, after pre-
processing in time O(|e|), we can decide for any word w
whether w ∈ L(e) in time O(k|w|).

We note that an analogous technique can be used to match
a word w against a nondeterministic k-ORE e: we maintain
a set P of at most k positions and when reading symbol a we
identify among the a-labeled positions those that follow any
of the positions in P . Here, reading one symbol requires
O(k2) time, and thus, the matching can be done in time
O(k2|w|) after O(|e|) preprocessing.

4.3 Path Decomposition Algorithm
Next, we describe an algorithm for matching a word w

against a regular expression e in time O(|e|+ce|w|), where ce
is the maximal depth of alternating union and concatenation
operators in e (as mentioned at the end of the Introduction,
ce is bounded by 4 in real-life DTDs [13]).

First, we define the function hFirst(n, a) that for a node
n and a symbol a returns the unique a-labeled position in
First(n) and Null if it does not exist. Queries of the form
hFirst(n, a) can be answered in constant time after prepro-
cessing in time O(|e|), but since hFirst is not used in the final
algorithm, we omit the implementation details.

Climbing algorithm. We first present a simple transition
simulation procedure that uses hFirst , and later improve it
to obtain the desired evaluation algorithm. Given a posi-
tion p and a symbol a, it suffices to find an ancestor n of
p such that q = hFirst(Rchild(n), a) follows p (tested with

checkIfFollow). If such ancestor does not exists, then p has
no a-labeled following position. The soundness of this proce-
dure follows from that of checkIfFollow and the completeness
from Lemma 2.5. A näıve implementation seeks the ances-
tor in question by climbing up the parse tree starting from
p, which yields O(depth(e)) time per transition simulation
and overall O(|e|+ depth(e) · |w|) time for matching.

Path decomposition. Our algorithm speeds up climbing
the path using jumps that follow precomputed pointers. The
precomputed pointers lead to nodes where we store an ag-
gregation of the values of hFirst for several nodes skipped
during the jump. The pointers are defined using the notion
of path decomposition of the parse tree.

Recall that a path decomposition of a tree is a set of pair-
wise disjoint paths covering all nodes of the tree, and here,
a path means a sequence of nodes n1, . . . , nk such that ni

is the parent of ni+1. Note that a path decomposition of a
tree can be specified by the set of the top-most nodes of the
paths, which is how we define the path decomposition of e.
A node y of e is the top-most node of a path if it is the root
of e, or satisfies one of the following conditions:

(i) SupLast(y)

(ii) SupFirst(y)

(iii) y is the nullable right child of its parent, or

(iv) y is the right child of a +-labeled node.

For a position p we define top(p) as the top-most node of
the path of the left sibling of pSupFirst(p).

Example 4.4. Consider the regular expression presented
in Figure 2 together with its path decomposition. For this
expression ce = 4 because there are at most 4 alternations
of union and concatenation operators on any path of the
expression, and in particular, it is 4 on the path from p1 to
the root node. Note that top(p1) = n3 and top(p2) = n1.

We now define the function h which is similar to hFirst

but defined for top-most nodes only: h(n, a) points to the
a-labeled position p such that n = top(p), i.e., we assign
h(top(p), lab(p)) = p for every position p. For instance, in
the expression in Figure 2, h(n3, a) = p1 and h(n1, d) = p2.

There exists a subtle connection between h and hFirst . If
we consider a top-most node n, then the values of h as-
signed to n can be viewed as an aggregation of values of
hFirst of several nodes n1, . . . , nk, which are gathered from
around the path (but not from the path). The decomposi-
tion of e ensures that the aggregation is collision-free, i.e., if
hFirst(ni, a) 6= Null for some i, then hFirst(nj , a) = Null for
all j 6= i. Formally, we state this property as follows.

Lemma 4.5. For any two different positions p and p′, if
top(p) = top(p′), then p and p′ have different labels.

Proof. Let y denote the lowest node in the path of top(p)
and let p0 denote some position in Last(y). We show that
p follows p0. By definition of top(p), the left sibling of
pSupFirst(p) is on the path between y and top(p). There-
fore, pSupLast(p0) = pSupLast(y) is an ancestor of the left
sibling of pSupFirst(p) because there is no SupLast-node on
a path except for the top-most node of the path. Moreover,
we observe that the parent of pSupFirst(p) is labeled with
�. Thus, by Lemma 2.2 we get p ∈ Follow(p0). Similarly,

8



�

�

�

?

a

�

�

?

b

+

c �

+

+

d �

e ?

a

f

?

b

?

c

?

d

+

e ∗

+

f �

∗

�

g ∗

�

a ?

b

?

h

�

�

#

$

p1

p2

p3

p4

p5

n1

n2

n3

n4

n5

n6

n : SupFirst(n)

n : SupLast(n)

x : path of the
decomposition

�

�

�

?

a

�

�

?

b

+

c �

+

+

d �

e ?

a

f

?

b

?

c

?

d

+

e ∗

+

f �

∗

�

g ∗

�

a ?

b

?

h

�

�

#

$

p1

p2

p3

p4

p5

n1

n2

n3

n4

n5

n6

Figure 2: Path decomposition.

we show that p′ ∈ Follow(p0). Because e is deterministic,
there cannot be two different positions with the same label
in Follow(p0).

Lazy arrays. To store the values of h we use lazy ar-
rays, which we describe in detail next. This interesting data
structure, known in programmer’s circles [17, 22], provides
the functionality of an associative array with constant time
initialization, assignment, and lookup operations. The finite
set of keys K needs to be known prior to initialization of the
data structure. Furthermore, every key needs to be associ-
ated with a unique element from a continuous fragment of
natural numbers, and here for simplicity, we assume that
K = {1, . . . , N} for some N ≥ 1.

A lazy array consists of an array A that stores the values
associated with the keys, a counter C of active keys having
a value assigned, and additionally two arrays B and F that
store the set of active keys. At initialization, C is set to 0
and uninitialized memory of length N is allocated for each
of the arrays A, F , and B (an operation assumed to work
in O(1) time). To assign value v to key k, we add k to the
set of active keys (if k is not in that set already), and assign
A[k] = v. To lookup key k, we return A[k] if k is active and
return Null otherwise. To add a key k to the set of active
keys, we increment C, set F [C] = k, and set B[k] = C.
In this way a key k is active if and only if 1 ≤ B[k] ≤ C
and F [B[k]] = k. Note that the first condition alone is

insufficient to check if a key k is active because B has been
allocated with uninitialized memory.

We found out that in practice, hash arrays offer compat-
ible functionality with superior performance while theoreti-
cally providing only expected O(1) time for the assignment
and lookup operations. As a side note, we point out that
lazy arrays stand on their own merit because they allow a
constant time reset operation (by simply setting C = 0), un-
matched by hash arrays (but not needed by our algorithm).

Preprocessing. We construct and fill the lazy-array h in
one bottom-up traversal of e. In the same traversal we also
compute an additional pointer nexttop for every position and
every top-most node of a path, defined as follows. We set
nexttop(n) to the lowest top-most node y of a path above
parent(n) that is either the root of e, or satisfies one of the
following conditions:

(1) SupLast(y)

(2) SupFirst(y)

(3) there exists a non-nullable �-labeled ancestor of n in
the path of y.

For instance, in the expression in Figure 2, nexttop(p3) = n5,
nexttop(p4) = n6, and nexttop(p5) = n4. We point out that
nexttop(n) is always the top-most node of some path, and
furthermore, nexttop(n) is a strict ancestor of n.

Transition simulation. FindNext in Algorithm 3 follows
nexttop pointers on the path from p to the node pSupLast(p)
while attempting to find a-labeled follow positions stored
in h at the visited nodes. If this does not succeed, then

Algorithm 3 Transition simulation.

procedure FindNext(p : Position, a : Σ) : Position
1 x← p
2 while pSupLast(p) 6= x
3 if checkIfFollow(h(x, a), p)
4 then return h(x, a)
5 x← nexttop(x)
6 if checkIfFollow(h(x, a), p)
7 then return h(x, a)
8 y ← pSupFirst(parent(x))
9 if y is nullable

10 then q ← h(nexttop(y), a)
11 else q ← h(Lchild(parent(y)), a)
12 if checkIfFollow(q, p)
13 then return q
14 else return Null
end procedure

FindNext checks in First(parent(pSupLast(p))) (Lines 8–14)
to find follow positions. This task would be easy to ac-
complish with hFirst through hFirst(parent(pSupLast(p)), a).
Since we wish to use h instead, we need to locate the node
n such that h(n, a) returns the position we look for. The
location of this node depends on whether or not the node
y = parent(pSupLast(p)) is nullable. If y is nullable, we
perform a single nexttop jump from y to reach n. Other-
wise, n is the left sibling of y. Finally, we remark that if
hFirst(parent(pSupLast(p)), a) is not Null , then h(n, a) re-
turns the same node but the converse needs not be true:
even if q = h(n, a) is not Null , hFirst(parent(pSupLast(p)), a)
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might be Null . Consequently, we verify in Line 12 that the
node q indeed follows p.

Example 4.6. Consider expression in Figure 2, position
p1, and symbol d. The computation of FindNext(p1, d) fol-
lows the jump sequence: p1, parent(p1), n3, n2, n1. At node
n1, h(n1, d) yields position p2, and since p2 follows p1, the
procedure returns p2.

Correctness. To reason about iterations of the main loop
of FindNext , we introduce this notation: nexttop0(n) = n,
and nexttopi+1(n) = nexttop(nexttopi(n)) for i ≥ 0. Also,
the jump sequence of p is the sequence

nexttop0(p),nexttop1(p), . . . ,nexttopK(p),

where K is such that nexttopK(p) = pSupLast(p). We call K
the length of the jump sequence of p. We first show that the
main loop performs a sufficient number of nexttop jumps.

Lemma 4.7. Let p be a position and K the length of the
jump sequence of p. For every position q that follows p,
either top(q) = nexttopi(p) for some 0 ≤ i ≤ K or q belongs
to First(parent(pSupLast(p))).

Proof. By Lemma 2.5 top(q) is an ancestor of p or the
left sibling of a non-nullable SupFirst-ancestor of p. Fur-
thermore, if pSupFirst(q) is nullable then top(q) is the top
of the path containing parent(pSupFirst(q)). From the def-
inition of top and nexttop, the jump sequence of p visits
every SupFirst- and SupLast-ancestor of p, as well as every
ancestor y of p such that y is top-most node of a path and
there exists some non-nullable �-labeled ancestor of p on
that path.

We assume that q /∈ First(parent(pSupLast(p))), and show
that in this case no other ancestor of q needs to be vis-
ited. Under that assumption, a case analysis for Lemma 2.2
shows that pSupFirst(q) is the right sibling of pSupLast(p),
or satisfies pSupLast(p) 4 parent(pSupFirst(q)) 4 p. If
pSupFirst(q) is the right sibling of pSupLast(p), then top(q)
is equal to pSupLast(p) and is therefore visited by the jump
sequence. Otherwise, pSupLast(p) 4 parent(pSupFirst(q)).
By Lemma 2.6, pSupFirst(q) is nullable. Consequently, its
parent belongs to the path of top(q). Furthermore, the left
sibling of pSupFirst(q), and therefore its parent, are non-
nullable. It follows that the parent of pSupFirst(q) is a non-
nullable �-labeled ancestor of p that belongs to the path of
top(q) which is thus visited.

We now show the correctness of FindNext .

Lemma 4.8. For any position p and any symbol a, the
procedure FindNext(p, a) returns q iff q ∈ Follow(p) and
lab(q) = a.

Proof. The soundness of FindNext follows from the use
of checkIfFollow prior to returning a position. If a position
q is labeled with a and follows p, then FindNext returns q by
Lemma 4.7 and because the algorithm returns q at Line 13
if q belongs to First(parent(pSupLast(p))).

Complexity. We show that the amortized running time of
the transition simulation procedure in Algorihtm 3, when
matching a word w against the deterministic regular expres-
sion e, is proportional to ce, the maximal depth of alternat-
ing union and concatenation operators in e.

Lemma 4.9. Procedure FindNext(p, a) works in amortized
time O(ce), when matching a word against a deterministic
regular expression e.

Proof. We use the potential pot of the data structure
defined as a function of the current position:

pot(p) = |{v 4 p | SupFirst(v)}|.

At the phantom position #, the initial potential is set to
zero. The potential is decreased by one with every other
jump through nexttop and is increased by at most one each
time the transition simulation procedure is executed.

Now, let q be the position returned by FindNext(p, q),
i.e., the a-labeled position that follows p in e. We prove that
FindNext(p, a) executes at most 2(pot(q)−pot(p))+ce+O(1)
iterations of the loop (nexttop jumps) before returning q.

By definition of top, there are no SupFirst-nodes between
pSupFirst(q) and top(q), hence

pot(q) ≤ pot(top(q)) + 1. (1)

Let K be the length of the jump sequence of p and let
ni = nexttopi(p) for 0 ≤ i ≤ K. Now, from the sequence
n0, . . . , nK we remove every node that is the non-nullable
right child of a +-labeled node and obtain a subsequence
ni0 , ni1 , . . . , niK′ . For every 0 ≤ j < K′ − 1, if nij is the
nullable right child of its parent, then nij+1 is a SupFirst-
node by definition of nexttop. Hence, for every 0 ≤ j ≤ K′,

j ≤ 2(pot(ni0)− pot(nij )) + 2.

Thus, for every 0 ≤ j ≤ K,

j ≤ 2(pot(p)− pot(nj)) + 2 +K −K′. (2)

Let ` be the natural number such that n` = top(q). Com-
bining equations (1) and (2), as ce is an upper bound for
K −K′, we obtain the result claimed before:

` ≤ 2(pot(p)− pot(q)) + 4 + ce. (3)

From this result, establishing the amortized complexity is
straightforward. Given a word w = a1 · · · an, let p1, . . . , pn
be the sequence of positions with pi = FindNext(pi−1, ai)
for 1 ≤ i ≤ n and p0 = #. Then, the number of iterations
through the loop of FindNext while matching w against e is
at most:

n(4 + ce) + 2

n∑
i=1

(pot(pi−1)− pot(pi))

= n(4 + ce) + 2(pot(p0)− pot(pn))

≤ n(4 + ce).

This implies the amortized cost of O(ce), because each line
of FindNext runs in constant time.

Note that in the previous proof it suffices to take a smaller
value of ce, the maximum number of ancestors of a position
of e that are labeled with +, are non-nullable, and have a
parent labeled with �.

Finally, we formally state the result.

Theorem 4.10. For any deterministic regular expression
e, after preprocessing in time O(|e|), we can decide for any
word w whether w ∈ L(e) in time O(ce|w|), where ce is
the maximal depth of alternating union and concatenation
operators in e.
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4.4 Star-Free Algorithm
Finally, we present an algorithm that matches simultane-

ously several words w1, . . . , wN against a star-free determin-
istic regular expression e. For a single word this is trivial: in
a star-free regular expression, q ∈ Follow(p) implies that po-
sition q is after p in the preorder traversal of e, and therefore,
to simulate a transition it suffices to run the checkIfFollow
test on subsequent positions until a match is found. In fact,
the checkIfFollow tests can be hard-coded into the traversal
to avoid lowest common ancestor queries.

The result is non-trivial when matching several words
w1, . . . , wN . Also this time, the expression is traversed only
once and for every word wi we maintain the current index
di, indicating the prefix of wi matched so far. The matching
is driven by the preorder traversal of e: with every position
visited in the traversal we update the indices d1, . . . , dN ac-
cordingly. The update process is, however, not straightfor-
ward and to perform it efficiently we use a variant of the
a-skeleta, constructed dynamically.

First, we define some terminology. We say that the word
wi at index di expects the symbol a if the symbol of wi at
index di + 1 is a. We also say that wi at di reaches posi-
tion p if after simulating transitions on the corresponding
prefix of wi we arrive at p (or more precisely, the Glushkov
automaton of e reaches p after reading the prefix of wi). A
dynamic a-skeleton ta is essentially a structure containing a
subset of positions closed under lowest common ancestors.
Additionally, with each position p in ta we associate a list of
(pointers to) words such that if word wi is associated with
p, then the word wi at index di reaches the position p and
expects the symbol a.

When processing a position p labeled a, we remove from
the dynamic a-skeleton ta every position q that is followed
by p, update indices of the words on the list associated with
q, and insert p to some dynamic a-skeleta accordingly. We
illustrate the procedure in the following example.

Example 4.11. We consider the deterministic regular ex-
pression e = (#(((a + ba)(c?))(d?b)))$, where # and $ are
two phantom positions that do not need to be matched. The
expression e has 8 positions: #, p1, . . . , p6, $. We match
against e the words w1 = bcdb, w2 = acdba, w3 = acb,
and w4 = bada.

Initially, all indices are d1 = d2 = d3 = d4 = 0. When
describing dynamic a-skeleta, we write 〈p,W 〉 to indicate
that a position p has an associated list of words W . Initially,
ta = 〈#, [w2, w3]〉, tb = 〈#, [w1, w4]〉, and all other dynamic
a-skeleta are empty.

In the first step, we read the a-labeled position p1. Because
p1 follows #, we remove from ta the position 〈#, [w2, w3]〉,
increment d2 and d3, and insert 〈p1, [w2, w3]〉 to tc.

Next, we read the b-labeled position p2. Because p2 follows
#, we remove from tb the position 〈#, [w1, w4]〉, increment
d1 and d4, and insert 〈p2, [w4]〉 to ta and 〈p2, [w1]〉 to tc.
Because we keep the dynamic a-skeleta closed under low-
est common ancestors, tc becomes 〈p1, [w2, w3]〉+ 〈p2, [w1]〉,
where + is a binary node whose children are p1 and p2.

At the position p3 labeled with a, because p3 follows p2, we
remove 〈p2, [w4]〉 from ta, increment d4 and add 〈p3, [w4]〉
to td. At the position p4 labeled with c, because p4 follows
p1, we remove from tc the position 〈p1, [w2, w3]〉, increment
d2 and d3, and insert 〈p4, [w2]〉 to td and 〈p4, [w3]〉 to tb.
Although p2 is not followed by p4, we also remove 〈p2, [w1]〉

from tc and discard it because we observe that p2 will not be
followed by any of the subsequent positions. After this step,
tb = 〈p4, [w3]〉, tc is empty, and td = 〈p3, [w4]〉 � 〈p4, [w2]〉.

The next position p5 is labeled with d and follows both p3
and p4. Therefore, we remove from td both 〈p3, [w4]〉 and
〈p4, [w2]〉, increment d2 and d4, and insert 〈p5, [w4]〉 to ta
and 〈p5, [w2]〉 to tb. This way, tb is 〈p4, [w3]〉 � 〈p5, [w2]〉.

In the last step we move to the position p6 labeled with
b. Because p6 follows both p4 and p5, we remove 〈p5, [w2]〉
and 〈p4, [w3]〉 from tb and increment d2 and d3. We insert
〈p6, [w2]〉 to ta. Because d3 = |w3| and $ follows p6, w3

matches e. Since there are no further positions to process,
the words w1, w2, and w4 do not match d.

Details on how to efficiently handle a-skeleta follow. We
assume that the positions p1, . . . , pm of e are given in the
traversal order of e and that e has been preprocessed for
LCA and Last queries. Every time we process a position
〈p,W 〉, the list W is nonempty and we increment the index
of every word in W , which corresponds to consuming one
symbol of every word in W . By |ta| we denote the number
of all nodes that are inserted to ta throughout the execution
of the matching algorithm. Note that for every consumed
symbol we add to a-skeleta at most one position and at most
one additional LCA node. Therefore, the sum of |ta| over
a ∈ Σ is in O(|w1|+ · · ·+ |wN |). We shall use this observa-
tion when characterizing the total time necessary to identify,
remove, and insert positions in the dynamic a-skeleta.

With every dynamic a-skeleton ta we maintain the right-
most position pa, i.e., the position most recently added to
ta. We also provide a procedure findLCA(ta, pi) for local-
izing in ta the possible position of the lowest common an-
cestor nLCA of pa and a new position pi which follows pa
in the traversal of e. Note that nLCA needs not be present
in ta and findLCA(ta, pi) returns the top-most descendant
of nLCA present in ta (which may possibly be nLCA itself if
ta contains it). The procedure simply climbs the right-most
path in ta until the desired node is found. Furthermore, our
algorithm performs calls to findLCA with subsequent posi-
tions in the traversal order, i.e., if a call findLCA(ta, pi) is
followed by a call findLCA(ta, pj), then i < j. The proce-
dure findLCA takes advantage of this assumption by saving
the result of the previous call and beginning to climb the
right-most path of ta from the saved node (if no new nodes
have been added in between). This way the cumulative ex-
ecution time of all findLCA calls with ta is O(|ta|), which
sums over a ∈ Σ to O(|w1|+ · · ·+ |wN |).

The findLCA procedure is used to insert new positions as
well as to identify and to remove relevant positions from the
dynamic a-skeleta. Inserting pi into ta is straightforward:
we find the lowest common ancestor nLCA of na and pi in e,
use findLCA(ta, pi)) to find if and where to insert nLCA to
ta, and then insert pi. Identifying and retrieving positions in
ta that are followed by pi is based on Lemma 2.2. We climb
the path from findLCA(ta, pi) to ni = parent(pSupFirst(pi))
and at every �-labeled node n we pick the subtree t′ rooted
at the left child of n. In one traversal of t′ we retrieve all of its
Last-positions, because they are followed by pi, and remove
all remaining nodes, because none of the remaining positions
is followed by any of the subsequent positions pj≥i. Again,
because the number of nodes traversed by the procedure in
ta is proportional to |ta|, the overall time necessary to insert
and remove positions in all a-skeleta is O(|w1|+ · · ·+ |wN |).

11



Theorem 4.12. For any star-free deterministic regular
expression e and words w1, . . . , wN , we can decide which
words belong to L(e) in time O(|e|+ |w1|+ · · ·+ |wN |).

5. CONCLUSIONS
We have presented a linear time algorithm for testing

if a regular expression is deterministic, an efficient algo-
rithm for matching words against deterministic regular ex-
pressions, and linear time algorithms for matching against
k-occurrence, ∗-free (multiple words), and bounded +-depth
expressions.

It was our original motivation for this work, but remains
an open theoretical problem, whether matching for deter-
ministic regular expressions can be carried out in timeO(|e|+
|w|). We note that our O(|e| + |w| log log |e|) matching al-
gorithm is not optimal because of the O(log log |e|) cost of
lowest color ancestor queries. We plan to find out if the
cost of those lowest colored ancestor queries can be amor-
tized and if the particular order of the queries can be used
to devise better data structures. Can other approaches solve
the problem in O(|e| + |w|) time, e.g., by giving up the
the streaming aspect of using transition simulation? Which
larger classes of regular expressions, exceeding the determin-
istic ones, can be matched efficiently? An example of such
class is mentioned after Theorem 4.3, the k-OREs. Another
interesting and largely open problem is the one of matching
under linear time preprocessing of w. Very simple match-
ing problems such as substring search have time O(|e|) so-
lutions; can those be extended to more general regular ex-
pressions? Finally, can lower bounds matching the upper
bounds be shown? Note that for general regular expressions
and NFAs, it is known that no approach relying on con-
structing an equivalent epsilon-free NFA can achieve linear
complexity. This follows from the fact that all epsilon-free
NFAs equivalent to a1?a2? . . . am? have at least m log2m
transitions [26].
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