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Abstract: Prefetching is a basic mechanism to avoid to waste time when accessing data. However, a tradeoff
must be established between the amount of network’s resources wasted by the prefetching and the gain of time.
For instance, in the Web, browsers may download documents in advance while an Internaut is surfing on the Web.
Since the web surfer follows the hyperlinks in an unpredictable way, the choice of the web pages to be prefetched
must be computed online. The question is then to determine the minimum amount of resources used by prefetching
and that ensures that all documents accessed by the web surfer have previously been loaded in the cache.

We model this problem as a game similar to Cops and Robber Games in graphs. A fugitive starts on a marked
vertex of a (di)graph G. Turn by turn, an observer marks at most k ≥ 1 vertices and then the fugitive can move
along one edge/arcs of G. The observer wins if he prevents the fugitive to reach an unmarked vertex. The fugitive
wins otherwise, i.e., if she enters an unmarked vertex. The surveillance number of a graph is the least k ≥ 1
allowing the observer to win whatever the fugitive does. We also consider the connected variant of this game, i.e.,
when a vertex can be marked only if it is adjacent to an already marked vertex.

All our results hold for both variants, connected or not. We show that deciding whether the surveillance
number of a chordal graph equals 2 is NP-hard. Deciding if the surveillance number of a DAG equals 4 is PSPACE-
complete. Moreover, computing the surveillance number is NP-hard in split graphs. On the other hand, we provide
polynomial time algorithms to compute surveillance number of trees and interval graphs. Moreover, in the case of
trees, we establish a combinatorial characterization, related to isoperimetry, of the surveillance number.
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Satisfaire un Internaute impatient est difficile

Résumé : Le préchargement est un méchanisme classique qui exploite le parallélisme entre l’exécution d’une
tâche et le transfert des informations nécessaires à la prochaine tâche à effectuer. Le préchargement minimise ainsi
la perte de temps due à l’attente lorsque l’on veut accéder à des données. Cependant, un compromis doit être
établi entre la quantité de ressources du réseau utilisées pour le préchargement (ce qui induit une perte de bande
passante par exemple) et le temps effectivement gagné grâce au préchargement. Par exemple, il est intéressant de
télécharger des documents à l’avance lorsqu’un Internaute surfe sur le Web. Puisque la suite de documents qui
vont être examinés (la suite de liens suivis) par l’Internaute n’est pas prévisible, le choix des documents (pages
web) à précharger doit être calculer au fur et à mesure que l’Internet évolue sur le Web. La question est alors de
déterminer la quantité minimum de ressources utilisées pour le préchargement et qui assure que tous les documents
auxquels va accéder l’Internaute auront bien été téléchargés à l’avance. L’Internaute ne doit pas attendre !

Nous modélisons ce problème sous forme d’un jeu de type Cops and Robber dans les graphes. Un fugitif
débute sur un sommet initialement marqué d’un graphe (orienté) G. Alors, tour-à-tour un surveillant marque au
plus k sommets de G et le fugitif peut se déplacer le long d’une arête (d’un arc) de G. Le surveillant gagne si il
évite toujours que le fugitif atteigne un sommet non marqué. Le fugitif gagne dans le cas contraire. L’indice de
contrôle d’un graphe (orienté) G est le plus petit entier k ≥ 1 qui permet au surveillant de gagner quels que soient
les déplacements du fugitif. Nous considérons également la variante connexe de ce jeu, dans laquelle, le surveillant
ne peut marquer que des voisins de sommets préalablement marqués.

Tous nos résultats sont valides pour les deux variantes (connexe ou non) du jeu. Nous prouvons que décider
si l’indice de contrôle d’un graphe cordal vaut 2 est NP-difficile. En particulier, le problème de décision associé à
l ’indice de contrôle n’est pas FPT. Puis, nous montrons que calculer l’indice de contrôle est NP-difficile dans la
classe des split graphes (une sous-classe des graphes cordaux). Dans le cas des graphes orientés, nous montrons
que décider si l’indice de contrôle d’un DAG vaut 4 est PSPACE-complet.

Nous présentons ensuite un algorithme exponentiel exact qui calcule l’indice de contrôle d’un graphe quelconque
en temps O∗(2n). Puis, nous proposons des algorithmes polynomiaux pour le calcul de l’indice de contrôle des
arbres et des graphes d’intervalles. Enfin, nous montrons que l’indice de contrôle de tout arbre T est égal à
maxSd |N[S]|−1

|S| e où S est un sous-arbre de T contenant le sommet de départ, et N[S] est le voisinage fermé de S.
Nous concluons avec diverses questions ouvertes.

Mots-clés : Précharchement, jeux de ”Cops and Robber”, PSPACE-complet, graphes d’intervalles.
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1 Introduction

Prefetching is a basic technique in computer science. It exploits the parallelism between the execution of one
task and the transfer of information necessary to the next task, in order to reduce waiting times. The classical
instance of the problem occurs in CPU, where instructions and data are prefetched from the memory while previous
instructions are executed. The modern instance occurs in the Web, where browsers may download documents
connected to the currently viewed document (web page, video, etc.) while it is being read or viewed. However,
prefetching all documents that can be accessed in the current state may exceed networking capacities, or at least,
result in a waste of bandwidth since most of the alternatives will not be used. Hence, it is necessary to balance the
gain of time against the waste of networking resources.

To handle this problem, previous works took advantage of the execution digraph where the nodes represent
the tasks (e.g., web pages) and arcs model the fact that a task can be executed once another has been done (e.g.,
arcs represent hyperlinks that can be followed from a web page). Starting from a given initial task, a sequence of
tasks is executed. The prefetching must be performed while the sequence is not known in advance, and minimizing
some cost reflecting the inconvenience of waiting for some information while executing the tasks or surfing the
web. The literature features numerous prefetching algorithms [JG97, VK96]. In Markovian models [JG97], arcs
of the execution digraph are associated with transition probability.The prefetching problem can then be cast as an
optimization problem in the Stochastic Dynamic Programming framework [GCD02, MJM10].

We consider the problem of an Internaut navigating across the Web. The time is discretized and, at each step,
the web surfer may follow a hyperlink and a certain number of web page may be prefetched. We are concerned
with perfect prefetching, i.e., ensuring that the web surfer never accesses an unprefetched document: the web
surfer must never waits. Due to network’s capacity (bandwidth) limitation, it is important to limit the number of
web pages that can be prefetched at each step. We aim at determining the minimum amount of web pages to be
prefetched at each step. Given a digraph D and a web page from which the surfer starts, the surveillance number
of D starting in v0 is the least number of web pages prefetched at each step that avoid the web surfer to wait.

1.1 Our results

We model the above prefetching problem as a Cop and Robber game (e.g., see [NW83,Qui83,FT08,Als04]). Using
this framework, we prove that deciding whether the surveillance number of a chordal graph equals 2 is NP-hard. In
particular, this shows that the decision problem associated to surveillance number is not Fixed parameter Tractable.
Then, we show that computing the surveillance number is NP-hard in split graphs, a subclass of chordal graphs. In
the case of digraphs, we show that deciding if the surveillance number of a DAG equals 4 is PSPACE-complete.

On the other hand, we provide polynomial time algorithms that compute the surveillance number s and a
corresponding optimal strategy in the classes trees and interval graphs. Moreover, in the case of trees, we establish
a combinatorial characterization, related to isoperimetry, of the surveillance number. That is, we show that the
surveillance number of a tree T starting in v0 ∈V (T ) equals maxSd |N[S]|−1

|S| e where S is taken among all subtrees of
T containing v0 and N[S] denotes the closed neighborhood of S. We conclude by several open questions.

1.2 Cops and Robber games

Two players turn-by-turn games in graphs are classically referred to as Cops and Robber games. In the initial
variant of these games [NW83,Qui83], one cop is placed at a vertex of a graph, then the robber chooses one vertex
to go, and then the players move their token along edges of the graph, alternatively starting with the cop. The
cop wins if at some step of the game it occupies the same vertex as the robber. In [AF84], the Cop-Player is
allowed to use a team of k ≥ 1 cops. One optimization problem is then to decide the cop-number of a graph G,
i.e., the minimum number of cops that are required to capture the robber in G. It is known to be W[2]-hard in
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To Satisfy Impatient Web surfers is Hard 4

general [GR95, FGK+10]. Lower and upper bounds on the cop-number of various classes of graphs have been
proved [And86, Fra87, Sch01, BKL08].

Several variants have been studied such as when the cops and the robber have different speeds [FGK+10,
CCNV11, AM10, Meh11], when the robber can be captured at some distance [BCP10], when each cop can be
moved a bounded number of time [FGL10], etc. In the variant proposed in [FGH+08, FGL09], the goal for the
cops is to guard some part of a graph, i.e., to prevent the robber to reach some particular vertices in the graph.
Eternal dominating set and eternal vertex cover can also be viewed as cops and robber games where the robber has
no token but can attack a vertex, resp., an edge, at each step and the cop must move its tokens in response to the
attack [GK08, FGG+10].

2 Preliminaries

In this section, we formally define the problems we consider and present the notations used throughout the paper.
We also present some basic results.

For any (di)graph G = (V,E) considered in this paper, when v0 ∈V is fixed as the starting vertex, we assume
that, for any v ∈V , there is a (directed) path from v0 to v. In particular, if G is an undirected graph, we assume that
G is connected.

Let ∆(G) be the maximum degree of G (we denote it by ∆ when no ambiguity occurs). If G is a digraph, we
denote by ∆+(G) the maximum out-degree.

For any undirected graph G = (V,E) and any S ⊆ V , let G[S] be the subgraph induced by S in G. The open
neighbourhood N(S) of a vertex subset S is the subset of vertices in V \S having a neighbour in S and the closed
neighbourhood is N[S] = N(S)∪S. If S = {v}, we use N(v) and N[v] instead of N({v}) and N[{v}].

A (di)rected graph is a tree (resp., a Directed Acyclic Graph, or DAG) if it as no (directed) cycle as a subgraph.
A graph is chordal if it does not contain induced cycles of length more than 3. A graph G = (V,E) is a split graph
if there is a partition (A,B) of V such that A induces a clique and B induces an independent set. Finally, G is an
interval graph if V is a set of real intervals and two vertices are adjacent if the corresponding intervals intersect.

2.1 The game

Let G = (V,E) be an n-node (di)graph and let v0 ∈ V be a particular vertex of it, the starting vertex, which is
initially marked. Let k ≥ 1.

The surveillance problem deals with the following two players game where a fugitive wants to escape to the
control of an observer whose purpose is to keep the fugitive under constant surveillance. There are two players,
fugitive and observer. The fugitive wants to escape the control of an observer whose purpose is to keep the fugitive
under constant surveillance. Let k ≥ 1 be a fixed integer. The game starts when the fugitive stands at v0 which
is initially marked. Then, turn by turn, the observer controls, or marks, at most k vertices and then the fugitive
either moves along an edge to a (out-)neighbor of her current position, or skip her move. In other words, at every
step of the game the observer enlarges observable part of the graph by adding to it k, not necessarily adjacent,
vertices. And his task is to ensure that the fugitive is always in the observable area. Note that, once a vertex has
been marked, it remains marked until the end of the game. The fugitive wins if, at some step, she The fugitive wins
if, at some step, she reaches an unmarked vertex and the observer wins otherwise. In other words, the game ends
when either the fugitive enters an unmarked vertex (and then she wins) or all vertices have been marked (and then
observer wins).

More formally, a k-strategy (for the observer) is a function σ that assigns a subset S ⊆ V , |S| ≤ k, to any
configuration (M, f ) of the game where M ⊆V is the set of the vertices that have already marked before this step
of the game, f ∈ M is the current position of the fugitive, and S = σ(M, f ) is the set of vertices to be marked
at this step. Clearly, we can restrict our investigation to the case where σ(M, f ) ⊂ V \M and |σ(M, f )| = k or
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σ(M, f ) =V \M. That is, at each step, the observer has interest to mark as many unmarked vertices as possible. In
particular, a game consists of at most dn/ke steps. A k-strategy is winning if it allows the observer to win whatever
be the walk followed by the fugitive. Note that any winning strategy must ensure that N( f )\M ⊆ σ(M, f ) for any
M ⊆V and f ∈M. Finally, the surveillance number of G, denoted by sn(G,v0), is the smallest k such that there is
a winning k-strategy in G starting from v0.

2.2 Connectivity and Bounds

In this section, we define some variants of the game by introducing new natural constraints and prove basic results.
In the connected variant of the surveillance game, the observer is constraint to mark only vertices that have

neighbors already marked, i.e., the set of marked vertices must always induce a connected subgraph. That is, a
connected strategy σ is a strategy with the additional constraint that σ(M, f )∪M must induce a connected subgraph
for any connected subset M ⊆ V containing v0. Note that it is not required that σ(M, f ) induces a connected
subgraph. Let csn(G,v0) be the smallest k such that there is a winning connected k-strategy in G when the fugitive
starts from v0.

We first show that imposing the connectedness of a strategy is a strong constraint.

Lemma 1. Let k ≥ 2. There exist a graph G and v0 ∈V such that csn(G,v0)> sn(G,v0) = k.

Proof. Let k ≥ 2. Let G be the graph with 6k vertices: a path (v0,v1,v2) then 2k vertices ai and bi, 1≤ i≤ k, such
that ai adjacent to v2 and bi, and finally a set K of 4k−3 vertices each of which is adjacent to all bi, i ≤ k. Then
k = sn(G,v0)< csn(G,v0) = k+1.

Indeed, the following strategy is winning: at each step, mark the i ≥ 0 unmarked neighbors of the current
position of the fugitive, and then mark k− i vertices in K. Hence sn(G,v0)≤ k. On the other hand, in the connected
variant, at least 4 vertices, say {v1,v2,a1,b1}, must be marked before any vertex in K is marked. The fugitive first
goes to v1 and v2. Then if a vertex ai is unmarked, she goes to it and wins. Otherwise, she goes to a2 and then b2.
When it is the fifth turn of the fugitive, at least k+4 vertices not in K must have been marked. Then, when at most
k vertices can be marked per step, at most 4k−4 vertices of K have been marked, so the fugitive can win. It is easy
to show that csn(G,v0)≤ k+1 and that sn(G,v0)> k−1.

Question 1. Does there exist a constant bounding the ratio (resp., the difference) between csn and sn in any graph?

The surveillance number of a graph is clearly constrained by the degrees of its vertices. More precisely:

Claim 1. For any (di)graph G with maximum (out-)degree ∆(+) and for any v0 with (out-) degree deg(+)(v0),
deg(+)(v0)≤ sn(G,v0)≤ csn(G,v0)≤ ∆(+). Moreover, in undirected graphs, csn(G,v0) = ∆ iff v0 has degree ∆.

Proof. Clearly sn(G,v0) ≥ deg(+)(v0) and by definition sn(G,v0) ≤ csn(G,v0). On the other hand, the following
strategy is clearly winning. At each step, the observer simply marks all unmarked (out-)neighbors of the current
position of the fugitive. Hence, csn(G,v0)≤ ∆(+). Moreover, in the undirected case, the fugitive always arrives to
any vertex (but v0) by an already marked neighbor. Hence, following the previous strategy, the observer marks at
most ∆−1 vertices at each steps but the first one. So, if deg(+)(v0)< ∆ then we get that csn(G,v0)< ∆.

Next lemma is straigthforward following the previous claim.

Lemma 2. Let G be a connected undirected graph with maximum degree ∆ ≤ 3 and at least one edge. Then,
1≤ csn(G,v0) = sn(G,v0)≤ 3 and

• csn(G,v0) = sn(G,v0) = 1 iff G is a path where v0 has degree one;

• csn(G,v0) = sn(G,v0) = 3 iff v0 has degree 3.
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To Satisfy Impatient Web surfers is Hard 6

So, computing the surveillance number of a graph with maximum degree at most 3 is trivial.

Question 2. What is the complexity of computing the surveillance number in the class of graphs with maximum
degree 4? with bounded degree?

The proof of the following lemma is straitforward.

Lemma 3. Let G be an undirected graph with a universal vertex. For any v0 ∈ V (G), sn(G,v0) = csn(G,v0) =

max{deg(v0),d n−1
2 e}.

2.3 To restrict the fugitive to induced paths does not help the observer

Finally, we define a restriction of the game that will be useful throughout this paper.
In the monotone variant of the surveillance game, the fugitive is restricted to move at every step and to follow

only induced paths in G. Let msn(G,v0) be the smallest k such that there is a winning monotone k-strategy in G
when the fugitive starts from v0, i.e., the observer can win, marking at most k vertics at each step, against a fugitive
constrained to follow induced paths.

The monotone game is interesting since it is easier to study. Indeed, we now prove that ”monotonicity does
not help”, that is, for any graph G and v0 ∈ V (G), msn(G,v0) = sn(G,v0). In other words, if the fugitive follows
only induced paths, the observer needs to mark the same amount of vertices at each step as he does when the
fugitive has no restriction. This means that in the proofs further in the paper, we can always consider that the
fugitive follows induced paths, and in particular, the fugitive has to move at every step.

To prove the announced result, we give an alternative definition of a winning strategy in terms of decom-
position of graphs. Recall that a strategy is defined by a function σ : 2V ×V → 2V where |σ(M, f )| ≤ k for any
M ⊆ V, f ∈ V and σ(M, f ) represents the set of vertices that must be marked when the fugitive is in f and the
vertices in M have already been marked. Clearly, such a strategy can be viewed as a decision-tree where each
vertex of this decision tree represents a path that have been followed by the fugitive.

We first describe a tree-structure to represent the paths of G, starting from v0. An internal vertex of a rooted
tree is a vertex with at least one child, other vertices are called the leaves.

Definition 1. let G be a (di)graph and v0 ∈V (G). A path-tree is a pair (T,ω) where T is a tree rooted in r ∈V (T )
and ω :V (T )→V (G) such that ω(r)= v0 and any internal vertex t ∈V (T ) has `= |N(+)[ω(t)]| children {t1, · · · , t`}
with {ω(t1), · · · ,ω(t`)}= N(+)[ω(t)].

In that way, any vertex ti ∈ V (T ) (i ≥ 0) where (r = t0, t1, · · · , ti) is the path from r to ti in T represents the
walk Pti = (v0 = ω(r),ω(t1), · · · ,ω(ti)) in G. The next structure restricts the paths we want to represent to the
induced paths of G starting from v0.

Definition 2. let G be a (di)graph and v0 ∈V (G). An induced path-tree is a pair (T,ω) where T is a tree rooted in
r and ω : V (T )→ V (G) such that ω(r) = v0 and, for any internal vertex ti ∈ V (T ) where (r = t0, t1, · · · , ti) is the
path from r to ti in T and N = N(+)

G (ω(ti) \N(+)
G [{t0, t1, · · · , ti−1}]), then ti has ` = |N| children {u1, · · · ,u`} with

{ω(u1), · · · ,ω(u`)}= N.

Definition 3. A (monotone) k-decision-tree (k-DT) rooted in v0 of a (di)graph G is a triple (T,ω,M) defined as
follows. (T,ω) is a (induced) path-tree rooted in r and M : V (T )→ 2V and the following properties are satisfied.
v0 ∈M(r) and, for any vertex ti ∈V (T ) where (r = t0, t1, · · · , ti) is the path from r to ti in T ,

• ti ∈V (T ), |M(ti)\{v0}| ≤ k;

• for any child t of ti, w(t) ∈ ∪ j≤iM(t j);

• ti is a leaf iff ∪ j≤iM(t j) =V (G).
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The (induced) path-tree allows to represent all walks (induced path) starting in v0 in G. Namely, given ti ∈
V (T ) with P=(r, t1, · · · , ti) the path in T from r to ti, ti represents the (induced) path Pti =(v0 =ω(r),ω(t1), · · · ,ω(ti))
in G. Moreover, for any t ∈ V (T ), the bag M(t) represents the subset of vertices that must be marked at the step
after the fugitive has follows the path Pt in G. By the properties, no more than k vertices are marked at each step
and no path in G may allow the fugitive to avoid marked vertices.

Decision-trees should be more constrained to express that it is useless to mark several times the same vertex
or not to mark the maximum number of vertices at each step.

Definition 4. A (monotone) k-decision-tree (T,ω,M) is said refined if

• for any internal vertex t ∈V (T ), |M(t)\{v0}|= k;

• for any vertex ti ∈V (T ) where (r = t0, t1, · · · , ti) is the path from r to ti in T , M(ti) ∈V (G)\∪ j<iM(t j).

Note that a refined k-DT of n-node graph G has height at most d n−1
k e.

Lemma 4. If G admits a (monotone) k-decision-tree rooted in v0, then G admits a (monotone) refined k-decision-
tree rooted in v0.

Proof. Let (T,ω,M) be a (monotone) k-DT rooted in v0. Let ti ∈ V (T ) closest from r the root of T , where
(r = t0, t1, · · · , ti) is the path from r to ti in T , that does not satisfy the conditions of a refined k-DT. If M(ti)∩
∪ j<iM(t j) 6= /0, then replace M(ti) with M(ti)\∪ j<iM(t j). Otherwise, let v ∈V (G)\∪ j≤iM(t j) and replace M(ti)
with M(ti)∪{v}. Finally, if ∪ j≤iM(t j) =V (G), remove from T all subtrees rooted in a child of ti. Clearly, such a
process ends with a (monotone) refined k-decision-tree rooted in v0.

Lemma 5. A (di)graph G admits a (resp., monotone) k-decision-tree rooted in v0 iff sn(G,v0) ≤ k (resp., iff
msn(G,v0)≤ k).

Proof. Assume sn(G,v0) ≤ k and let σ be a k-strategy such that σ(M, f ) ⊆ V (G) \M, and |σ(M, f )| = k or M∪
σ(M, f ) = V (G) for any M ⊆ V (G), f ∈ M. Let (T,ω) satisfying the first condition of Definition 3 and T of
height d |V (G)|−1

k e. Then, for any vertex ti ∈V (T ) where (r = t0, t1, · · · , ti) is the path from r to ti in T , let us define
M(ti) = σ(∪ j<iM(t j),ω(ti)). Then, (T,ω,M) is a k-DT rooted in v0.

Let (T,ω,M) be a k-DT rooted in v0. Let σ : 2V ×V → 2V be any application satisfying that, for any ti ∈
V (T ) where (r = t0, t1, · · · , ti) is the path from r to ti in T , σ(∪ j<iM(t j),ω(ti)) = M(ti). Then, σ is a winning
k-strategy.

Now, we can prove the main result of this section.

Theorem 3. For any (di)graph G and v0 ∈V (G), sn(G,v0) = msn(G,v0).

Proof. If msn(G,v0)≤ k, by Lemma 5, there is a monotone k-DT of G rooted in v0. By Lemma 4, there is a refined
monotone k-DT of G rooted in v0. We show that a k-DT rooted in v0 of G can be built from any monotone k-DT
(T,ω,M) of G rooted in v0.

Let (T,ω,M) be a refined monotone k-DT of G rooted in v0. Since (T,ω,M) is not a k-DT, this means that
(T,ω) is an induced path-tree and not a path-tree. In other words, there is t ∈V (T ) with children (u1, · · · ,u`) such
that there is y ∈ NG[ω(t)] and, for any i≤ `, ω(ui) 6= y. We say that such a vertex t satisfies property P .

Let t be a vertex, closest to r, that satisfies this property P . Two cases are to be considered according to
whether y = ω(t) of whether y ∈ NG(ω(t)).

• Assume first y = ω(t). Let S be the subtree of T rooted in t. We transform (T,ω,M) into (T ′,ω′,M′) by
adding the sub-decision-tree ”induced” by S as a child of t in T . That is T ′ is obtained from T by adding
a copy of S with its root adjacent to t in T . Then, for any z ∈ V (T ′) = V (T )∪V (S), ω′(z) = ω(z) and
M′(z) = M(z). Then, let (T ∗,ω∗,M∗) be obtained by refining the obtained decomposition, i.e., applying
to (T ′,ω′,M′) the process described into the proof of Lemma 5.
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• Now, assume that y ∈ NG(ω(t)). Let (r = t0, t1, · · · , ti = t) be the path from r to t in T . Since y /∈
{ω(u j) : j ≤ `}, by definition of monotone decision-trees, it means that there is t j, j < i such that ti has
a child s 6= t j+1 and ω(s) = y. Let S be the subtree of T rooted in s. We transform (T,ω,M) by adding
the sub-decision-tree ”induced” by S as a child of t in T . Then, we refine the obtained decision-tree.

The process consists in reiterating the same transformation while there is a node t of the obtained decomposi-
tion that satisfies property P . Note that, while there still are some vertices satisfying P , the obtained decomposition
is neither a decision-tree nor a monotone decision-tree since the tree T ∗ of the obtained decomposition is neither
a path-tree nor an induced path-tree (actually, it is ”between” a path-tree and an induced path-tree). However, all
other properties of a decision-tree remain satisfied.

We finally show that a finite number of such transformations is sufficient to obtain a decision-tree. Indeed, it
is is sufficient to remark that the following ”potential function” Φ strictly decreases each time the transformation
is applied (recall that ∆ is the maximum degree of G). Moreover, the size of the obtained decomposition remains
bounded in the size of the initial monotone decision-tree (T,ω,M) since we consider only refined decompositions.

Let Φ(T,ω,M) be the sum of φ(it)(|N
(+)
G [ω(t)]|− |{w(s) : s child o f t in T}|) over all vertices t in V (T ),

where it is the distance between t and r and φ is any function such that φ(i)> ∆
d n−1

k e−i+1
φ(i+1).

Each time we apply the procedure on a node t ∈V (T ) at distance i of the root, we add one child to t. Hence,
(|N(+)

G [ω(t)]|− |{w(s) : s child o f t in T}|) is decreased by one and this contributes to decrease Φ(T,ω,M) by
Φ(i). However, as ”child” of t, we add a subtree S with height at most d n−1

k e− i (because the decomposition is

refined). Therefore, S may have at most ∆
d n−1

k e−i vertices and the contribution of each vertex is at most ∆ ·φ(i+1).
This contributes to increase the global sum Φ(T,ω,M) of at most ∆

d n−1
k e−i+1

φ(i+1). Since φ(i)> ∆
d n−1

k e−i+1
φ(i+

1), the global sum Φ(T,ω,M) strictly decreases at each step.

3 Difficult problems

In this section, we study the computational complexity of the decision version of the problem: given a graph G
with v0 ∈ V (G) and an integer k, the task is to decide whether sn(G,v0) ≤ k. We also consider the variant of
the problem where the fugitive must win in a fixed number of steps. Moreover, for all graphs we consider in our
reductions, sn(G,v0) = csn(G,v0). Hence, our hardness results also apply to the connected variant of the problem.

We use reduction from the 3-Hitting Set Problem. In the 3-Hitting Set Problem, we are given a set I of
elements, a set S of subsets of size 3 of I and an integer k as an input. The question is to decide whether there
exists a set H ⊆ I of size at most k such that H ∩ S 6= /0 for all S ∈ S . The 3-Hitting Set Problem is the classical
NP-complete problem [GJ90].

We start with the proof that the problem is NP-hard on chordal graphs. Let us remind that a graph is chordal
if it contains no induced cycle of length at least 4.

Theorem 4. Deciding if sn(G,v0)≤ 2 (resp., csn(G,v0)≤ 2) is NP-hard in chordal graphs.

Proof. Let (I = {e1, · · · ,en},S = {S1, · · · ,Sm}) and k ≥ 1 be an instance of the 3-Hitting Set Problem. We con-
struct the chordal graph G as follows. Let P = {v0, · · · ,vm+k−2} be a path, Km be the complete graph with vertices
{S1, · · · ,Sm} and e1, · · · ,en be n isolated vertices. We add an edge from vm+k−2 to all vertices of Km and, for any
i≤ n and j ≤ m, add an edge between ei and S j if and only if ei ∈ S j. Clearly, G is chordal.

First, we show that, if there exists a set H ⊆ I of size k such that H ∩S 6= /0 for all S ∈ S , then csn(G,v0)≤ 2.
The strategy of the observer first consists in marking the vertices v1 to vm+k−2 in order, then the vertices of Km and
finally the vertices of H. This can be done in m+ k− 1 steps and in such a way that, at each step, all neighbors
of the current position of the fugitive are marked. Because H is a hitting set of S , after the (m+ k− 1)th step,
each vertex Si, i≤ m, has at most two unmarked neighbors, all other vertices have all their neighbors marked and

RR n° 7740



To Satisfy Impatient Web surfers is Hard 9

only some vertices in e1, · · · ,en can be unmarked. Finally, from this step, the strategy of the observer consists in
marking the unmarked neighbors of the current position of the fugitive. Clearly, the fugitive cannot win and, thus,
there exists a connected winning 2-strategy.

Now, assume that, for any H ⊆ I of size at most k, there is S ∈ S such that S∩H = /0. The escape strategy for
the fugitive first consists in going to vm+k−2 (this takes m+ k− 2 steps). Then, after the (m+ k− 1)th step of the
observer, all vertices of P and Km are marked –otherwise the fugitive would have won earlier or can go to a vertex
of Km that is still unmarked. It means that the subset H of vertices among e1, · · · ,en that are marked at this step
is of size at most k. Hence, when it is the turn of the fugitive who is occupying vm+k−2, there is Si ∈ V (Km) with
H ∩Si = /0, i.e., all the three neighbors of Si are unmarked. Then, the fugitive goes to Si. The observer can mark at
most two of the neighbors of Si, and the fugitive can reach an unmarked vertex. Hence, sn(G,v0)> 2.

Let ` ≥ 1. We define a restriction of the game where the fugitive wins if she reaches an unmarked vertex in
at most ` steps. Let sn(G,v0, `) (resp., csn(G,v0, `)) be the smallest k such that there is a (connected) winning k-
strategy in G against a fugitive starting from v0 in this setting. Note that, if both k and ` are fixed, then sn(G,v0, `)≤
k (resp., csn(G,v0, `) ≤ k) can be decided in polynomial time since the number of trajectories of the fugitive is at
most n` and the number of strategies for the observer is bounded by nO( f (k,`)). However:

Theorem 5. If k ≥ 1 is part of the input, the problem to decide whether sn(G,v0,2)≤ k (resp., csn(G,v0,2)≤ k)
is NP-hard in split graphs.

Let G be a DAG with maximum out-degree ∆+ and v0 with degree < ∆+ (∆+ part of the input). The problem
to decide whether sn(G,v0,2) = ∆+−1 (resp., csn(G,v0,2) = ∆+−1) is NP-hard.

Proof. Again, we reduce this problem to the 3-Hitting Set Problem. Let (I = {x1, · · · ,xn},S = {S1, · · · ,Sm}) and
k ≥ 1 be an instance of the 3-Hitting Set Problem.

Let us build the split graph G described in Figure 1. Let Km+1 be the complete graph with vertices {v0,S1, · · · ,Sm})
and let {x1, · · · ,xn} be n isolated vertices. For any i≤m, add m+k−2 extra leaves adjacent to Si and add an edge
between x j and Si if x j ∈ Si for all j ≤ n.

As in the proof of Theorem 4, we prove that sn(G,v0,2) ≤ k+m (and csn(G,v0,2) ≤ k+m) if and only if
(I = {x1, · · · ,xn},S = {S1, · · · ,Sm}) admits a hitting set of size at most k.

Indeed, if there is a hitting set H of size k, then the observer first marks all vertices of Km+1 (but v0 that
is already marked) and all vertices of H. Then, at each step, the observer marks the unmarked neighbors of the
current position of the fugitive.

Otherwise, assume that S admits no hitting set of size at most k and let us assume that the observer can mark
at most m+ k vertices. The first move of the fugitive consists in going toward a vertex S j (1≤ j ≤ m) with at least
m+ k+1 unmarked neighbors. Then, the fugitive wins after her second move.

This concludes the proof of the first statement of the Theorem.
For the second statement, let G′ be the DAG obtained by taking the underlying graph G and removing all

edges between Si and S j, 1 ≤ i, j ≤ m. Then, orient the edges in such a way that Si, for any i ≤ m, has in-
degree 1, corresponding to the edge that comes from v0. G′ has maximum out-degree m+ k + 2. By Claim 1,
sn(G′,v0,2)< m+ k+2. Finally, the same proof as above shows that csn(G′,v0,2) = sn(G′,v0,2)≤ k+m if and
only if (I = {x1, · · · ,xn},S = {S1, · · · ,Sm}) admits a hitting set of size at most k.

In the following, we reduce our problem to the 3-QSAT problem. For a set of boolean variables x0,y0,x1,y1, · · · ,xn,yn

and a boolean formula F =C1∧ ·· · ∧Cm, where C j is a clause with 3 variables, the 3-QSAT problem aims at de-
ciding whether the expression Φ = ∀x0∃y0∀x1∃y1 · · ·∀xn∃yn,F is true. 3-QSAT is PSPACE-complete [GJ90].

Lemma 6. The problem to decide whether sn(G,v0)≤ 4 (resp., csn(G,v0)≤ 4) is PSPACE-hard in DAGs.

Proof. Let F =C1∧·· ·∧Cm be a boolean formula with variables x0,y0,x1,y1, · · · ,xn,yn and Φ=∀x0∃y0∀x1∃y1 · · ·∀xn∃ynF
be an instance of the 3-QSAT Problem. Let D be the DAG built as follows.
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L(i)

L(1)

Si

S1

x j

Sm

x1

L(m)

v0

S I
xn

Figure 1: Example of graph G in the reduction of the proof of Theorem 5. L( j), j ≤ m, represents the set of
m+ k−2 leaves adjacent to S j.

We start with the set of vertices {ui,vi,x′i, x̄
′
i,xi, x̄i,y′i, ȳ

′
i,yi, ȳi}0≤i≤n. For any 0 ≤ i ≤ n, there are arcs from vi

to x′i and x̄′i, one arc from x′i to xi and one arc from x̄′i to x̄i. For any 0 ≤ i ≤ n, there are arcs from x′i and x̄′i to ui,
arcs from ui to both y′i and ȳ′i and arcs from both of y′i and ȳ′i to both of yi and ȳi. Then, for any 0≤ i < n, there is
one arc from ui to vi+1. Add the directed path (w1, · · · ,wm−1) with one arc from un to w1 and such that wm−1 has
m out-neighbors C1, · · · ,Cm. For any j ≤ m and 0 ≤ i ≤ n, add one arc from C j to xi (resp., x̄i,yi, ȳi) if xi (resp.,
x̄i,yi, ȳi) appears in the clause C j. Finally, for any 0≤ i≤ n, k≤m−1, j≤m add two out-neighbors leaves to each
vertex in {vi,x′i, x̄

′
i,wk,C j}, and, for any 0≤ i≤ n, add three out-neighbors leaves to each of y′i and ȳ′i. An example

of such DAG D is depicted in Figure 2.
Since v0 has out-degree 4, csn(D,v0)≥ sn(D,v0)≥ 4 and the first step of the observer consists in marking the

4 out-neighbors of v0 (the two leaves and x′0 and x̄′0). We now show that sn(D,v0) = 4 (and csn(D,v0) = 4) if and
only if Φ is true.

Assume by induction on 0≤ i≤ n that, after the (3i+1)th step of the observer,

1. the fugitive occupies vertex vi after having followed the directed path
P = (v0,a′0,u0,v1,a′1,u1, · · · ,vi−1,a′i−1,ui−1,vi) where a′j ∈ {x′j, x̄′j} for any 0≤ j < i, and

2. at this step, the set of vertices marked consists of all the vertices in P and the outneighbors of the vertices
in P plus, for any j < i, exactly one of y j or ȳ j, and

3. for any j < i, the choice of which vertex has been marked in {y j, ȳ j} depends only on the observer (not
on the path followed by the fugitive).

All these assumptions are satisfied for i = 0. If i < n, we will show it remains true for i+1.
Moreover, if i = n, we will show that,

Claim 2. After the 3(n+1)th move of the fugitive,

1. the fugitive occupies vertex w1 after having followed the directed path
P = (v0,a′0,u0,v1,a′1,u1, · · · ,vn,a′n,un,w1) where a′j ∈ {x′j, x̄′j} for any 0≤ j ≤ n, and
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yny1 y2

y′0 y′ny′1

Figure 2: Example of the reduction in the proof of Lemma 6. A small black node with an integer i beside and that
is the out-neighbor of a vertex v corresponds to i leaves that are in N+(v).

2. at this step, the set of vertices marked consists of all the vertices of P and the outneighbors of the vertices
in P but N+(w1), plus, for any j ≤ n, exactly one of y j and ȳ j, and

3. for any j ≤ n, the choice of which vertex has been marked in {y j, ȳ j} depends only on the observer (not
on the path followed by the fugitive).

Note that, by the induction hypothesis, the 4 out-neighbors of vi (two of which are leaves) are marked. Since
it is useless for the fugitive to remains at vi (by Theorem 3), then it goes to a′i ∈ {x′i, x̄′i}. a′i has 4 out-neighbors
that are, by the induction hypothesis, unmarked. Hence, the observer must mark these 4 vertices. In particular,
if a′i = x′i (resp., if a′i = x̄′i) then the observer marks ai = xi (resp., ai = x̄i) while x̄i (resp., xi) remains unmarked.
Then, the fugitive must go to ui since the other 3 out-neighbors of a′i have no out-neighbors.

Since ui has 3 out-neighbors (y′i, ȳ
′
i and vi+1), the observer must mark these three vertices. Moreover, assume

that the fourth vertex marked by the observer at this step is neither yi nor ȳi, then the fugitive goes to the vertex in
{y′i, ȳ′i} with still its 5 out-neighbors unmarked, and then the fugitive will win at the next step. Hence, the observer
must mark bi that is either yi or ȳi. It is important to note that the choice of which of these two vertices is marked
is completly free for the observer. After this step of the observer, both y′i and ȳ′i have 4 unmarked out-neighbors
and all the 5 out-neighbors of y′i and ȳ′i have no out-neighbors themselves. Hence, the fugitive would loose if she
went to y′i or ȳ′i. Hence, the fugitive must go to vi+1 (where vn+1 is set to be w1).

If i < n, then vi+1 has exactly 4 out-neighbors that must be marked by the observer, and then the induction
hypothesis is satisfied for i+1. If i = n, then vi+1 = w1 and the Claim holds.

Let X be the set of vertices consisting of {w2, · · · ,wm−1,C1, · · · ,Cm} plus the 2(m− 1) leaves adjacent to
w1, · · · ,wm−1. Let Y be the set of vertices consisting of {x0, x̄0,y0, ȳ0, · · · ,xn, x̄n,yn, ȳn} plus the 2m leaves adjacent
to the C j’s.

By the above Claim, after the 3(n+1)th move of the fugitive, no vertices in X are marked. Moreover, the set
of marked vertices in Y is {a0,b0, · · · ,an,bn} where, for any i ≤ n, ai ∈ {xi, x̄i} has been imposed by the fugitive
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and bi ∈ {yi, ȳi} has been chosen by the observer. In particular, if Φ is true, the observer can choose the bi’s such
that F(a0,b0, · · · ,an,bn) is true whatever be the choices of the fugitive. On the other hand, if φ is false, the fugitive
can choose the ai’s such that F(a0,b0, · · · ,an,bn) is false whatever be the choices of the observer.

Now, from the (3n+1)th step of the observer to the end of its (3n+m)th step, the observer can mark at most
4(m− 1) = |X | vertices. Moreover, between these steps, the fugitive must follow the path Q = (w1, · · · ,wm−1)

(all other vertices the fugitive can access having no out-neighbors). Hence, the only choice for the observer is to
successively mark all vertices in X otherwise, at some step along the path Q or just after the (3n+m)th step of
the observer, the fugitive could have reached an unmarked vertex. Note that the marking process can be done in a
connected way.

Finally, after the (3n+m)th step of the observer, the fugitive stands on wm−1, all vertices in {C1, · · · ,Cm}
are marked while the set of marked vertices in Y is {a0;b0, · · · ,an,bn}. Now, if Φ is false, by the choice of the
ai’s by the fugitive, there is a clause C j with its 5 out-neighbors unmarked: the fugitive goes to C j and will win
at the next step. On the other hand, if Φ is true, by the choice of the bi’s by the observer, all C j’s have at most
4 unmarked out-neighbors. Whatever be the next moves of the fugitive, she will reach a marked vertex without
out-neighbors.

Lemma 7. For every k ≥ 1, the problem to decide whether sn(G,v0)≤ k (resp., csn(G,v0)≤ k) is in PSPACE.

Proof. Let n be the number of vertices in graph G. Every game lasts at most n rounds. At each round, the
configuration (M, f ) can be encoded within polynomial space. This means that the problem is in NPSPACE
(nondeterministic polynomial space)—a nondeterministic Turing machine deciding the problem uses polynomial
space on every branch of its computation. By Savitch’s theorem [Sav70], the problem is in PSPACE.

Theorem 6. The problem to decide whether sn(G,v0)≤ 4 (resp., csn(G,v0)≤ 4) is PSPACE-complete in DAGs.

The following theorem provides an exponential algorithm computing sn(G,v0). In the statement of the the-
orem we use a modified big-Oh notation that suppresses all polynomially bounded factors. For functions f and g
we write f (n) = O∗(g(n)) if f (n) = O(g(n)poly(n)), where poly(n) is a polynomial.

Theorem 7. sn(G,v0) (resp., csn(G,v0)) can be computed in time O∗(2n) on n-node graphs.

Proof. For each k≥ 1, we decide if sn(G,v0)≤ k. We consider the arena digraph G which vertices are configura-
tions of the game, i.e., the pairs (M, f ) where M ⊆V (G), f ∈M and |M \{v0}|= ki for some i > 0 (or M =V (G)).
Moreover, there is an arc from (M, f ) to (M′, f ′) if f ′ ∈ N( f ) and M ⊂M′ and |M′|= |M|+ k (or |V (G)\M| ≤ k

and M′ =V (G)). Note that |V (G)| ≤ n∑
d n−1

k e
i=1

( n
ki+1

)
≤ 2nn. The amount of arcs in G is at most 2nnk.

We consider the following labelling process. Initially, all configurations (V (G),v), for any v ∈ V (G), are
labeled with d n−1

k e, and all remaining configurations are labeled with ∞. Then, iteratively, a configuration (M, f )
with |M| = ki+ 1 is labeled i if, for any f ′ ∈ NG( f ), there is a configuration (M′, f ′) that is an out-neighbor of
(M, f ) and that is labeled at most i+1.

Claim 3. sn(G,v0)≤ k iff there is a configuration (M,v0), |M|= k+1, labeled with 1.

We first show by induction on i, that the observer can win starting from any configuration labeled with d n−1
k e−

i. If i= 0, the result holds trivially. Assume that the result holds for d n−1
k e−1> i> 0. Let (M, f ) be a configuration

labeled with d n−1
k e− (i+ 1). For any f ′ ∈ N( f ), by definition of the labelling process, there is a configuration

(M′, f ′) out-neighbor of (M, f ) and labeled with d n−1
k e− i. If the fugitive goes from f to f ′, then the observer

marks the vertices in M′ \M and the game reaches the configuration (M′, f ′). Hence, by the induction hypothesis,
the observer wins. So, applying the result for i = d n−1

k e− 1, the observer wins starting from any configuration
(M,v0), |M| = k+1, labeled 1. To reach this configuration, the first step of the observer is to mark the k vertices
in M \{v0}. Therefore, sn(G,v0)≤ k.
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Now, assume that sn(G,v0) ≤ k. Let σ be a winning k-strategy for the observer. For any walk W =

(v0,v1, · · · ,vi) followed by the fugitive, let M(W ) be the set of vertices marked by the observer (using σ) after
the fugitive has followed W until vi and when it is the turn of the fugitive. It follows by reverse induction on i that
the labelling process labels (M(W ),vi) with i+1. In particular, this shows that ({v0}∪σ({v0},v0),v0) is labeled
with 1. �

To obtain the same result with csn(G,v0), it is sufficient to modify the definition of a configuration (M, f ) by
imposing that M must induce a connected subgraph.

4 Polynomial-time Algorithms in some graphs’classes

In this section, we give polynomial-time algorithms to compute the surveillance number of trees and interval
graphs. Moreover, in both these graphs’classes, we show that connectedness does not cost, i.e., the surveillance
number equals the connected surveillance number.

4.1 Keeping tree under surveillance

In this section, we first present a polynomial-time algorithm to compute sn(T,v0) = csn(T,v0) for any tree T =

(V,E) rooted at v0 ∈V . Let k ≥ 0. We define the function fk : V (T )→ N in the following recursive way:

• fk(v) = 0 for any leaf v of T ;

• for any v ∈V (T ) with d children, fk(v) = max{0,d +∑w∈C fk(w)− k} where C is the set of children of
v.

Lemma 8. For any tree T rooted in v0, if fk(v0)> 0 then sn(T,v0)> k. Moreover, if fk(v0) = 0 then csn(T,v0)≤ k.

Proof. The result holds if T is reduced to one vertex. So we may assume that T has height at least 1. Recall that
the height of T is the maximum length (number of edges) of a path between the root v0 and a leaf of T .

We prove by induction on the height of T that the observer cannot win the game marking at most k vertices per
step, even if at most fk(v0)−1 vertices in V (T )\{v0} are initially marked. Moreover, we prove that the observer
can win in a connected way, marking at most k vertices per step, if at most fk(v0) vertices plus v0 are initially
marked.

If T has height 1 and v0 has degree d, then fk(v0) = max{0,d− k} and the result holds. Indeed, if v0 and
fk(v0) other vertices are initially marked, then during its first step, the observer marks all remaining vertices and
wins in a connected way. On the other hand, if v0 and at most fk(v0)− 1 vertices are marked, then after the first
step of the observer (when he marks k other vertices), at least one neighbor of v0 is still unmarked and the fugitive
can go to it and wins.

Now, assume that the result holds for any tree of height h≥ 1. Let T rooted in v0 and of height h+1, we show
the result holds.

Let (v1, · · · ,vr) be the children of v0 and let Ti be the subtree of T rooted in vi, 1 ≤ i ≤ r. By the induction
hypothesis, for any 1 ≤ i ≤ r, there is a set Ii ⊆ V (Ti)\{vi} of fk(vi) vertices such that, if the vertices of Ii and vi

are initially marked in Ti, then the observer can win in Ti starting from vi, marking at most k vertices per step and
in a connected way. In particular, Ii∪{vi} induces a (connected) subtree of Ti. On the contrary, if strictly less than
fk(vi) vertices are initially marked in V (Ti) \ {vi}, then the fugitive will win in Ti against an observer marking at
most k vertices per step.

Then, in T , if at least fk(v0) vertices can be marked initially in V (T ) \ {v0}, then a connected k-strategy
consists of the following. The set of vertices that are initially marked union the vertices marked during the first
step of the observer is J = N[v0]∪ (

⋃
1≤i≤r Ii). It is possible since |J| ≤ 1+ fk(v0)+ k and J induces a (connected)
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subtree of T . Then the fugitive moves to some child vi (1≤ i≤ r) of v0. Since the vertices of Ii and vi are already
marked, the observer will win in Ti in a connected way.

On the contrary, if strictly less than fk(v0) vertices can be marked initially in V (T )\{v0}, then there is at least
one child vi (1 ≤ i ≤ r) such that either vi is not marked after the first step of the observer, or at most fk(vi)− 1
vertices in V (Ti) \ {vi} are marked after the first step of the observer. In both cases, the fugitive will win in
Ti.

Theorem 8. For any tree T rooted in v0, sn(T,v0) = csn(T,v0) and can be computed in time O(n · logn).

Proof. By Lemma 8, sn(T,v0) = csn(T,v0) = min{k : fk(v0) = 0} (Note that, v being fixed, fk(v) is a decreasing
function of k).The result comes from the fact that fk(v0) can be computed in linear time and so, the minimum k
such that fk(v0) = 0 can be search by dichotomy.

We now give a combinatorial characterization of sn(T,v0) of any tree T rooted in v0.

Lemma 9. For any tree T rooted in v0, and for any k < sn(T,v0), there is S ⊆ V (T ) inducing a subtree of T
containing v0 such that d |N[S]|−1

|S| e> k.

Proof. Let k < sn(T,v0). By Lemma 8, fk(v0)> 0. Let S be the inclusion-maximal subtree of T containing v0 and
such that fk(v)> 0 for all vertices in S. We show by induction on the height of S that fk(v0) = |N[S]|−1− k|S|.

If S = {v0} and v0 has degree d, then fk(v0) = d− k = |N[S]| − 1− k|S| > 0 because for any child v of v0,
fk(v) = 0. So the result holds for height 0.

Assume that the result holds for any subtree of height h≥ 0 and assume that S has height h+1. Let d be the
degree of v0 and let v1, · · · ,vr, 1 ≤ r ≤ d, be the children of v0 with fk(vi) > 0. Let Si be the subtree of S rooted
in vi, 1 ≤ i ≤ r, and let N[Si] be the vertices of Si or in the neighborhood of Si in the subtree of T rooted in vi.
By the induction hypothesis, fk(vi) = |N[Si]|−1− k|Si| for any 1≤ i≤ r. Now, fk(v0) = d− k+∑1≤i≤r fk(vi) =

d− k+∑1≤i≤r(|N[Si]|−1− k|Si|) = d− k+(|N[S]|−1− (d− r))− r− k(|S|−1) = |N[S]|−1− k|S|.
Hence, we have 0 < fk(v) = |N[S]|−1− k|S|. Therefore, d |N[S]|−1

|S| e> k.

Lemma 10. For any tree T rooted in v0, for any k≥ sn(T,v0), for any S⊆V (T ) inducing a subtree of T containing
v0 then d |N[S]|−1

|S| e ≤ k.

Proof. We consider the following game. Initially, an unbounded number of fugitives are in v0 which is initially
marked. Then, at most k vertices of T \ {v0} are marked. At each turn, each fugitive can move along an edge of
the tree, and then, for each vertex v that is reach for the first time by a fugitive, at most k vertices can be marked
in Tv the subtree of T rooted in v. The fugitives win if at least one fugitive reaches an unmarked vertex, they loose
otherwise.

We first show that if k ≥ sn(T,v0) then the fugitives loose in this game. Assume that k ≥ sn(T,v0), then there
is a winning k-strategy σ for the ”normal” surveillance game in T starting from v0. Recall that by Theorem 3, we
can constraint the fugitive to follow induced path. Since for any t ∈V (T ), there is a unique induced path from v0 to
t, σ can be defined uniquely by the position of the fugitive. That is, in the case of trees, we can define a k-strategy
as a function that assigns a subset σ(t)⊆V (Tt) (of size at most k) to any vertex t ∈V (T ). Now, in the game with
several fugitives, we consider the following strategy: each time a vertex t is reached for the first time by a fugitive,
then we mark the vertices in σ(t). It is easy to check that the fugitives cannot win against such a strategy.

Finally, we show that if there is a subtree S containing v0 such that d |N[S]|−1
|S| e > k, then the fugitives win the

new game. Indeed, the fugitives first occupy all vertices of S. At this step, at most k · |S|+ 1 vertices have been
marked (because S is connected and v0 is marked and for each vertex in S at most k vertices in V (T ) \ {v0} are
marked). Since |N[S]| > k · |S|+ 1, at least one unmarked vertex in N[S] will be reached by some fugitive during
the next step.
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Hence, sn(T,v0) ≥ maxd |N[S]|−1
|S| e where the maximum is taken over all S ⊆ V (T ) inducing a subtree of T

containing v0.

Theorem 9. For any tree T rooted in v0, sn(T,v0) = maxd |N[S]|−1
|S| e where the maximum is taken over all S⊆V (T )

inducing a subtree of T containing v0.

4.2 To keep an Interval Graph under surveillance

We recall that an interval graph G is the intersection graph of a set of real intervals. This set of real intervals is a
realization of G. In this section, we give a polynomial-time algorithm for computing the surveillance number in
interval graphs. Moreover, we show that it is equal to the connected variant in this class of graphs. It is important
to recall that, by Theorem 3, we do not help the observer when forcing the fugitive to move at each step and to
follow induced paths. Hence, in this section, we assume that the fugitive is forced to move at each step and to
follow only induced paths.

Let G be a connected interval graph and v0 ∈ V (G). We consider any realization I of G such that, no two
intervals have a common end (such a realization clearly always exists). Let us say that v≺L w if left (smallest) end
of (the interval of) v is smaller than the left end of w, and v �R w if right (largest) end of v is larger than the right
end of w.

We partition V (G) into several subsets. Let C be the subset of vertices the interval of which contains the
interval of v0. Note that v0 ∈ C ⊆N(v0) and that C induces a clique. Since G is an interval graph, V \N[v0] induces
a subgraph H the connected components of which are interval graphs. Let L be the vertices of the components of
H with their interval lefter than the interval of v0, i.e., the greatest end of an interval in L is strictly smaller than the
smallest end of the interval of v0. Respectively, R be the vertices of the components of H with their interval righter
than the interval of v0. Note that R and L are disjoint and are separated by N[v0] because G is an interval graph (no
interval can be both lefter and righter than the interval of v0). Let CL be the vertices in N(v0) \C with neighbors
in L and let CR be the vertices in N(v0)\C with neighbors in R . Finally, let C ′ =V (G)\ (L ∪CL∪C ∪CR∪R ).
Note that, for any v ∈ C ′, v0 ∈ N(v)⊆ N[v0].

Claim 4. (L ,CL,C ,C ′,CR,R ) is a partition of V (G).

Proof. Since, N[v0] = C ∪C ′∪CR∪CL, (L ,CL,C ,CR,R ) covers V (G). It only remains to prove that CR∩CL = /0.
Indeed, if v ∈ CR ∩CL, then v must be adjacent to a vertex in L and to a vertex in R . However, it means that the
interval of v contains the one of v0 and v ∈ C , a contradiction.

Recall that the fugitive is forced to follow an induced path. We now describe the structure of induced paths in
G. Roughly, next lemma says that once the fugitive has chosen a ”side” (left or right) it has to remain on this side,
and the choice occurs after one or two moves. Moreover, once the fugitive has chosen a side, it must go ”further”
into this side or it should stop.

Lemma 11. Let P = (v0,v1, · · · ,vp) be an induced path starting from v0 in any connected interval graph G. Let
L ,CL,C ,C ′,CR,R be define as above. Then, there are three possible cases:

1. Either v1 ∈ C ′ and then p = 1;

2. Either v2 ∈ L , and then

• for any i > 1, vi ∈ L and v1 ∈ CL∪C ;

• for any 0 < i < p−1, vi+1 ≺L vi;

• if vp−1 ≺L vp then N(vp)\∪i<pN(vi) = /0.

3. Or v2 ∈ R , and then
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• for any i > 1, vi ∈ R and v1 ∈ CR∪C ;

• for any 0 < i < p−1, vi+1 �R vi;

• if vp−1 �R vp then N(vp)\∪i<pN(vi) = /0.

Proof. Clearly, v2 cannot be in N[v0] = C ∪C ′∪CR∪CL because P is induced. Hence, v2 ∈ R ∪L . In particular,
if v1 ∈ C ′, then all neighbors of v1 are in N[v0] and thus p = 1. Let us assume that v2 ∈ L . The case v2 ∈ R can be
delt with similarly.

By the claim above, v2 cannot be adjacent to some vertex in CR ∪ C ′. Hence, v1 ∈ CL ∪ C = N[v0] \ CR.
Moreover, for any i > 1, vi /∈ N[v0] because P is induced. Since N[v0] separates R and L , and since v2 ∈ L , then
for any i > 1, vi ∈ L .

Let us assume that vi ≺L vi+1 for some 0 < i < p such that i is minimum for this property. We show that
i = p−1 and N(vp)\∪ j<pN(v j) = /0.

We first consider the case when the interval of vi does not contain the interval of vi+1. Since vi ≺L vi+1, we
get that vi+1 �R vi. Since P is induced, vi+1 /∈ N(vi−1). This implies, since vi ∈ N(vi−1), that vi �R vi−1. Since, by
minimality of i, vi ≺L vi−1, then the interval of vi−1 must be contained into the interval of vi. Therefore, if i > 1,
then vi−2 ∈ N(vi−1)\N(vi) = /0, a contradiction. Then i = 1 and the interval of vi−1 = v0 is strictly lefter than the
interval of vi+1 = v2 which contradicts the fact that v2 ∈ L .

Therefore, the interval of vi+1 must be contained into the interval of vi. Then N(vi+1) ⊆ N(vi) ⊆ ∪ j≤iN(v j).
If i < p−1, then vi+2 ∈ N(vi+1)∩N(vi) contradicting the fact that P is induced. Hence i = p−1, and we get that
N(vp)\∪ j<pN(v j) = /0.

The next lemma shows that, in interval graphs, we can define few particular induced paths that ”dominate” all
paths. That is, if the observer is able to win when the fugitive is constrained to follow one of these particular paths,
then the observer always win.

Let vL ∈ CL be smallest vertex of CL according to≺L, i.e., v≺L w for any w∈ CL \{v}. For any v1 ∈ C ∪{vL},
let us define PL(v1) as the longest induced path (v0,v1,v2, · · · ,vp) such that, for any i > 1, vi+1 is the smallest
vertex of N(vi) according to ≺L, i.e., vi+1 ≺L w for any w ∈ N(vi). Intuitively, except for the first move, we choose
as next vertex the neighbor with leftest left end.

By symmetry, let vR ∈ CR be greatest vertex of CR according to �R, i.e., v�R w for any w ∈ CR \{v}. For any
v1 ∈ C ∪{vR}, let us define PR(v1) as the longest induced path (v0,v1,v2, · · · ,vp) such that, for any i > 1, vi+1 is
the largest vertex of N(vi) according to �R, i.e., vi+1 �R w for any w ∈ N(vi)\{vi}. Except for the first move, we
choose as next vertex the neighbor with rightest right end.

Finally, for any path P = (v0, · · · ,vp) an for any i ≤ p, let Pi = N[{v0, · · · ,vi}] the set of the vertices that are
in {v0, · · · ,vi} or that have a neighbor in {v0, · · · ,vi}.

Lemma 12. Let G be a connected interval graph and let P = (v0, · · · ,vp) be an induced path starting from v0 and
p > 1. For any i≤ p, we have Pi ⊆ Qi′ where i′ = min{i, |Q|} and Q is:

• PL(vL) if v1 ∈ CL;

• PR(vR) if v1 ∈ CR;

• PL(v1) if v1 ∈ C and v2 ∈ L , and

• PR(v1) if v1 ∈ C and v2 ∈ R .

Proof. By Lemma 11, P must satisfy one of the four cases.
Let us first assume that v1 ∈ CL, and let Q = PL(vL) = (v0,vL,q2, · · · ,qp). By Lemma 11, vi ∈ L for any i≥ 2.

Hence, since no vertices of L ∪CL has a neighbor in R , we have N[P]⊆ L ∪N[v0].
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Similarly, N[Q] ⊆ L ∪N[v0]. We show that N[Q] = L ∪N[v0]. Clearly, N[v0] ⊆ N[Q]. Let v ∈ L \Q. Note
that L ∪N[v0] is connected and let R = (v0,a1,a2, · · · ,ai,v) (i ≥ 1) be a shortest path from v0 to v. Since, v ∈ L ,
we must have v ≺L v0, and since R is an induced path, we get v ≺L ai ≺L ai−1 ≺L · · · ≺L a1 ≺L v0. By in-
duction on j ≤ i, we show that (v0,vL,q2, · · · ,q j,a j+1, · · · ,ai,v) is a shortest path from v0 to v and therefore
v ∈ N[Q]. Since vL is the smallest neighbor of v0 according to ≺L, then a2 ∈ N[vL] (or v ∈ N[vL] if i = 1) and
then (v0,vL,a2, · · · ,ai,v) is a shortest path from v0 to v. Assume (v0,vL,q2, · · · ,q j,a j+1, · · · ,ai,v) is a shortest path
from v0 to v for some j < i. Then, j < p because otherwise, Q would not be a maximal induced path. More-
over, since q j+1 is the smallest neighbor of q j according to ≺L, then a j+2 ∈ N[q j+1] (or v ∈ N[q j+1] if j = i− 1)
and then (v0,vL,q2, · · · ,q j,q j+1,a j+2, · · · ,ai,v) is a shortest path from v0 to v. Hence, L ∪N[v0] ⊆ N[Q] and so
N[Q] = L ∪N[v0].

Therefore, for any i≥ p = |Q|, Pi ⊆ L ∪N[v0] = N[Q] = Qp.
Now, we show by induction on i < p that Pi ⊆ Qi. Since P0 = Q0 = N[v0], the result holds for i = 0. Let

0 ≤ i < p−1 and assume that Pi ⊆ Qi. Let v ∈ Pi+1 \Pi. Then, (v0,v1, · · · ,vi+1,v) is an induced path from v0 to
v. As previously, we show that (v0,vL,q2, · · · ,qi+1,v) is an induced path from v0 to v. Therefore, v ∈ Qi+1 and the
result holds.

The case v1 ∈ CR can be handled similarly by symmetry.
Now, if v1 ∈ C and v2 ∈ L , we can prove in a similar way that N[P]⊆ L ∪N[v1] = N[PL(v1)]. Hence, for any

i ≥ p = |PL(v1)|, Pi ⊆ L ∪N[v0] = N[PL(v1)] = Qp. Moreover, a similar induction on i < p allows to prove that
Pi ⊆ Qi. The case v1 ∈ C and v2 ∈ R is symmetric.

Previous two lemmas roughly say that the fugitive can only choose five kinds of induced paths: the ones with
second vertex in C ′ (such induced paths have only one edge), the ones with second vertex in L and going through
L , those with second vertex in R and going through R , and the paths with second vertex x ∈ C and then either
going through L or through R . Moreover, once the observer knows which kind of path has been chosen, it is
sufficient for the observer to protect one particular path. However, during the first step (before the first move of the
fugitive), the first set S0 of marked vertices must be chosen by the observer independently of what will choose the
fugitive. Similarly, if the fugitive first goes to x ∈ C , the observer cannot yet guess on which side the fugitive will
go. Hence, the set Sx of marked vertices during the second step (before the second move of the fugitive) must be
independent of the next choice of the fugitive (Sx may only depends on x). The next theorem formalizes this.

Now, we order the vertices of V (G) in the following way. The vertices in N[v0] are ordered in any arbitrary
ordering, any vertex in L is smaller than a vertex in N[v0] and any vertex in R is greater than the vertices in N[v0].
Finally, vertices in L are ordered according to �R, i.e., for any v,w ∈ L , v < w iff w�R v. Symmetrically, vertices
in R are ordered according to ≺L. We say that a set S⊆V (G) is contiguous if for any a,b ∈ S and a < w < b, then
w ∈ S. Note that a contiguous subset of a connected interval graph induces a connected subgraph.

Theorem 10. Let G be an interval graph and v0 ∈V (G). Let k be the smallest integer s.t.:

• there exists S0 ⊆V (G) with N[v0]⊆ S0, |S0 \{v0}| ≤ k, and

• for any i > 0, |Pi
L(vL)\S0| ≤ i · k and |Pi

R(vR)\S0| ≤ i · k, and

• for any x ∈ C \{v0}, there is Sx ⊆V (G)\S0 with N[v0]∪N[x]⊆ S0∪Sx and |Sx| ≤ k, and

• for any i > 1 and any x ∈ C \{v0}, |Pi
L(x)\ (S0∪Sx)| ≤ (i−1) · k and |Pi

R(x)\ (S0∪Sx)| ≤ (i−1) · k.

Then, sn(G,v0) = csn(G,v0) = k. Moreover, we show that S0 can be chosen contiguous and the sets Sx can be
chosen such that S0∪Sx is contiguous for any x ∈ C (without increasing k).

Proof. Let k be the smallest integer defined as in the statement of the theorem. We first show that k′ = sn(G,v0) is
at least k.

Claim 5. sn(G,v0) = k′ ≥ k

RR n° 7740



To Satisfy Impatient Web surfers is Hard 18

Let σ be any optimal winning strategy for the observer, i.e., marking k′ vertices at each step. Let S0 =

σ({v0},v0)∪{v0} and, for any x ∈ C , let Sx = σ(S0,x). Obviously, |S0| ≤ k′+1, |Sx| ≤ k′, N[v0]⊆ S0 and N[x]∪
N[v0]⊆ S0∪Sx.

Now, let us assume that the fugitive follows the induced path PL(x) = (v0,x,v2, · · · ,vp) for some x ∈ C . At
step 1< i≤ p, when it is the turn of the fugitive that stands at vi, the observer must have marked at least the vertices
in N[{v0,x,v2, · · · ,vi}]. Moreover, during the first two steps of the strategy, the observer has marked the vertices of
S0 and Sx by definition of σ. Hence, during the i−1 steps after the first two steps, the observer must have marked
the vertices in N[{v0,x,v2, · · · ,vi}]\ (S0∪Sx) = Pi

L(x)\ (S0∪Sx) which proves that |Pi
L(x)\ (S0∪Sx)| ≤ (i−1) ·k′.

The other properties can be proved in the same way and thus, k′ ≥ k. �

Claim 6. There exist S∗0 and S∗x (x ∈ C ) that are contiguous sets and that satisfy the same properties as S0 and Sx

(x ∈ C ). That is, S0 and Sx (x ∈ C ) may be chosen contiguous.

Recall that to define contiguous sets, we have ordered the vertices in V (G).
Let `= |S0∩L | and r = |S0∩R |. Let S∗0 be the set obtained from the union of N[v0], the ` greatest vertices in

L and the r smallest vertices in R . Note that S∗0 is contiguous and that S0 = S∗0 iff S0 is contiguous.
Similarly, for any x ∈ C , let `x = |Sx∩L | and rx = |Sx∩R |. Let S∗x be the set obtained from the union of the

`x greatest vertices in L \S∗0 and the rx smallest vertices in R \S∗0. Note that S∗0∪S∗x is contiguous and that Sx = S∗x
iff S0∪Sx is contiguous.

We claim that S∗0 and the sets S∗x , x ∈ C , satisfy the desired properties.
Indeed, (N[v0],S0 ∩L ,S0 ∩R ) is a partition of S0 hence, k+ 1 = |N[v0]|+ r + ` and then |S∗0| = k+ 1 and

N[v0] ⊆ S∗0. Moreover, |S∗x | = `x + rx = |Sx| ≤ k. Since N[v0]∪N[x] ⊆ S0 ∪ Sx, N[x]∩L ⊆ (S0 ∪ Sx)∩L . Hence,
|N[x]∩L | ≤ `+ `x. Moreover, N[x]∩L must be contiguous. Therefore, N[x]∩L ⊆ (S∗0 ∪S∗x)∩L . By symmetry,
N[x]∩R ⊆ (S∗0∪S∗x)∩R , and then N[v0]∪N[x]⊆ S∗0∪S∗x .

Let i > 1 and x ∈ C \ {v0}. We have |Pi
L(x) \ (S0 ∪ Sx)| ≤ (i− 1) · k. Moreover, Pi

L(x) \ (S0 ∪ Sx) ⊆ L , hence
|Pi

L(x)∩L | ≤ (i−1) · k+ `+ `x. Also, Pi
L(x)∩L must be contiguous, so either Pi

L(x) ⊆ S∗0 ∪S∗x in which case the
result is trivial, or (S∗0∪S∗x)∩L ⊆ Pi

L(x)∩L . In the latter case, |Pi
L(x)\ (S∗0∪S∗x)|= |Pi

L(x)∩L |− |(S∗0∪S∗x)∩L | ≤
(i−1) · k.

The other properties can be checked in a similar way. �

Now, we describe a k-winning connected strategy for the observer. By previous claim, we may assume that
the sets S0 and Sx (x ∈ C ) are contiguous.

Claim 7. csn(G,v0)≤ k.

We define a k-winning connected strategy for the observer when the fugitive is constrained to follow induced
paths. By Theorem 3, it is sufficient to prove the claim.

Initially, the observer marks the vertices in S0. Let P= (v0,v1, · · ·) be an induced path followed by the fugitive
starting from v0. If v1 ∈ C ′ then the fugitive must stop there and loose. So assume that v1 /∈ C ′. By Lemma 11,
v1 ∈ C ∪CR ∪CL and v2 ∈ L ∪R . If v1 ∈ C , at the second step, the observer marks the vertices in Sv1 . Then,
if v1 ∈ CL or v2 ∈ L , then at each step (but the second one if v1 ∈ C ), the observer marks the k greatest vertices
unmarked in L . Then, if v1 ∈ CR or v2 ∈ R , then at each step (but the second one if v1 ∈ C ), the observer marks
the k smallest vertices unmarked in R . Such a strategy is connected since, at each step, the set of marked vertices
is contiguous and connected to the set of previously marked vertices.

Let us show that the strategy is winning. Clearly, it marks at most k vertices at each steps, because |S0\{v0}|≤
k and |Sv1 | ≤ k. Let us assume v1 ∈ C and v2 ∈ L , the other cases can be handled in a similar way. Clearly, the
fugitive cannot win during the first two steps since N[v0]⊆ S0 and N[v0]∪N[v1]⊆ S0∪Sv1 . Now, after its ith step,
i> 2, the observer has marked the vertices in S0∪Sv1 and the vertices in the set M of the (i−2) ·k greatest vertices in
L \(S0∪Sv1). Since M is contiguous, Pi−1

L (v1)\(S0∪Sv1) is also contiguous and |Pi−1
L (v1)\(S0∪Sv1)| ≤ (i−2) ·k,
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we get that Pi−1
L (v1)\ (S0∪Sv1)⊆M. Finally, by Lemma 12, Pi−1 = N[{v0,v1, · · · ,vi−1}]⊆ Pi−1

L (v1). Therefore,
Pi−1 ⊆M∪ (S0∪Sv1). Hence, all neighbors of the current position vi−1 of the fugitive are marked and the fugitive
cannot escape during its next move.

Hence, csn(G,v0)≤ k. �

Theorem 11. sn(G,v0), resp., csn(G,v0), can be computed in time O(n ·∆3) in the class of n-node interval graphs
with maximum degree ∆.

Proof. By Theorem 10, it is sufficient to prove that the smallest integer k defined in Theorem 10 can be computed
in polynomial time. An exhaustive check is sufficient: k being fixed, it can be be checked in polynomial-time
whether k satisfies the properties. Indeed, by Theorem 10, the sets S0 and Sx (x ∈ C ) that must be checked can be
restricted to the contiguous sets.

In particular, since S0 has k+ 1 vertices and must contain v0, there are at most k such sets. Then, for any
x ∈ C , S0 being fixed, there are at most k sets Sx since S0 ∪ Sx must be contiguous. Moreover, given x,x′ ∈ C , Sx

and Sx′ can be checked independently.
Hence, for any integer k, we have to check at most k sets S0 and k sets Sx for each x ∈ C . Since each test can

be done in linear time in n, C ⊆ N[v0] and k ≤ ∆. The algorithm takes at most O(n ·∆3)

5 Conclusion and further work

Before concluding, we consider the case of an invisible fugitive. Generally, in cops and robber games, both visible
and invisible robbers are difficult to handle. In this game, the invisible case is trivial. In the case of an invisible
fugitive, a winning k-strategy for the observer is a sequence (X1, · · · ,Xr) of subsets of vertices of G such that |Xi| ≤ k
for any i≤ r and for any walk W starting from v0 and of length i followed by the fugitive, W ⊆

⋃
j<i X j∪{v0}. The

strategy is connected if
⋃

j<i X j ∪{v0} induces a connected subgraph for any i≤ r. Let vsn(G,v0) (cvsn(G,v0)) be
the smallest k such that there exists a (connected) winning k-strategy for the observer. It is straightforward that:

Theorem 12. For any connected (di)graph G and v0 ∈ V (G), vsn(G,v0) = cvsn(G,v0) and equals the smallest k
such that, for any i≥ 1, |Vi| ≤ ki+1 where Vi is the set of vertices at distance at most i from v0. Moreover, it can
be computed in linear time.

To conclude, we recall the questions we ask throughout the paper and add some new questions:

• Does there exist a constant bounding the ratio (resp., the difference) between csn and sn in any graph?

• What is the complexity of computing the surveillance number in the class of graphs with maximum
degree 4? With bounded degree? With bounded treewidth?

• Does there exists a constant c < 2 and an algorithm that computes sn(G,v0) in time O(cn) in general
graphs G?

• Is that true that, for any graph G and v0 ∈ V (G), sn(G,v0) = maxSb |N[S]|
|S| c where S is taken among all

subsets of V (G) containing v0 and inducing a connected subgraph?
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