
Methods for Emulation of Multi-Core CPU
Performance

Tomasz Buchert1 Lucas Nussbaum2 Jens Gustedt1

1 INRIA Nancy – Grand Est

2 LORIA / Nancy - Université



Validation of distributed systems

Approaches:
Theoretical approach (paper and pencil)

, the most general results and understanding
/ very hard (leads to unsolvability results)

Experimentation (real application on a real environment)
, realistic context, credibility
/ difficulty of preparation and control, questionable reproducibility

Simulation (modeled application inside modeled environment)
, very simple and perfectly reproducible
/ experimental bias, possibly unrealistic

Emulation (real application inside a modeled environment)
, control over the experiment parameters
/ difficult

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 2 / 26



Emulation

The perfect emulated environment should emulate (independently):

Network bandwidth, latency, topology
Memory capabilities
Background noise (network, faults)
CPU speed and its features

Some parts implemented in Wrekavoc – a tool to define and control
heterogeneity of the cluster

In this talk, however, we specifically concentrate on

Emulation of CPU speed

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 3 / 26



Emulation

The perfect emulated environment should emulate (independently):

Network bandwidth, latency, topology
Memory capabilities
Background noise (network, faults)
CPU speed and its features

Some parts implemented in Wrekavoc – a tool to define and control
heterogeneity of the cluster

In this talk, however, we specifically concentrate on

Emulation of CPU speed

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 3 / 26



Our goal

0 1 2 3 4 5 6 7

(1) control over the speed of each CPU/core independently

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 4 / 26



Our goal

0 1 2 3 4 5 6 7

VN 1 VN 2 VN 3 Virtual node 4

(2) ability to create separately scheduled zones of tasks

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 4 / 26



Existing methods (CPU-Freq)

Hardware solution to reduce heat, noise and power usage
For:

no overhead of emulation
completely unintrusive
meaningful CPU time measure

Against:
only a finite set of different frequency levels

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 5 / 26



Existing methods (CPU-Lim)

Method available in Wrekavoc tool
Algorithm:

if CPU usage ≥ threshold → send SIGSTOP to the process
if CPU usage < threshold → send SIGCONT to the process

CPU usage = CPU time of the process
process lifetime

For:
easy and almost POSIX-compliant

Against:
intrusive and unscalable
decision based on one process instead of global CPU usage
sleeping is indistinguishable from preemption

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 6 / 26



Existing methods (Fracas)

Based on idea from KRASH (a load injection tool)
Uses Linux Cgroups and Completely Fair Scheduler
A predefined portion of the CPU is given to tasks burning CPU
All other processes are given the remaining CPU time

Emulated
processes

CPU burner

Core 1

Emulated
processes

CPU burner

Core 2

Emulated
processes

CPU burner

Core 3

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 7 / 26



Existing methods (Fracas)

Based on idea from KRASH (a load injection tool)
Uses Linux Cgroups and Completely Fair Scheduler
A predefined portion of the CPU is given to tasks burning CPU
All other processes are given the remaining CPU time

For:
unintrusive
scalable

Against:
unportable to other systems
sensitive to the configuration of the scheduler

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 7 / 26



New methods (CPU-Gov)

Generalization of CPU-Freq
Alternates between two neighbouring hardware frequencies

1.2 GHz 2.
4

G
H

z

τ

1.5 GHz

τ

0.75τ 0.25τ

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 8 / 26



New methods (CPU-Gov)

Generalization of CPU-Freq
Alternates between two neighbouring hardware frequencies

For:
no overhead, unintrusive and meaningful CPU time measure
(inherited from CPU-Freq)
continuous range of emulated frequency

Against:
dependency on the hardware implementation (inherited from
CPU-Freq)
special algorithm for small values of emulated frequency

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 8 / 26



New methods (CPU-Hogs)

Generalization of CPU-burning technique
For each core there is a high-priority thread created
They ”burn” a required number of CPU cycles

For:
simple and portable (POSIX)
does not rely on the hardware

Against:
theoretical problems with scalability (not observed)

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 9 / 26



New methods (CPU-Hogs)

Generalization of CPU-burning technique
For each core there is a high-priority thread created
They ”burn” a required number of CPU cycles

cores

time

0

1

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 9 / 26



Evaluation

Microbenchmarks with different types of work:

CPU intensive – running a tight computational loop
IO bound – sending UDP packets over a network
CPU and IO intensive – sleeping mixed with a computation
multiprocessing – running multiple processes with CPU work
multithreading – running multiple threads with CPU work
memory speed (STREAM benchmark) – sustainable memory
bandwidth

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 10 / 26



Evaluation (cont.)

Tested with 1, 2, 4 and 8 emulated cores
X-axis – emulated frequency
Y-axis – speed perceived by the benchmark
each test repeated 40 times, results = average with 95%
confidence interval
Evaluation performed on Grid’5000 platform

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 11 / 26



Grid’5000

9 sites, 1528 machines
Lille, Rennes, Orsay, Nancy, Bordeaux, Lyon, Grenoble, Toulouse, Sophia

Dedicated to research on distributed systems and HPC

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 12 / 26



CPU intensive work (one core)

0.5 1 1.5 2 2.5 3

2,000

4,000

6,000

8,000

Emulated CPU frequency (GHz)

Lo
op

s/
se

c

CPU-Lim
CPU-Hogs

Fracas
CPU-Gov
CPU-Freq

�� ��All methods work as expected.

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 13 / 26



IO-intensive work (one core)

0.5 1 1.5 2 2.5 3

0.5

1

·104

Emulated CPU frequency (GHz)

Lo
op

s/
se

c

CPU-Lim
CPU-Hogs

Fracas
CPU-Gov
CPU-Freq

�� ��IO operations should not scale with CPU frequency.

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 14 / 26



Memory speed (one core)

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

·104

Emulated CPU frequency (GHz)

M
B/

se
c

CPU-Lim
CPU-Hogs

Fracas
CPU-Gov
CPU-Freq

�� ��Ideally, memory speed would not be scaled as well.

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 15 / 26



Computing and sleeping workload (one core)

0.5 1 1.5 2 2.5 3

2,000

4,000

6,000

Emulated CPU frequency (GHz)

Lo
op

s/
se

c

CPU-Lim
CPU-Hogs

Fracas
CPU-Gov
CPU-Freq

�� ��The relation should be proportional, but CPU-Lim’s is not.

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 16 / 26



Multiprocessing benchmark (one core)

0.5 1 1.5 2 2.5 3

500

1,000

1,500

Emulated CPU frequency (GHz)

Lo
op

s/
se

c

CPU-Lim
CPU-Hogs

Fracas
CPU-Gov
CPU-Freq

�� ��This relation should be proportional again (but CPU-Lim’s is not).

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 17 / 26



Multithreading benchmark (one core)

0.5 1 1.5 2 2.5 3

500

1,000

1,500

Emulated CPU frequency (GHz)

Lo
op

s/
se

c

CPU-Lim
CPU-Hogs

Fracas
CPU-Gov
CPU-Freq

�� ��The execution speed scales with the frequency.

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 18 / 26



Multithreading benchmark (two cores)

0.5 1 1.5 2 2.5 3

1,000

2,000

3,000

4,000

Emulated CPU frequency (GHz)

Lo
op

s/
se

c

CPU-Lim
CPU-Hogs

Fracas
CPU-Gov
CPU-Freq

�� ��CPU-Lim and Fracas run twice as slow as CPU-Freq.

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 19 / 26



Multiprocessing benchmark (two cores)

0.5 1 1.5 2 2.5 3

1,000

2,000

3,000

4,000

Emulated CPU frequency (GHz)

Lo
op

s/
se

c

CPU-Lim
CPU-Hogs

Fracas
CPU-Gov
CPU-Freq

�� ��CPU-Lim and Fracas fail in this benchmark too.

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 20 / 26



Multiprocessing benchmark (four cores)

0.5 1 1.5 2 2.5 3
0

2,000

4,000

6,000

Emulated CPU frequency (GHz)

Lo
op

s/
se

c

CPU-Lim
CPU-Hogs

Fracas
CPU-Gov
CPU-Freq

�� ��What happened here?

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 21 / 26



Multiprocessing benchmark (eight cores)

0.5 1 1.5 2 2.5 3
0

5,000

10,000

Emulated CPU frequency (GHz)

Lo
op

s/
se

c

CPU-Lim
CPU-Hogs

Fracas
CPU-Gov
CPU-Freq

�� ��Fracas fails once more (but CPU-Lim doesn’t!).

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 22 / 26



Summary of the evaluation

CPU-Freq:
very good results
coarse granularity

CPU-Lim:
not scalable due to implementation, intrusive
higher variance
controls processes, not threads

Fracas:
good behavior for a single-task workload
scalable
bad behavior for multitask workload
behavior differs from one version of Linux to another

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 23 / 26



Summary of the evaluation (cont.)

CPU-Gov and CPU-Hogs:
improvement over previous methods
good and stable behavior in virtually every benchmark
scalability
independent from the underlying OS

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 24 / 26



Future work

Emulate memory bandwidth
Emulate other aspects of CPU
Test the methods with real-life applications
Integrate the best methods into an open source, user-friendly
emulator (Wrekavoc)

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 25 / 26



Conclusions

Presented CPU-Hogs, CPU-Gov and previously existing methods
Compared them by running a set of microbenchmarks
Evaluated experimentally on Grid’5000
New methods show a big improvement in the quality of emulation

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 26 / 26



Thanks for listening.

Questions?

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 27 / 26


