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Validation of distributed systems

Approaches:
Theoretical approach (paper and pencil)

, the most general results and understanding
/ very hard (leads to unsolvability results)

Experimentation (real application on a real environment)
, realistic context, credibility
/ difficulty of preparation and control, questionable reproducibility

Simulation (modeled application inside modeled environment)
, very simple and perfectly reproducible
/ experimental bias, possibly unrealistic

Emulation (real application inside a modeled environment)
, control over the experiment parameters
/ difficult

Tomasz Buchert, Lucas Nussbaum and Jens Gustedt Methods for Emulation of Multi-Core CPU Perf. 2 / 26



Emulation

The perfect emulated environment should emulate (independently):

Network bandwidth, latency, topology
Memory capabilities
Background noise (network, faults)
CPU speed and its features

Some parts implemented in Wrekavoc – a tool to define and control
heterogeneity of the cluster

In this talk, however, we specifically concentrate on

Emulation of CPU speed
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Our goal

0 1 2 3 4 5 6 7

(1) control over the speed of each CPU/core independently
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Our goal

0 1 2 3 4 5 6 7

VN 1 VN 2 VN 3 Virtual node 4

(2) ability to create separately scheduled zones of tasks
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Existing methods (CPU-Freq)

Hardware solution to reduce heat, noise and power usage
For:

no overhead of emulation
completely unintrusive
meaningful CPU time measure

Against:
only a finite set of different frequency levels
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Existing methods (CPU-Lim)

Method available in Wrekavoc tool
Algorithm:

if CPU usage ≥ threshold → send SIGSTOP to the process
if CPU usage < threshold → send SIGCONT to the process

CPU usage = CPU time of the process
process lifetime

For:
easy and almost POSIX-compliant

Against:
intrusive and unscalable
decision based on one process instead of global CPU usage
sleeping is indistinguishable from preemption
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Existing methods (Fracas)

Based on idea from KRASH (a load injection tool)
Uses Linux Cgroups and Completely Fair Scheduler
A predefined portion of the CPU is given to tasks burning CPU
All other processes are given the remaining CPU time

Emulated
processes

CPU burner

Core 1

Emulated
processes

CPU burner

Core 2

Emulated
processes

CPU burner

Core 3
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Existing methods (Fracas)

Based on idea from KRASH (a load injection tool)
Uses Linux Cgroups and Completely Fair Scheduler
A predefined portion of the CPU is given to tasks burning CPU
All other processes are given the remaining CPU time

For:
unintrusive
scalable

Against:
unportable to other systems
sensitive to the configuration of the scheduler
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New methods (CPU-Gov)

Generalization of CPU-Freq
Alternates between two neighbouring hardware frequencies
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New methods (CPU-Gov)

Generalization of CPU-Freq
Alternates between two neighbouring hardware frequencies

For:
no overhead, unintrusive and meaningful CPU time measure
(inherited from CPU-Freq)
continuous range of emulated frequency

Against:
dependency on the hardware implementation (inherited from
CPU-Freq)
special algorithm for small values of emulated frequency
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New methods (CPU-Hogs)

Generalization of CPU-burning technique
For each core there is a high-priority thread created
They ”burn” a required number of CPU cycles

For:
simple and portable (POSIX)
does not rely on the hardware

Against:
theoretical problems with scalability (not observed)
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New methods (CPU-Hogs)

Generalization of CPU-burning technique
For each core there is a high-priority thread created
They ”burn” a required number of CPU cycles
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Evaluation

Microbenchmarks with different types of work:

CPU intensive – running a tight computational loop
IO bound – sending UDP packets over a network
CPU and IO intensive – sleeping mixed with a computation
multiprocessing – running multiple processes with CPU work
multithreading – running multiple threads with CPU work
memory speed (STREAM benchmark) – sustainable memory
bandwidth
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Evaluation (cont.)

Tested with 1, 2, 4 and 8 emulated cores
X-axis – emulated frequency
Y-axis – speed perceived by the benchmark
each test repeated 40 times, results = average with 95%
confidence interval
Evaluation performed on Grid’5000 platform
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Grid’5000

9 sites, 1528 machines
Lille, Rennes, Orsay, Nancy, Bordeaux, Lyon, Grenoble, Toulouse, Sophia

Dedicated to research on distributed systems and HPC
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CPU intensive work (one core)
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�� ��All methods work as expected.
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IO-intensive work (one core)
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�� ��IO operations should not scale with CPU frequency.
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Memory speed (one core)
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�� ��Ideally, memory speed would not be scaled as well.
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Computing and sleeping workload (one core)

0.5 1 1.5 2 2.5 3

2,000

4,000

6,000

Emulated CPU frequency (GHz)

Lo
op

s/
se

c

CPU-Lim
CPU-Hogs

Fracas
CPU-Gov
CPU-Freq

�� ��The relation should be proportional, but CPU-Lim’s is not.
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Multiprocessing benchmark (one core)
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�� ��This relation should be proportional again (but CPU-Lim’s is not).
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Multithreading benchmark (one core)
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�� ��The execution speed scales with the frequency.
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Multithreading benchmark (two cores)
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�� ��CPU-Lim and Fracas run twice as slow as CPU-Freq.
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Multiprocessing benchmark (two cores)
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�� ��CPU-Lim and Fracas fail in this benchmark too.
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Multiprocessing benchmark (four cores)

0.5 1 1.5 2 2.5 3
0

2,000

4,000

6,000

Emulated CPU frequency (GHz)

Lo
op

s/
se

c

CPU-Lim
CPU-Hogs

Fracas
CPU-Gov
CPU-Freq

�� ��What happened here?
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Multiprocessing benchmark (eight cores)
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�� ��Fracas fails once more (but CPU-Lim doesn’t!).
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Summary of the evaluation

CPU-Freq:
very good results
coarse granularity

CPU-Lim:
not scalable due to implementation, intrusive
higher variance
controls processes, not threads

Fracas:
good behavior for a single-task workload
scalable
bad behavior for multitask workload
behavior differs from one version of Linux to another
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Summary of the evaluation (cont.)

CPU-Gov and CPU-Hogs:
improvement over previous methods
good and stable behavior in virtually every benchmark
scalability
independent from the underlying OS
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Future work

Emulate memory bandwidth
Emulate other aspects of CPU
Test the methods with real-life applications
Integrate the best methods into an open source, user-friendly
emulator (Wrekavoc)
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Conclusions

Presented CPU-Hogs, CPU-Gov and previously existing methods
Compared them by running a set of microbenchmarks
Evaluated experimentally on Grid’5000
New methods show a big improvement in the quality of emulation
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Thanks for listening.

Questions?
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