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Abstract

In this paper, we study several decision problems for functional weighted automata. To associate

values with runs, we consider four different measure functions: the sum, the mean, the discounted

sum of weights along edges and the ratio between rewards and costs. On the positive side, we

show that the existential and universal threshold problems, the language inclusion problem and

the equivalence problem are all decidable for the class of functional weighted automata and the

four measure functions that we consider. On the negative side, we also study the quantitative

extension of the realizability problem and show that it is undecidable for sum, mean and ratio.

Finally, we show how to decide if the quantitative language defined by a functional weighted

discounted sum automaton can be defined with a deterministic automata (it was already known

for sum and mean).

1998 ACM Subject Classification Algorithms, Theory, Verification

Keywords and phrases Weighted automata, quantitative languages, functionality, synthesis,

computer-aided verification

1 Introduction

Recently, there have been several efforts made to lift the foundations of computer aided

verification and synthesis from the basic Boolean case to the richer quantitative case, e.g. [10,

8, 1]. This paper belongs to this line of research and contributes to the study of quantitative

languages over finite words.

Our paper proposes a systematic study of the algorithmic properties of several classes

of functional weighted automata (defining quantitative languages). A functional weighted

automaton is a nondeterministic weighted automaton such that any two accepting runs ρ1,

ρ2 on a word w associate with this word a unique value V(ρ1) = V(ρ2). As we show in this

paper, several important verification problems are decidable for nondeterministic functional

weighted automata while they are undecidable (or unknown to be decidable) for the full

class of nondeterministic weighted automata. As functional weighted automata are a natural

generalization of unambiguous weighted automata, and as unambiguity captures most of the

nondeterminism that is useful in practice, our results are both theoretically and practically

important. Also, the notion of functionality leads to useful insight into the relation between

deterministic and nondeterministic weighted automata and into algorithmic idea for testing

equivalence for example.

In this paper, we study automata in which an integer weight, or a pair of integer weights,

is associated with each of their transitions. From those weights, an (accepting) run ρ on

a word w associates a sequence of weights with the word, and this sequence is mapped to

a rational value by a measure function. We consider four different measure functions1: (i)

1 We do not consider the measure functions Min and Max that map a sequence to the minimal and the
1



2 Quantitative Languages Defined by Functional Automata

Sum computes the sum of the weights along the sequence, (ii) Avg returns the mean value

of the weights, (iii) Dsumλ computes the discounted sum of the weights for a given discount

factor λ ∈ Q∩]0, 1[, and (iv) Ratio is applied to a sequence of pairs of weights, and it returns

the ratio between the sum of weights appearing as the first component (rewards) and the

sum of the weights appearing as the second component (costs). The value associated with a

word w accepted by A is denoted by LA(w). While Sum and, to some extent, Avg are known

because they can be seen as operations over a semiring of values [20], the case of Dsumλ

and Ratio are less studied. Those two measures are motivated by applications in computer

aided verification and synthesis, see for example [12, 7].

Contributions Functionality is a semantical property. We show that it can be decided for

the four classes of measure functions that we consider (either in polynomial time or poly-

nomial space). Then we solve the following decision problems, along the line of [10]. First,

we consider threshold problems. The existential (universal, respectively) threshold problem

asks, given a weighted automaton A and a threshold ν ∈ Q, if there exists a word (if for

all words, respectively) w accepted by A: LA(w) ≥ ν. Those problems can be seen as gen-

eralizations of the emptiness and universality problems for finite state automata. Second,

we consider the quantitative language inclusion problem that asks, given two weighted auto-

mata A and B, if all words accepted by A are also accepted by B, and for all accepted

words w of A, we have LA(w) ≤ LB(w). We show that all those problems are decidable for

the four classes of measure functions that we consider in this paper when the automaton

is functional. We show that the inclusion problem is PSpaceC for Sum, Avg and Dsumλ.

For Ratio, we show decidability of the problem using a recent algorithm to solve quadratic

diophantine equations [14], this is a new deep result in mathematics and the complexity of

the algorithm is not yet known. Note that those decidability results are in sharp contrast

with the corresponding results for the full class of nondeterministic weighted automata: for

that class, only the existential threshold problem is known to be decidable, the language

inclusion problem is undecidable for Sum, Avg, and Ratio while the problem is open for

Dsumλ. We also show that the equivalence problem can be decided in polynomial space for

Ratio via an easy reduction to functionality.

Then, we consider a quantitative variant of the realizability problem introduced by

Church, which is part of the foundations of game theory played on graphs [23] and synthesis

of reactive systems [21]. It can be formalized as a game in which two players alternates

in choosing letters in their respective alphabet. By doing so, they form a word which is

obtained by concatenating the successive choices of the players. The realizability problem

asks, given a weighted automaton A, alphabet Σ = Σ1 × Σ2, if there exists a strategy for

choosing the letters in Σ1 in the word forming game such that no matter how the adversary

chooses his letters in Σ2, the word w that is obtained belongs to the language of A and

A(w) ≥ 0. We show that this problem is undecidable for Sum, Avg, and Ratio even when

considering unambiguous automata (the case Dsumλ is left open). However, we show that

the realizability problem is decidable for the deterministic versions of the automata studied

in this paper. This motivates the study of the determinizability problem.

The determinizability problem asks, given a functional weighted automaton A, if the

quantitative language defined by A is also definable by a deterministic automaton. This

problem has been solved for Sum, Avg in [16]. It is known that Dsumλ-automata are not

maximal value that appear in the sequence as the nondeterministic automata that use those measure
functions can be made deterministic and all the decision problems for them have known and simple
solutions.
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determinizable in general [10]. We give here a decidable necessary and sufficient condition

for the determinizability of functional Dsumλ automata, and we show how to construct a

deterministic automaton from the functional one when this is possible.

Related Works Motivated by computer-aided verification issues, our work follows the same

line as [10]. However [10] is mainly concerned with weighted automata on infinite words,

either non-deterministic, for which some important problems are undecidable (e.g. inclusion

of Avg-automata), or deterministic ones, which are strictly less expressive than functional

automata. The Ratio measure is not considered either. Their domains of quantitative

languages are assumed to be total (as all states are accepting and their transition relation is

total) while we can define partial quantitave languages thanks to an acceptance condition.

Weighted automata over semirings have been extensively studied (see [20] for a survey),

and more generally rational series [4]. For instance, the functionality problem for weighted

automata over the tropical semiring, i.e. Sum-automata, is known to be in PTime [16].

Moreover, it is known that determinizability of functional Sum-automata is decidable in

PTime [16], as well as for the strictly more expressive class of polynomially ambiguous

Sum-automata [15], for which the termination of Mohri’s determinization algorithm [20] is

decidable. However, the Dsumλ and Ratio-automata are not automata over any semiring, and

therefore results on automata over semirings cannot be directly applied to those measures.

The technics we use for deciding functionality and determinization are inspired by technics

from word transducers [22, 6, 3, 11, 24].

The functionality problem has been studied for finite state (word) transducers. It was

proved to be decidable in [22], and later in [6]. Based on a notion of delay between runs, an

efficient PTime procedure for testing functionality has been given in [3]. The functionality

problem for Sum,Avg and Dsumλ-automata is also based on a notion of delay. Based on the

twinning property [11] and the notion of delay, efficient procedures for deciding determinizab-

ility can be devised [3, 24]. This also inspired our determinization procedure for functional

Dsumλ-automata. In [9], Boker et. al. show that Dsumλ-automata on infinite words with

a trivial accepting condition (all states are accepting), but not necessarily functional, are

determinizable for any discount factor of the form 1/n for some n ∈ N≥2. Their proof is

based on a notion of recoverable gap, similar to that of delays. In our paper, we provide

a sufficient and necessary condition to check whether a functional Dsumλ-automaton (over

finite words) is determinizable. Finally in [13], the relation between discounted weighted

automata over a semiring and weighted logics is studied.

To the best of our knowledge, our results on Dsumλ and Ratio-automata, as well as on

the realizability problem, are new. Our main and most technical results are functionality

of Dsumλ and Ratio-automata, inclusion problems, determinizability of functional Dsumλ-

automata, undecidability of the realizability of unambiguous Sum-automata, and solvability

of the deterministic versions of the realizability problem. The latter reduce to games on

graphs that are to the best of our knowledge new, namely finite Sum, Avg, Dsumλ, Ratio-

games on weighted graphs with a combination of a reachability objective and a quantitative

objective.

Omitted proofs can be found in the Appendix section.
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2 Quantitative Languages and Functionality

Let Σ be a finite alphabet. We denote by Σ+ the set of non-empty finite words over Σ. A

quantitative language L over Σ is a mapping L : Σ+ → Q ∪ {⊥}2. For all w ∈ Σ+, L(w) is

called the value of w. L(w) =⊥ means that the value of w is undefined. For all x ∈ Q, we

let max(x,⊥) = x, max(⊥, x) = x and max(⊥,⊥) =⊥.

Let n ≥ 0. Given a finite sequence v = v0 . . . vn of integers (resp. a finite sequence

v′ = (r0, c0) . . . (rn, cn) of pairs of natural numbers, ci > 0 for all i) and λ ∈ Q such that

0 < λ < 1, we define the following functions:

Sum(v) =

n
∑

i=0

vi Avg(v) =
Sum(v)

n
Dsumλ(v) =

n
∑

i=0

λivi Ratio(v′) =

∑n
i=0 ri

∑n
i=0 ci

For empty sequences ǫ, we also set Sum(ǫ) = Avg(ǫ) = Dsumλ(ǫ) = Ratio(ǫ) = 0.

Weighted Automata Let V ∈ {Sum, Avg, Dsumλ, Ratio}. A weighted V -automaton over

Σ is a tuple A = (Q, qI , F, δ, γ) where Q is a finite set of states, F is a set of final states,

δ ⊆ Q × Σ × Q is the transition relation, and γ : δ → Z (resp. γ : δ → N × (N − 0) if

V = Ratio) is a weight function. The size of A is defined by |A| = |Q|+ |δ|+
∑

t∈δ log2(γ(t)).

Note that (Q, qI , F, δ) is a classical finite state automaton. We say that A is deterministic

(resp. unambiguous) if (Q, qI , F, δ) is.

A run ρ of A over a word w = σ1 . . . σn ∈ Σ∗ is a sequence ρ = q0σ1q1σ2 . . . σnqn such

that q0 = qI and for all i ∈ {0, . . . , n − 1}, (qi, σi+1, qi+1) ∈ δ. It is accepting if qn ∈ F .

We write ρ : q0
w
−→ qn to denote that ρ is a run on w starting at q0 and ending in qn. The

domain of A, denoted by dom(A), is defined as the set of words w ∈ Σ+ on which there

exists some accepting run of A.

The function V is naturally extended to runs as follows:

V (ρ) =

{

V (γ(q0, σ1, q1) . . . γ(qn−1, σn, qn)) if ρ is accepting

⊥ otherwise

The relation induced by A is defined by RV
A = {(w, V (ρ)) | w ∈ Σ+, ρ is a accepting run of A on w}.

It is functional if for all words w ∈ Σ+, we have |{v | (w, v) ∈ RV
A , v 6=⊥}| ≤ 1. In that case

we say that A is functional. The quantitative language LA : Σ+ → Q ∪ {⊥} defined by A is

defined by LA : w 7→ max{v | (w, v) ∈ RV
A}.

◮ Example 1. Fig. 1 illustrates two Sum-automata over the alphabet {a, b}. The first

automaton (on the left) defines the quantitative language w ∈ Σ+ 7→ max(#a(w), #b(w)),

where #α(w) denotes the number of occurences of the letter α in w. Its induced relation

is {(w, #a(w)) | w ∈ Σ+} ∪ {(w, #b(w)) | w ∈ Σ+}. The second automaton (on the right)

defines the quantitative language that maps any word of length at least 2 to the number of

occurences of its last letter.

We say that a state q is co-accessible (resp. accessible) by some word w ∈ Σ∗ if there

exists some run ρ : q
w
−→ qf for some qf ∈ F (resp. some run ρ : qI

w
−→ q). If such a word

exists, we say that q is co-accessible (resp. accessible). A pair of states (q, q′) is co-accessible

if there exists a word w such that q and q′ are co-accessible by w. In the sequel, we use the

term V -automata to denote either Sum, Dsumλ, Avg or Ratio-automata.

2 As in [10], we do not consider the empty word as our weighted automata do not have initial and final
weight functions. This eases our presentation but all our results carry over to the more general setting
with initial and final weight function [20].
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qIstart

qa

qb

a|1, b|0

a|0, b|1

a|1, b|0

a|0, b|1

pIstart

p

q

pf

qf

a|1, b|0

a|0, b|1

a|1, b|0

a|0, b|1

a|1

b|1

Figure 1 Examples of Sum-automata

Functional Weighted Automata The Sum-automaton on the left of Fig. 1 is not func-

tional (e.g. the word abb maps to the values 1 and 2), while the one of the right is functional

(and even unambiguous).

Concerning the expressiveness of functional automata, we can show that deterministic

automata are strictly less expressive than functional automata which are again strictly less

expressive than non-deterministic automata.

◮ Lemma 2. Let V ∈ {Sum, Avg, Dsumλ, Ratio}. The following hold:

Deterministic < Functional There exists a functional V -automaton that cannot be defined by

any deterministic V -automaton;

Functional < Non-deterministic There exists a non-deterministic V -automaton that cannot

be defined by any functional V -automaton.

Proof. Let V ∈ {Sum, Avg, Dsumλ, Ratio}. The automata of Fig. 1 can be seen as V -

automata (with a constant cost 1 if V = Ratio). The right V -automaton cannot be expressed

by any deterministic V -automaton because the value of a word depends on its last letter.

The left V -automaton cannot be expressed by any functional V -automaton. ◭

As proved in Appendix, functional V -automata are equally expressive as unambiguous

V -automata (i.e. at most one accepting run per input word). However we inherit the

succinctness property of non-deterministic finite state automata wrt unambiguous finite state

automata, as a direct consequence functional V -automata are exponentially more succinct

than unambiguous V -automata. Moreover, considering unambiguous V -automata does not

simplify the proofs of our results neither lower the computational complexity of the decision

problems. Finally, testing functionality often relies on a notion of delay that gives strong

insights that are useful for determinization procedures, and will allow us to test equivalence

of functional (and even unambiguous) Ratio-automata with a better complexity than using

our results on inclusion.

3 Functionality

In this section, we show that it is decidable whether a V -automaton A = (Q, qI , F, δ, γ) is

functional for all V ∈ {Sum, Avg, Dsumλ, Ratio}.

3.1 Functionality of Sum and Avg-Automata

It is clear that a Sum-automaton A is functional iff the Avg-automaton A is functional.

Indeed, let w ∈ dom(A) and v1, v2 ∈ Z. We have (w, v1), (w, v2) ∈ RSum
A iff (w, v1

|w|), (w, v2

|w|) ∈

RAvg
A . The result follows as v1 6= v2 iff v1

|w| 6=
v2

|w| . So we can rephrase the following result of

[16]:
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◮ Theorem 3 ([16]). Functionality is decidable in PTime for Sum and Avg-automata.

The algorithm of [16] for checking functionality of Sum-automata is based on the notion

of delay between two runs. This notion has been first introduced for deciding functionality

of finite state (word) transducers [3]. Let w ∈ Σ+ and ρ, ρ′ be two runs of a Sum-automaton

A on w. The delay between ρ and ρ′ is defined as delay(ρ, ρ′) = Sum(ρ) − Sum(ρ′). For all

pairs (p, q), we define delay(p, q) as the set of delays delay(p, q) = {delay(ρ, ρ′) | ∃w ∈ Σ∗ · ρ :

qI
w
−→ p, ρ′ : qI

w
−→ q}.

It is proved in [16] that a Sum-automaton A is functional iff for all co-accessible pairs

of states (p, q), |delay(p, q)| ≤ 1. Intuitively, if A is functional, then any delay delay(p, q)

associated with a pair (p, q) co-accessible with the (same) word w has to be recovered when

reading w. If there are at least two different delays associated with (p, q), one of them cannot

be recovered when reading the same word w, therefore A is not functional. The algorithm

then consists first in computing all co-accessible pairs of states, and then all the triples

(p, q, k) in a forward manner, where k represents some delay of (p, q). If two triples (p, q, k)

and (p, q, k′) with k 6= k′ are reached, then A is not functional. Termination is obtained

by a small witness property for non-functionality, which ensures that the triples need to be

visited at most twice. A similar algorithm with another notion of delay is used for deciding

functionality of Dsumλ-automata.

3.2 Functionality of Dsumλ-automata

◮ Definition 4 (Dsumλ Delay). Let p, q ∈ Q and d ∈ Q. The rational d is a delay for (p, q)

if A admits two runs ρ : qI
w
−→ p, ρ′ : qI

w
−→ q on w ∈ Σ∗such that

delay(ρ, ρ′) =def

Dsumλ(ρ)− Dsumλ(ρ′)

λ|w|
= d

As for Sum-automata, at most one delay can be associated with co-accessible pairs of

states of functional Dsumλ automata.

◮ Lemma 5 (One Delay). Let A = (Q, qI , F, δ, γ) be a functional Dsumλ-automaton. For all

pairs of states (p, q): If (p, q) is co-accessible, then (p, q) admits at most one delay.

We now define an algorithm that checks whether a Dsumλ-automaton is functional. In a

first step, it computes all co-accessible pairs of states. Then it explores the set of accessible

pairs of states in a forward manner and computes the delays associated with those pairs. If

two different delays are associated with the same pair, or if a pair of final states with a non-

zero delay is reached, it stops and returns that the automaton is not functional, otherwise

it goes on until all co-accessible (and accessible) pairs have been visited and concludes that

the automaton is functional.

◮ Lemma 6. Let A = (Q, qI , F, δ, γ) be a Dsumλ-automaton. If A is not functional, there

exists a word w = σ0 . . . σn and two accepting runs ρ = q0σ0 . . . qn, ρ′ = q′
0σ0 . . . q′

n on it such

that Dsumλ(ρ) 6= Dsumλ(ρ′) and for all positions i < j in w, either (i) (pi, qi) 6= (pj , qj) or

(ii) delay(ρi, ρ′
i) 6= delay(ρj , ρ′

j), where ρi and ρ′
i (resp. ρj and ρ′

j) denote the prefixes of the

runs ρ and ρ′ until position i (resp. position j).

We can now prove the correctness of Algorithm DSumFunTest.

◮ Theorem 7. Given a Dsumλ-automaton A, Algorithm DSumFunTest applied to A returns

Yes iff A is functional and terminates within O(|A|2) steps.
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Algorithm 1: Functionality test for Dsumλ-automata. (DSumFunTest)

Data: Dsumλ-automaton A = (Q, qI , F, δ, γ).

Result: Boolean certifying whether A is functional.

begin

1 CoAcc← all co-accessible pairs of states;

2 visited← ∅ ; delay(qI , qI)← 0; PUSH(S, ((qI , qI), 0)) ;

3 while S 6= ∅ do

4 ((p, q), d)← POP(S);

5 if (p, q) ∈ F 2 ∧ d 6= 0 then returns No;

6 if (p, q) ∈ visited then

if delay(p, q) 6= d then returns No

else

7 visited← visited ∪ {(p, q)};

8 delay(p, q)← d;

9 foreach (p′, q′) ∈ CoAcc s.t. ∃a ∈ Σ · (p, a, p′) ∈ δ ∧ (q, a, q′) ∈ δ do

PUSH(S, ((p′, q′), γ(p, a, p′)− γ(q, a, q′) + d)) ;

10 returns Yes

Sketch, full proof in Appendix. If DSumFunTest(A) returns No, it is either because a pair

of accepting states with non-null delay has been reached, which gives a counter-example to

functionality, or it finds a pair of states with two different delays, so A is not functional by

Lemma 5.

Conversely, if A is non-functional, by Lemma 6, there exists a word w with two accepting

runs having different values such that either no pair of states is repeated twice, in which

case the algorithm can find a pair of final states with a non-null delay, or there is a pair of

states that repeat twice (take the first that repeat) and has necessarily two different delays,

in which case the algorithm will return No at line 6, if not before. ◭

3.3 Functionality of Ratio-automata

Unlike Sum,Avg or Dsumλ-automata, it is still open whether there exists a good notion

of delay for Ratio-automata that would allow us to design an efficient algorithm to test

functionality. However deciding functionality can be done by using a short witness property

of non-functionality.

◮ Lemma 8 (Pumping). Let A be a Ratio-automaton with n states. A is not functional

iff there exist a word w such that |w| < 4n2 and two accepting runs ρ, ρ′ on w such that

Ratio(ρ) 6= Ratio(ρ′).

Proof. We prove the existence of a short witness for non-functionality. The other direction

is obvious. Let w be a word such that |w| ≥ 4n2 and there exists two accepting runs ρ1, ρ2

on w such that Ratio(ρ) 6= Ratio(ρ′). Since |w| ≥ 4n2, there exist states p, q ∈ Q, pf , qf ∈ F

and words w0, w1, w2, w3, w4 such that w = w0w1w2w3w4 and ρ, ρ′ can be decomposed as

follows:

ρ : qI
w0|(r0,c0)
−−−−−−→ p

w1|(r1,c1)
−−−−−−→ p

w2|(r2,c2)
−−−−−−→ p

w3|(r3,c3)
−−−−−−→ p

w4|(r4,c4)
−−−−−−→ pf

ρ′ : qI

w0|(r′

0
,c′

0
)

−−−−−−→ q
w1|(r′

1
,c′

1
)

−−−−−−→ q
w2|(r′

2
,c′

2
)

−−−−−−→ q
w3|(r′

3
,c′

3
)

−−−−−−→ q
w4|(r′

4
,c′

4
)

−−−−−−→ qf

where ri, ci denotes the sum of the rewards and the costs respectively on the subruns of ρ

on wi, and similarly for r′
i, c′

i.



8 Quantitative Languages Defined by Functional Automata

By hypothesis we know that (
∑4

i=0 ri) · (
∑4

i=0 c′
i) 6= (

∑4
i=0 ci) · (

∑4
i=0 r′

i). For all subsets

X ⊆ {1, 2, 3}, we denote by wX the word w0wi1
. . . wik

w4 if X = {i1 < · · · < ik}. For

instance, w{1,2,3} = w, w{1} = w0w1w4 and w{} = w0w4. Similarly, we denote by ρX , ρ′
X

the corresponding runs on wX . We will show that there exists X ( {1, 2, 3} such that

Ratio(ρX) 6= Ratio(ρ′
X). Suppose that for all X ( {1, 2, 3}, we have Ratio(ρX) = Ratio(ρ′

X).

We now show that it implies that Ratio(ρ) = Ratio(ρ′), which contradicts the hypothesis.

For all X ⊆ {1, 2, 3}, we let:

LX = (
∑

i∈X∪{0,4}

ri) · (
∑

i∈X∪{0,4}

c′
i) RX = (

∑

i∈X∪{0,4}

ci) · (
∑

i∈X∪{0,4}

r′
i)

By hypothesis, L{1,2,3} 6= R{1,2,3} and for all X ( {1, 2, 3}, LX = RX . We now prove the

following equalities:

L{} + L{1,2} + L{1,3} + L{2,3} − L{1} − L{2} − L{3} = L{1,2,3}

R{} + R{1,2} + R{1,3} + R{2,3} − R{1} − R{2} − R{3} = R{1,2,3}

We only prove the equality with the L values as it is symmetric for the R values. For all

i, j ∈ {0, 4}, the subterm ric
′
j occurs once in all expressions LX , and 1+1+1+1−1−1−1 = 1.

For all i, j ∈ {1, 2, 3} such that i 6= j, the subterm ric
′
j appears once in L{i,j} and once in

L{1,2,3}. For all i ∈ {1, 2, 3}, the subterm ric
′
i appears once in all LX such that i ∈ X ,

and there are exactly two such LX that are added to the left of the equation, one that is

substracted to the left, and one added to the right. For instance, the subterm r1c′
1 appears in

L{1,2,3}, L{1,2}, L{1,3} and L{1}. It can be checked similarly that on the left of the equation,

the coefficients for all other subterms are 1.

Therefore, since by hypothesis we have LX = RX for all X ( {1, 2, 3}, we get L{1,2,3} =

R{1,2,3}, which is a contradiction. Thus there exists X ( {1, 2, 3} such that LX 6= RX . In

other words, there exists X ( {1, 2, 3} such that Ratio(ρX) 6= Ratio(ρ′
X). This shows that

when a witness of non-functionality has length at least 4n2, we can find a strictly smaller

witness of functionality. This achieves to prove the lemma. ◭

As a consequence, we can design a non-deterministic PSpace procedure that will check

non-functionality by guessing runs of length at most 4n2, where n is the number of states:

◮ Theorem 9. Functionality is decidable in PSpace for Ratio-automata, and in NLogSpace

if the weights are encoded in unary.

◮ Remark. The pumping lemma states that if some Ratio-automaton with n states is not

functional, there exists a witness of non-functionality whose length is bounded by 4n2, where

n is the number of states. Such a property also holds for Dsumλ-automata (and is well-known

for Sum and Avg-automata), but with the smaller bound 3n2. Those bounds are used to state

the existence of two runs on the same word such that the same pair of states is repeated

3 or 4 times along the two runs. Then it is proved that one can remove some part in

between two repetitions and get a smaller word with two different output values. However

for Ratio-automata, three repetitions are not enough to be able to shorten non-functionality

witnesses. For instance, consider the following two runs on the alphabet {a, b, c, d} and

states {qI , p, q, pf , qf} where pf , qf are final (those two runs can easily be realized by some

Ratio-automaton):

ρ : qI
a|(2,2)
−−−−→ p

b|(2,1)
−−−−→ p

c|(2,2)
−−−−→ p

d|(1,1)
−−−−→ pf

ρ′ : qI
a|(1,2)
−−−−→ q

b|(2,1)
−−−−→ q

c|(1,1)
−−−−→ q

d|(2,1)
−−−−→ qf
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It is easy to verify that the word abcd has two outputs given by ρ and ρ′ while the words

ad, abd and acd has one output. For instance, the two runs qI

a|(2,2)
−−−−→ p

d|(1,1)
−−−−→ pf and

qI
a|(1,2)
−−−−→ q

d|(2,1)
−−−−→ qf on ad have both value 1.

4 Decision Problems

In this section we investigate several decision problems for functional V -automata as defined

in [10], V ∈ {Sum, Avg, Dsumλ, Ratio}. Given two V -automata A, B over Σ (and with the

same discount factor when V = Dsumλ) and a threshold ν ∈ Q, we define the following

decision problems:

Inclusion LA ≤ LB holds if for all w ∈ Σ+, LA(w) ≤ LB(w)

Equivalence LA = LB holds if for all w ∈ Σ+, LA(w) = LB(w)

∼ ν-Emptiness L∼ν

A 6= ∅ holds if there exists w ∈ Σ+ such that LA(w) ∼ ν, ∼∈ {>, ≥}

∼ ν-Universality ν ∼ LA holds if for all w ∈ dom(A), LA(w) ∼ ν, where ∼∈ {>, ≥}.

It is known that inclusion is undecidable for non-deterministic Sum-automata [18], and

therefore is also undecidable for Avg and Ratio-automata. To the best of our knowledge, it

is open whether it is decidable for Dsumλ-automata.

◮ Theorem 10. Let V ∈ {Sum, Avg, Dsumλ, Ratio} and let A, B be two V -automata such that

B is functional. The inclusion problem LA ≤ LB is decidable. If V ∈ {Sum, Avg, Dsumλ}

then it is PSpace-c and if additionnaly B is deterministic, it is in PTime.

Proof. Let V ∈ {Sum, Avg, Dsumλ}. In a first step, we test the inclusion of the domains

dom(A) ⊆ dom(B) (it is PSpace-c and in PTime if B is deterministic). Then we construct

the product A × B as follows: (p, q)
a|nA−nB

−−−−−−→ (p′, q′) ∈ δA×B iff p
a|nA

−−−→ p′ ∈ δA and

q
a|nB

−−−→ q′ ∈ δB. Then LA 6≤ LB iff there exists a path in A×B from a pair of initial states

to a pair of accepting states with strictly positive sum if V ∈ {Sum, Avg}, and with strictly

positive discounted sum if V = Dsumλ. This can be checked in PTime for all those three

measures, with shortest path algorithms for Sum and Avg, and as a consequence of a result

of [2] about single player discounted games, for Dsumλ.

Let V = Ratio. As for the other measures we first check inclusion of the domains. Let

δA = {x1, . . . , xn} and δB = {y1, . . . , ym}. Let rA = (r1, . . . , rn) be the rewards associated

with the transitions x1, . . . , xn respectively. Similarly, let cA = (c1, . . . , cn) be the costs

associated with x1, . . . , xn. The vectors rB and cB are defined similarly.

Given a vector a = (a1, . . . , an) ∈ Nn, we say that a fits A if there exists w ∈ Σ+ and

an accepting run ρ on A such that ρ passes by the transition xi exactly ai times, for all

1 ≤ i ≤ n. We let F (A) be the set of vectors fitting A (i.e. the Parikh’s image of the

transitions of A). It is well-known by Parikh’s theorem that F (A) is a semi-linear set and

can be effectively represented as the solution of a system of linear equations over natural

numbers. F (B) is defined similarly. We now define the set of pairs of vectors Γ as follows:

Γ = {(a, b) | a ∈ F (A), b ∈ F (B), a.rA · (b.cB)T > a.cA · (b.rB)T }

where . denotes the pairwise multiplication, · the matrix multiplication, and .T the trans-

posite. It is easy to check that Γ 6= ∅ iff LA 6≤ LB. The set Γ can be defined as the

solutions over natural numbers of a system of equations in linear and quadratic forms (i.e.

in which products of two variables are permitted). It is decidable whether such a system

has a solution [25, 14]. ◭
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There is no known complexity bound for solving quadratic equations, so the proof above

does not give us a complexity bound for the inclusion problem of functional Ratio-automata.

However, thanks to the functionality test, which is in PSpace for Ratio-automata, we can test

equivalence of two functional Ratio-automata A1 and A2 in PSpace: first check in PSpace that

dom(A1) = dom(A2) and check that the union of A1 and A2 is functional. This algorithm

can also be used for the other measures:

◮ Theorem 11. Let V ∈ {Sum, Avg, Dsumλ, Ratio}. Equivalence of functional V -automata

is PSpace-c.

◮ Theorem 12. Let ν ∈ Q. The > ν-emptiness (resp. ≥ ν-emptiness) problem is in PTime

for Sum-, Avg-, Ratio-, and Dsumλ-automata (resp. Sum-, Avg-, and Ratio-automata).

It is open how to decide ≥ ν for Dsumλ-automata. Dually:

◮ Theorem 13. Let ν ∈ Q. The ≥ ν-universality (resp. > ν-universality) problem is PSpace-

c for Sum-, Avg-, Ratio-, and Dsumλ-automata (resp. Sum-, Avg-, and Ratio-automata).

5 Realizability

In this section, we consider the problem of quantitative language realizability. The realizab-

ility problem is better understood as a game between two players: the ’Player input’ (the

environment, also called Player I) and the ’Player output’ (the controller, also called Player

O). Player I (resp. Player O) controls the letters of a finite alphabet ΣI (resp. ΣO). We

assume that ΣO ∩ ΣI = ∅ and that ΣO contains a special symbol # whose role is to stop

the game. We let Σ = ΣO ∪ ΣI .

Formally, the realizability game is a turn-based game played on an arena defined by

a weighted automaton A = (Q = QO ⊎ QI , q0, F, δ = δI ∪ δO, γ), whose set of states

is partitioned into two sets, δO ⊆ QO × ΣO × QI , δI ⊆ QI × ΣI × QO, and such that

dom(A) ⊆ (Σ\{#})∗#. Player O starts by giving an initial letter o0 ∈ ΣO, Player I

responds providing a letter i0 ∈ ΣI , then Player O gives o1 and Player I responds i1, and so

on. Player O has also the power to stop the game at any turn with the distinguishing symbol

#. In this case, the game results in a finite word (o0i0)(o1i1) . . . (ojij)# ∈ Σ∗, otherwise the

outcome of the game is an infinite word (o0i0)(o1i1) · · · ∈ Σω.

The players play according to strategies. A strategy for Player O (resp. Player I) is a

mapping λO : (ΣOΣI)∗ → ΣO (resp. λI : ΣO(ΣIΣO)∗ → ΣI). The outcome of the strategies

λO, λI is the word w = o0i0o1i1 . . . denoted by outcome(λO, λI) such that for all 0 ≤ j ≤ |w|

(where |w| = +∞ if w is infinite), oj = λO(o0i0 . . . ij−1) and ij = λ(o0i0 . . . oj), and such

that if # = oj for some j, then w = o0i0 . . . oj . We denote by ΛO (resp. ΛI) the set of

strategies for Player O (resp. Player I).

A strategy λO ∈ ΛO is winning for Player O if for all strategies λI ∈ ΛI , outcome(λO, λI)

is finite and LA(outcome(λO, λI)) > 0. The quantitative language realizability problem for

the weighted automaton A asks whether Player O has a winning strategy and in that case,

we say that A is realizable.

Our first result on realizability is negative: we show that it is undecidable for weighted

functional Sum-, Avg-automata, and Ratio-automata. In particular, we show that the halting

problem for deterministic 2-counter Minsky machines [19] can be reduced to the quantitative

language realizability problem for (functional) Sum-automata (resp. Avg-automata).

◮ Theorem 14. Let V ∈ {Sum, Avg, Ratio}. The realizability problem for functional weighted

V -automata is undecidable.
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The proof of Theorem 14 (in Appendix) relies on the use of a nondeterministic weighted

automaton. Indeed, as stated in the next theorem, the quantitative language realizability

problem is decidable for the four measures when the automaton is deterministic, in NP∩coNP

(see Appendix), though memoryfull strategies are necessary for winning those games.

◮ Theorem 15. The quantitative language realizability problem for deterministic weighted

V -automata, V ∈ {Sum, Avg, Dsumλ, Ratio}, is in NP ∩ coNP.

6 Determinization

A V -automaton A = (Q, qI , F, δ, γ) is determinizable if it is effectively equivalent to a de-

terministic V -automaton3. V -automata are not determinizable in general. For example,

consider the right automaton on Fig. 1. Seen as a Sum, Avg or Dsumλ-automaton for any

λ, it cannot be determinized, because there are infinitely many delays associated with the

pair of states (p, q). Those delays can for instance be obtained by the family of words of the

form an.

We show that it can be decided whether a functional V -automaton is determinizable for

V ∈ {Sum, Avg, Dsumλ}. However, it is still open for Ratio-automata, for which we do not

have an adequate notion of delay.

To ease notations, for all V -automaton A over an alphabet Σ, we assume that there

exists a special ending symbol # ∈ Σ such that any word w ∈ dom(A) is of the form w′#

with w′ ∈ (Σ−#)∗.

Determinizability is already known to be decidable in PTime for functional Sum-automata

[16]4. Determinizable functional Sum-automata are characterized by the so called twinning

property, that has been introduced for finite word transducers [11]. Two states p, q are

twinned if both p and q are co-accessible and for all words w1, w2 ∈ Σ∗, for all n1, n2, m1, m2 ∈

Z, if qI
w1|n1

−−−−→ p
w2|n2

−−−−→ p and qI
w1|m1

−−−−→ q
w2|m2

−−−−→ q, then n2 = m2. In other words, the

delays between the two runs cannot increase on the loop. If all pairs of states are twinned,

then it is proved that the number of different accumulated delays on parallel runs is finite.

The determinization for Sum-automata extends the classical determinization procedure of

finite automata with delays. States are (partial) functions from states to delays. Clearly,

a Sum-automaton A is determinizable iff the Avg-automaton A is determinizable. We can

even use exactly the same determinization procedure as for Sum-automata.

◮ Theorem 16 ([16]). It is decidable in PTime whether a functional Sum or Avg-automaton

is determinizable.

We now explain the determinization procedure for Dsumλ-automata.

◮ Definition 17. We say that two states p, q are twinned if both p and q are co-accessible

and for all words w1, w2 ∈ Σ∗, for all runs ρ1 : qI
w1−−→ p, ρ2 : p

w2−−→ p, ρ′
1 : qI

w1−−→ q,

ρ′
2 : q

w2−−→ q, we have delay(ρ1, ρ′
1) = delay(ρ1ρ2, ρ′

1ρ′
2).

A Dsumλ-automaton A satisfies the twinning property if all pairs of states are twinned.

We show that the twinning property is a decidable characterization of determinizable func-

tional Dsumλ-automata. First, we prove that it is decidable in PSpace:

3 With the existence of an ending symbol, the notion of determinizability corresponds to the notion of
subsequentializability [11].

4 See [17, 15] for determinizability results on more general classes of Sum-automata.
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◮ Lemma 18. Is it decidable in PSpace whether a Dsumλ-automaton satisfies the twinning

property.

We denote by D the set of possible delays between two runs of A, i.e. D is the set of

delays delay(ρ, ρ′) for all runs ρ, ρ′ on the same input word, such that the last states of ρ

and ρ′ are both co-accessible.

◮ Lemma 19. If the twinning property holds, then D is finite of size at most |Σ||Q|2

.

Proof. As delays must be identical on parallel loops, any delay can be obtained with some

pair of runs of length |Q|2 at most (on longer pairs of runs, there must exist a parallel loop

with identical delays that can be removed without affecting the value of the global delay of

both runs, see Lemma 24 of the Appendix). ◭

Determinization Assume that the twinning property holds. We define a determinization

procedure that constructs from a functional Dsumλ-automaton A = (Q, qI , F, δ, γ) a de-

terministic Dsumλ-automaton Ad = (Qd, fd, Fd, δd, γd). Wlog we assume that all states are

co-accessible (otherwise we can remove non co-accessible states in linear time). We define

Q′ = DQ (which is finite by Lemma 19), the set of partial functions from states Q to

delays.We let f ′
I : qI 7→ 0 and F ′ is defined as {f ∈ Q′ | dom(f) ∩ F 6= ∅}. Then, given

partial functions f, f ′ ∈ Q′ and a symbol a ∈ Σ, we let:

γ′(f, a, f ′) = min{
f(q)

λ
+ γ(q, a, q′) | q ∈ dom(f) ∧ (q, a, q′) ∈ δ}

(f, a, f ′) ∈ δ′ iff for all q′ ∈ dom(f ′) there exists q ∈ dom(f) such that (q, a, q′) ∈ δ and

f ′(q′) =
f(q)

λ
+ γ(q, a, q′)− γ′(f, a, f ′)

Let Qd ⊆ Q′ be the accessible states of A′ := (Q′, f ′
I , F ′, δ′, γ′). We define Ad = (Qd, fd, δd, γd)

as the restriction of A′ to the accessible states.

◮ Lemma 20. If the twinning property holds, Ad and A are equivalent, Ad is deterministic

and has O(|Σ||Q|3

) states.

The proof is based on the following lemma:

◮ Lemma 21. Let f ∈ Qd be state of Ad accessible by a run ρd on some word w ∈ Σ∗. Then

dom(f) is the set of states q such that there exists a run on w reaching q. Moreover, if q ∈

dom(f) and ρ is a run on w reaching q, then f(q) = max{delay(ρ, ρ′) | ρ′ is a run of A on w} =
Dsumλ(ρ)− Dsumλ(ρd)

λ|w|
and Dsumλ(ρd) = min{Dsumλ(ξ) | ξ is a run of A on w}.

If the twinning property does not hold, we show that D is infinite and that A cannot be

determinized. Therefore we get the following theorem:

◮ Theorem 22. A functional Dsumλ-automaton is determinizable iff it satisfies the twinning

property. Therefore determinizability is decidable in PSpace for functional Dsumλ-automata.
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A Quantitative Languages and Functionality

A.1 Functionality and Unambiguity

◮ Lemma 23. Let V ∈ {Sum, Avg, Dsumλ, Ratio}. For all functional V -automaton with n

states we can construct an equivalent unambiguous V -automaton with O(n.2n) states.

Proof. Our proof is independent on the measure. Let A = (Q, qI , F, δ, γ) be a functional

V -automaton. We order the transitions of δ by a total order denoted by <δ. We construct

an equivalent unambiguous automaton A′ = (Q′, q′
I , F ′, δ′, γ′), where:

Q′ = Q× 2Q ;

q′
i = (qI ,∅) ;

F ′ = F × {P ⊆ Q | F ∩ P = ∅} ;

γ′ : ((p, P ), a, (p′, P ′)) 7→ γ(p, a, p′) ;

Before defining δ′ formally, let us explain intuitively the semantics of the states in Q′.

The automaton A′ will guess a run of A on first state component (called the current run).

A pair (p, P ) represents the state p of current run in the original automaton A while P

represents the states reached by all the runs that are greater than the current run (for the

order <δ lexigraphically extended to runs). At the end of the word, the run is accepting iff

p is accepting and there is no accepting state in P . In other words, a run of A′ on a word

w is accepting iff the run it defines on the first component is the smallest accepting run of

A on w.

When a new letter a ∈ Σ is read, A′ guesses a transition from p to some state p′, and

goes to the state (p′, SP ∪Sp,a,p′), where SP are the successor states of of P by δ on the input

a, and Sp,a,p′ are all the states reached from p by a transition on a bigger than (p, q, p′).

Formally, ((p, P ), a, (p′, P ′)) ∈ δ′ iff

(p, a, p′) ∈ δ ;

P ′ = {q′ | ∃q ∈ P, (q, a, q′) ∈ δ} ∪ {p′′ | (p, a, p′′) ∈ δ ∧ (p, a, p′) <δ (p, a, p′′)}.

It is clear by construction that A and A′ defines the same domain. As A is functional,

they also define the same function, because the value of a word is equal to the value of any

run on it, and in particular to the value of the smallest run. ◭

B Functionality

B.1 Proof of Lemma 5

Proof. Consider a co-accessible pair of states (p, q). Assume that (p, q) admits two delays

d1, d2. We show that if A is functional, then d1 = d2. Let ρ1 : q0
w1

 p, ρ′
1 : q0

w1

 q (resp.

ρ2 : q0
w2

 p, ρ′
2 : q0

w2

 q) be two runs witnessing the delay d1 (resp. d2), i.e.:

Dsumλ(ρ1)− Dsumλ(ρ′
1)

λ|w1|
= d1,

Dsumλ(ρ2)− Dsumλ(ρ′
2)

λ|w2|
= d2

Since (p, q) is co-accessible, there exists a word u and two runs ρ3 : p
u
 f ∈ F , ρ′

3 : q
u
 

f ′ ∈ F . Moreover, the hypothesis of functionality on A implies:

Dsumλ(ρ1ρ3)− Dsumλ(ρ′
1ρ′

3) = 0 (1)

Dsumλ(ρ2ρ3)− Dsumλ(ρ′
2ρ′

3) = 0 (2)
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Let v1,0 . . . v1,m (resp. v′
1,0 . . . v′

1,m, v3,0 . . . v3,l, v′
3,0 . . . v′

3,l) the sequence of weights oc-

curing along ρ1 (resp. ρ′
1, ρ3, ρ′

3), where m = |w1| − 1 and l = |u| − 1.

Then, Equation 1 implies:

m
∑

i=0

v1,iλ
i + λm+1

l
∑

i=0

v3,iλ
i =

m
∑

i=0

v′
1,iλ

i + λm+1
l

∑

i=0

v′
3,iλ

i (3)

Let v2,0 . . . v2,n (resp. v′
2,0 . . . v′

2,n) be the sequence of weights occuring along ρ2 (resp. ρ′
2),

where n = |w2| − 1.

Then, Equation 2 implies:

n
∑

i=0

v2,iλ
i + λn+1

l
∑

i=0

v3,iλ
i =

n
∑

i=0

v′
2,iλ

i + λn+1
l

∑

i=0

v′
3,iλ

i (4)

Equations 3 and 4 yield:

(

m
∑

i=0

v1,iλ
i −

m
∑

i=0

v′
1,iλ

i) = λm+1(

l
∑

i=0

v′
3,iλ

i −
l

∑

i=0

v3,iλ
i) (5)

(

n
∑

i=0

v2,iλ
i −

n
∑

i=0

v′
2,iλ

i) = λn+1(

l
∑

i=0

v′
3,iλ

i −
l

∑

i=0

v3,iλ
i) (6)

Dividing both the members of Equation 5 by λm+1 and both the members of Equation 6 by

λn+1, and finally subtracting the obtained results, we get our thesis i.e.

Dsumλ(ρ1)− Dsumλ(ρ′
1)

λ|w1|
=

Dsumλ(ρ2)− Dsumλ(ρ′
2)

λ|w2|

◭

B.2 Proof of Lemma 6

We first prove the following key result:

◮ Lemma 24. Let A = (Q, qI , F, δ, γ) be a Dsumλ-automaton. Let w1, w2, w3 ∈ Σ∗ such

that there exist p, p′, q, q′ ∈ Q and the following runs:

ρ1 : qI
w1−−→ p ρ2 : p

w2−−→ p ρ3 : p
w3−−→ q

ρ′
1 : qI

w1−−→ p′ ρ2 : p′ w2−−→ p′ ρ3 : p′ w3−−→ q′

and such that delay(ρ1, ρ′
1) = delay(ρ1ρ2, ρ′

1ρ′
2). Then delay(ρ1ρ2ρ3, ρ′

1ρ′
2ρ′

3) = delay(ρ1ρ3, ρ′
1ρ′

3).

Proof. By hypothesis, we have the following equality:

Dsumλ(ρ1) + λ|w1|Dsumλ(ρ2)− Dsumλ(ρ′
1)− λ|w1|Dsumλ(ρ′

2)

λ|w1|+|w2|
=

Dsumλ(ρ1)− Dsumλ(ρ′
2)

λ|w1|

(7)

which implies:

Dsumλ(ρ1)+λ|w1|Dsumλ(ρ2)−Dsumλ(ρ′
1)−λ|w1|Dsumλ(ρ′

2) = λ|w2|(Dsumλ(ρ1)−Dsumλ(ρ′
2))
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(8)

By definition of the delays, we have:

delay(ρ1ρ2ρ3, ρ′
1ρ′

2ρ′
3) =

Dsumλ(ρ1) + λ|w1 Dsumλ(ρ2) + λ|w1w2|Dsumλ(ρ3)− Dsumλ(ρ′
1)− λ|w1Dsumλ(ρ′

2)− λ|w1w2|Dsumλ(ρ′
3)

λ|w1w2w3|

(9)

Thanks to Equation 8, it can be simplified into:

delay(ρ1ρ2ρ3, ρ′
1ρ′

2ρ′
3) =

λ|w2|(Dsumλ(ρ1)− Dsumλ(ρ′
1)) + λ|w1w2|Dsumλ(ρ3)− λ|w1w2|Dsumλ(ρ′

3)

λ|w1w2w3|

(10)

We can now simplify this expression by λ|w2| and we get:

delay(ρ1ρ2ρ3, ρ′
1ρ′

2ρ′
3) =

Dsumλ(ρ1)− Dsumλ(ρ′
1) + λ|w1|Dsumλ(ρ3)− λ|w1|Dsumλ(ρ′

3)

λ|w1w3|
(11)

which exactly means: delay(ρ1ρ2ρ3, ρ′
1ρ′

2ρ′
3) = delay(ρ1ρ3, ρ′

1ρ′
3).

◭

Lemma 6. Let w ∈ dom(A) such that |RA(w)| > 1. Clearly, there exist two runs ρ, ρ′ on

w such that Dsumλ(ρ) 6= Dsumλ(ρ′). Moreover if ρ and ρ′ can be decomposed so that the

premises of Lemma 24 are satisfied, then we can find a strictly shorter word with two runs

on it which have different delays. We can repeat this operation until the goals of Lemma 6

are satisfied. ◭

B.3 Proof of Theorem 7

Proof. We start to prove that A is not functional iff DSumFunTest(A) returns No.

(⇐) The following invariant holds overall the execution of the algorithm: If the stack

S contains the pair ((p, q), d), then (p, q) is co-accessible and A admits two runs ρ : qI
w
−→

p, ρ′ : qI
w
−→ q such that

Dsumλ(ρ)− Dsumλ(ρ)

λ|w|
= d. This can be proved by a simple

inductive argument on the number of iterations of the while loop at Line 3. Suppose that

DSumFunTest(A) returns No. There are two cases to consider. If the pair ((p, q) ∈ F 2, d 6= 0)

is popped from the stack, then it witnesses the existence of two accepting runs ρ : qI
w
−→

p, ρ′ : qI
w
−→ q in A for which Dsumλ(ρ)− Dsumλ(ρ′) 6= 0. Thus, A is not functional. In the

second case, the pair ((p, q), d) popped from the stack witnesses that A admits two delays

for the co-accessible pair of states (p, q). By Lemma 5, this implies that A is not functional.

(⇒) Let A be a non functional Dsumλ-automaton. By Lemma 6, there exists a word

w such that A admits two runs ρ : qI
w
−→ qf ∈ F, ρ′ : qI

w
−→ q′

f ∈ F on w such that

Dsumλ(ρ) 6= Dsumλ(ρ′). Suppose that for all positions i < j, (pi, qi) 6= (pj , qj). In that

case DSumFunTest(A) will output No at Line 5 (if not before). Otherwise let i2 be the least

position on the two runs ρ, ρ′ such that there exists i1 < i2 such that ρ (resp. ρ′) reach

the state p (resp. q) at positions i1 and i2. By condition (ii) of Lemma 6, the delays are

different at i1 and i2 and therefore DSumFunTest(A) will determine that A is not functional

at Line 6, after processing ρ, ρ′ upon position i2 (if not before).
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This algorithm terminates as any pair of states is visited at most twice. It is well-known

that co-accessible states of a finite automaton can be computed in linear time. We can apply

this procedure on the product of A with itself to compute the co-accessible pairs of states

in quadratic time. ◭

B.4 Proof of Theorem 9

Proof. We give an non-deterministic CoPSpace (and hence PSpace) algorithm to test non-

functionality. By the pumping lemma, if a ratio-automaton with n states is not functional,

there exists a word of length at most 4n2 with two different values. We use the following non-

deterministic iterative algorithm: non-deterministically choose two transitions in parallel on

the same input letter and count the current length (up to 4n2), and compute the current

respective rewards and costs of the two current runs. Non-deterministically choose to stop

before the length exceeds 4n2 and check that the reached states are accepting and that

the respective ratio of the two chosen runs are different. We therefore need to store the

two current states, reward sum and cost sum, which are bounded by 4n2Mr and 4n2Mc,

where Mr and Mc are the maximal reward and cost (in absolute value). Those sums are

represented in pspace, and in nlogspace if the weights are unary encoded. ◭

C Decision Problems

C.1 Proof of Theorem 12

Proof. For Dsumλ automata, we show that L>ν
A 6= ∅ iff Player 0 has a strategy to ensure a

play from v0 with discounted sum greater than ν in the one player (infinite) Dsumλ game

Γ = (V, E, w, 〈V0, V1〉), where:

V = {p | p ∈ Q ∧ ∃w ∈ Σ∗(p
w
 f ∈ F )}

V0 = V, V1 = ∅

E = (V × (Σ ∪ ζ)× V ) ∩ ({(p, a, p′) | (p, a, p′) ∈ δ} ∪ {(p, ζ, p) | p ∈ F}), where ζ /∈ Σ is a

fresh symbol

For each e = (p, a, p′) ∈ E: If (p, a, p′) ∈ δ, then w(e) = γ(p, a, p′), else w(e) = 0.

Once proved the above equivalence, our complexity bound follows easily, since checking

wether L>ν
A 6= ∅ reduces to solving a 1 player Dsumλ game (that is in PTime [2]).

(⇒) If L>ν
A 6= ∅, then A admits an accepting run r : q1

0 = r0
w
 rn ∈ F such that

Dsumλ(γ(r) > ν. By construction, Γ admits an (infinite) path p with a positive discounted

sum, i.e. Player 0 has a (memoryless) strategy to win the one-player discounted sum game

Γ.

(⇐) S uppose that Player 0 has a strategy to win the one-player discounted sum game

Γ. Let p be an infinite path on Γ consistent with a winning strategy for player 0. Then

Dsumλ(r) > 0. Let W be the maximum absolute weight in Γ. For each prefix ri of length i

of r we have:

Dsumλ(ri) +
W

1− λ
≥ Dsumλ(r)⇒

Dsumλ(ri) ≥ Dsumλ(r) −
Wλi

1− λ
(12)

Since Dsumλ(r) > ν, there exists i∗ such that Dsumλ(r)−
Wλi∗

1− λ
> ν that implies Dsumλ(ri∗ ) >

ν. By construction, each path in Γ can be extended to reach a node in F . Let r′
i =

r′
0 . . . r′

m ∈ F be such a continuation of ri∗

. By Equation 12, our choice of i∗ guarantees
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that Dsumλ(r′
i) > ν. Since A is functional, r′ witnesses the existence of a word w such that

LA(w) > ν.

For Sum automata, let A be a Sum-automaton. L∼ν
A 6= ∅ iff A admits a path to a final

state whose sum of the weights is ∼ ν. This can be easily checked in PTime, using e.g. a

shortest path algorithm (once the edges have been reversed).

For Avg-automata, let A be an Avg-automaton. We can assume ν = 0 since the

∼ ν-emptiness problem for Avg-automata reduces to the ∼ 0-emptiness problem for Avg-

automata, by simply reweighting the input automaton [5]. L∼0
A 6= ∅ iff A admits a path to

a final state whose sum of the weights is ∼ 0, that can be easily checked in PTime.

Finally, let A be a Ratio-automaton, let ν =
m

n
. We consider the Sum automaton A′,

where each edge of A having reward r and cost c is replaced by an edge of weight rn − cm.

It can be easily proved that L∼ν
A 6= ∅ iff L∼ν

A′ 6= ∅.

◭

C.2 Proof of Theorem 13

Proof. Let A be a V -automaton, V ∈ {Sum, Avg, Dsumλ} and consider the ≥ ν-universality

(resp. > ν-universality) problem for V -automata. We check wether A admits an accepting

run with V (γ(r)) < ν. This can be done in PTime for V ∈ {Sum−, Avg−, Ratio, Dsumλ−}

(resp. V ∈ {Sum−, Avg−, Ratio}), with a procedure similar to the one applied in the proof

of Theorem 12. ◭

D Realizability

D.1 Proof of Theorem 14

Proof. A 2-counter machine M consists of a finite set of control states S, an initial state

sI ∈ S, a final state sF ∈ Q, a set C of counters (|C| = 2) and a finite set δM of instructions

manipulating two integer-valued counters. Instructions are of the form

s : c := c + 1 goto s′

s : if c = 0 then goto s′ else c := c− 1 goto s′′.

Formally, instructions are tuples (s, α, c, s′) where s, s′ ∈ S are source and target states

respectively, the action α ∈ {inc, dec, 0?} applies to the counter c ∈ C. We assume that M

is deterministic: for every state s ∈ S, either there is exactly one instruction (s, α, ·, ·) ∈ δM

and α = inc, or there are two instructions (s, dec, c, ·), (s, 0?, c, ·) ∈ δM .

A configuration of M is a pair (s, v) where s ∈ S and v : C → N is a valuation

of the counters. An accepting run of M is a finite sequence π = (s0, v0)δ0(s1, v1)δ1 . . .

δn−1(sn, vn) where δi = (si, αi, ci, si+1) ∈ δM are instructions and (si, vi) are configurations

of M such that s0 = sI , v0(c) = 0 for all c ∈ C, sn = sF , and for all 0 ≤ i < n, we have

vi+1(c) = vi(c) for c 6= ci, and (a) if α = inc, then vi+1(ci) = vi(ci) + 1 (b) if α = dec, then

vi(ci) 6= 0 and vi+1(ci) = vi(ci) − 1, and (c) if α = 0?, then vi+1(ci) = vi(ci) = 0. The

corresponding run trace of π is the sequence of instructions π̄ = δ0δ1 . . . δn−1. The halting

problem is to decide, given a 2-counter machine M , whether M has an accepting run. This

problem is undecidable [19].

Given a 2-counters (deterministic) machine M , we construct a functional weighted func-

tional Sum-automaton A = (Q, q0, δ, γ) (resp. Avg-automata), where Q = QO ∪ QI , Σ =

ΣO∪ΣI and δ ⊆ Q×Σ×Q such that M halts if and only if L(A) is realizable. In particular,

ΣO = δM and a strategy π ∈ ΛO for Player O is winning if and only if for each λI ∈ ΛI , the

projection of outcome(π, γ2) onto ΣO is an accepting run of M . The alphabet ΣI for Player I
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start

(·, inc, c, ·), -1

(·, dec, c, ·), 1

go, 0

go, 0

(·, 0?, ·, ·), 0

cheat+, 0 σ, 0

go, 0
♯, 1

Figure 2 Gadget to check positive cheats

start

(·, 0?, ·, ·), 0

(·, inc, c, ·), 1

go, 0

go, 0

(·, dec, c, ·), -1

cheat−, 0 σ, 0

go, 0
♯, 1

Figure 3 Gadget to check negative cheats

is the set of letters ΣI = {go} ∪ (
⋃

i=1,2{cheatCi+, cheatCi-})∪ (
⋃

0≤j<|S|{cheatR:sj}). The

role of Player I is that of observing the play of Player O and detecting whether he faithfully

simulates M , or he cheats. In details, if Player O cheats by declaring the i-th counter equal

to 0 when it is not (positive cheat), then Player I can use the action cheatCi+, i ∈ {1, 2},

to force all the runs but one (with weight ≤ 0) to die. Similarly, if Player O cheats by

decrementing a counter with value zero (negative cheat) or on the structural properties of a

run of M , then Player I can win by playing the corresponding observing action : cheatCi-,

for negative cheats on counter i ∈ {1, 2}, or cheatR:sj for a cheat on the run through M

detected at state sj.

The automaton A consists of a nondeterministic initial choice between different gadgets,

described below. Each gadget checks one of the properties of the sequence of actions provided

by Player O, and verify whether Player O simulates faithfully M or he eventually cheats. Due

to the initial nondeterministic choice, each final state (in one of the gadget) is accessible

throughout the evolution of the play and Player O has to ensure that all the properties

checked in the gadgets are fulfilled. Otherwise, Player I will have the ability to kill all the

runs but one, and to ensure that the only surviving run (in the appropriate gadget) reaches

the final state with weight ≤ 0.

In particular, Figure 2 represents the gadget to check a positive cheat on counter i,

i ∈ {1, 2}. Player I observes the inverted value of the counter i throughout the path on M

simulated by Player O. Whenever Player O declares that counter i is equal to 0, Player I

can use the action cheatCi+ to kill all the runs in A but the one within the observing gadget.

The evolution of such a run up to cheatCi+ will have a negative value (corresponding to

start
σ, 0

go, 0

(·, ·, ·, sH), 0

go, 0

♯, 1

Figure 4 Neutral gadget.
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start

(s0, ·, ·, ·), 0

go, 0

σ, 0

Σ \ {(s0, ·, ·, ·)}, 0

cheatR : s0,−1

σ, 0

go, 0
♯, 0

Figure 5 Gadget to check that Player 1 plays (s0, ·, ·, ·) at the beginning.

the inverted value of the observed counter) if Player O was cheating. Hence, as soon as

Player O playes ♯ it will end in a final state with weight ≤ 0. Symmetrically, the gadget for

checking negative cheats (represented in Figure 3) uses the weights on the edges to store the

value of the observed counter. If Player O cheats decrementing counter i when its value is

0, Player I can use the action cheatCi- to kill all the runs but the one (with negative value)

in the gadget observing negative cheats.

Finally, Player I can use the gadgets in Figures 5–6 to detect any structural cheat

committed by Player O. If Player O initially provides an action different from (s0, _, _, _),

Player I can punish him by playing action cheatR:s0. Similarly, if Player O provides two

actions that do not induce a (sub)-path in M , Player I can punish him within the gadget

in Figure 6.

The automaton A will contain a gadget to observe positive/negative cheats for each

counter i ∈ {1, 2}, a gadget to observe a structural cheat for each state s ∈ S that can be

traversed by a path in M , and a neutral gadget (represented in Figure 4), where Player I

simply observes the run provided by Player O and let such a run to reach a final state as soon

as Player O provides an action simulating a step toward the halting state of M . The proof

is concluded by showing that M halts iff Player O has a strategy to win the realizability

game on A. Namely, we show that Player O wins the realizability game iff he provides a

start
(·, ·, ·, si), 0

(·, ·, ·, sj 6=i)), 0

go, 0

go, 0

(si, ·, ·, ·), 0

(sj 6=i, ·, ·, ·), 0

go, 0

cheatR : si,−1

σ, 0

go, 0

♯, 0

Figure 6 Gadget to check cheats along the run.
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word π which corresponds to an accepting run of M (and then stop the game).

(⇒) Suppose that M halts. Let π be the run of M leading to the halting state, and consider

λO(π) ∈ ΛO, where λO(π) denotes the strategy for Player O induced by π, in which PlayerO

provides the word π and then stop the game. Let λI ∈ ΛI . There are two cases to consider.

1. In the first case, λI does not provide any action in:

(
⋃

i=1,2

{cheatCi+, cheatCi-}) ∪ (
⋃

0≤j<|S|

{cheatR:sj})

Then, the only run to a final state in A is the one within the neutral gadget, having

weight 1.

2. In the second case, γI contains an action in (
⋃

i=1,2{cheatCi+, cheatCi-}). Let α be the

first action in (
⋃

i=1,2{cheatCi+, cheatCi-}) on λI . There is only one gadget allowing a

run containing α. Since π is faithfully simulating M , such a run leads to a final state in

the corresponding gadget with value > 0.

Note that λI can not contain an action α ∈ (
⋃

0≤j<|S|{cheatR:sj}). In fact, Player I can

never play cheatR:sj, since Player O does not commit any structural cheat on the run π.

Hence, we conclude that ∀λI ∈ ΛI(LA(outcome(λO(π), λI) > 0).

(⇐) Suppose that the strategy λO ∈ ΛO is such that ∀λI ∈ ΛI(LA(outcome(λO, λI) ≥ 0).

By construction of A, λO allows Player 1 to survive in the gadgets for detecting positive,

negative or structural cheats if and only if the projection of the outcome onto ΣO is a faithful

simulation of a run in M . If Player I can not use an action in (
⋃

i=1,2{cheatCi+, cheatCi-})∪

(
⋃

0≤j<|S|{cheatR:sj}) to win (using the gadget targeted to check the corresponding cheat),

the only remaining strategy for Player I is playing indefinitely ¬cheat. In that case, Player O

wins only if he eventually provides an action simulating a step leading to an halting state

in M (and then stop the game). Thus, our hypothesis entail that λO consists in providing

a run for M that leads to a final state, witnessing that M halts.

◭

D.2 Proof of Theorem 15

Proof. We first consider the case of deterministic Sum-automata. Let A = (Q = QO ⊎

QI , qI , F, δ = δI ∪ δO, γ) be a deterministic Sum-automaton. Without lost of generality, we

assume that A contains only one accepting state denoted by f which is absorbing. Then

we consider A as a finite state game arena and compute the set of states S ⊆ Q from

which player 1 can force a visit to the accepting state f . Note that from any state s in S,

player 1 has a strategy to force a visit to f within n steps, where n = |Q|. Note also that by

determinacy, the complement of this set is the set of states of A from which player 2 has a

strategy to prevent a visit to f . Clearly, player 1 has to avoid the states in Q \ S at all cost

and so they can be removed from A. Let A′ be A where we have kept only the states in S.

Now, we construct from A′ a finite tree as follows. We unfold A′ and stop a branch at a

node when:

it is labeled with f and the sum of the weights on the branch up to the node is equal to

c > 0,

it is labeled by a state q that already appears on the branch from the root to the node.

We call the node where q already appears the ancestor of the leaf.

Let us note L the set of leafs of this finite tree. We then partition the leafs of this tree

into L1, the set of leafs that are good for player 1 and L2, the set of leafs that are good for

player 2. L1 contains:
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(C1) the leafs that are annotated with f and for which the sum of weights is strictly

positive and

(C2) the leafs labeled with a repeating state and for which the sum of weights from the

root to the leaf is strictly larger than the sum of weights from the root to the ancestor.

L2 = Q \L1 are the leafs that are good for player 2. Now, consider the game played on this

finite tree where player 1 wants to reach L1 and player 2 wants to reach L2. The winner

in this game can be determined by backward induction. We claim (and prove) below that

player 1 win in this finite game tree iff he wins the original game.

Assume that player 1 wins the finite game tree. We show how to construct a winning

strategy in the original game. The strategy is built as follows. In the original game, player 1

plays as in the final tree up to the point where he reaches a leaf (in L1). If the leaf is of sort

defined in C1 above then we know that player 1 has won the original game. Otherwise, we

know that the sum now is strictly greater than the sum up to the ancestor of the leaf that

we have reached. Then player 1 continues to play as prescribed by its winning strategy in

the tree from the ancestor. Continuing like that, each time that the game arrives at a leaf,

the sum of weights has strictly increased from the last visit to that leaf. As a consequence,

after a finite amount of time, the sum will be strictly larger than n · |−W | where −W is the

smallest negative weight in A′. From that point, player 1 can use his strategy that forces

the state f and reach it with a sum that is strictly positive (this is because he can force f

within n steps).

Now assume that player 2 wins the finite game tree. We show how to construct a winning

strategy in the original game. The strategy simply follows the strategy of player 2 in the

finite tree by applying the strategy from the ancestor when reaching a leaf. As only leaf

in L2 are reached when playing that way, we know that the sum on successive visits to

repeating states is non-increasing. As a consequence, as player 1 cannot force a visit to a

node labeled with f and a strictly positive sum in the finite game tree, we know that this

will not append in the original game neither when player 2 plays its strategy.

This proof clearly establishes that the problem belongs to NP ∩ coNP as we can guess

for the winning player one edge per states and verifies in polynomial time that this leads

to a winning strategy in the original game. Nevertheless, note that player 1 needs memory

to win in the original game as he has to verify that he has reached a sufficiently high sum

before applying the strategy that forces the visit to f .

As for the previous results Avg games can be reduced easily to Sum games, and as for

the questions about thresholds, Ratio games can be reduced to Avg games.

We now turn to the case of Dsumλ. The solution for Dsumλ is obtained by first removing

from A all states from which player 1 cannot force a visit to f . As above, we note the

game where those states have been removed by A′. Then, we consider A′ as an (infinite)

discounted sum game where player 1 tries to maximize the value of the discounted sum

while player 2 tries to minimize this value. Let v denotes the value of the initial state qI

in that game. We claim that player 1 wins the initial game iff the value v in qI is strictly

positive. Indeed, if player 1 has a winning strategy in the original game, i.e. a strategy to

force the game into f with strictly positive discounted sum, then by playing this strategy in

the discounted sum game, the infinite discounted sum will be equal to the discounted sum

up to f as from there only the self loop on f is crossed and its weight is equal to 0. Now

assume that player 1 has a strategy that force a value v > 0 in the discounted sum game.

Then by playing that strategy for i steps in the original game with i large enough to make

sure that λiW + · · ·+ λi+nW is small enough, he will be able to switch to its strategy that

forces f after at most n steps and ensure to reach f with a strictly positive discounted sum.
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As infinite discounted sum games are in NP∩coNP [2] and since our reduction is polynomial,

we also get that finite reachability discounted sum games are in NP ∩ coNP. ◭

E Determinization

E.1 Proof of Lemma 18

We prove the following short witness property for the twinning property:

◮ Lemma 25. Let A be a Dsumλ-automaton. If A does not satisfy the twinning property,

there exist two words w1, w2 ∈ Σ∗ such that |w1| ≤ 2|Q|2 and |w2| ≤ 2|Q|2, two states

p, q ∈ Q such that p and q are both co-accessible, and runs ρ1 : qI
w1−−→ p, ρ2 : p

w2−−→ p,

ρ′
1 : qI

w1−−→ q, ρ′
2 : q

w2−−→ q, such that delay(ρ1, ρ′
1) 6= delay(ρ1ρ2, ρ′

1ρ′
2).

Proof. Suppose that |w2| > 2|Q|2 (the case |w1| > 2|Q|2 is proved exactly the same way)

and that w1w2 witnesses that the twinning property does not hold by the decomposition

into runs ρ1, ρ2, ρ′
1, ρ′

2 as in the premisses of the lemma. We will show that we can shorten

the runs ρ1, ρ′
1 and still get a witness that the twinning property does not hold.

Since |w2| > 2|Q|2, there is a pair of states (p′, q′) that repeat three times along the two

parallel runs ρ2 and ρ′
2, i.e. w2 can be decomposed as w′

1w′
2w′

3w′
4 and ρ2 and ρ′

2 can be

decomposed as r1r2r3r4 and r′
1r′

2r′
3r′

4 respectively, where:

r1 : p
w′

1−−→ p′ r2 : p′ w′

2−−→ p′ r3 : p′ w′

3−−→ p′ r4 : p′ w′

4−−→ p

r′
1 : q

w′

1−−→ q′ r′
2 : q′ w′

2−−→ q′ r′
3 : q′ w′

3−−→ q′ r′
4 : p′ w′

4−−→ q

Note that r1, r′
1 and r4, r′

4 may be empty (in this case p = p′ and q = q′), but r2, r3, r′
2, r′

3

are assumed to be non-empty.

Now, there are two cases: delay(ρ1r1, ρ′
1r′

1) 6= delay(ρ1r1r2, ρ′
1r′

1r′
2) and in that case

the word w1w′
1w′

2 is a witness that the twinning property does not hold, and |w1w′
1w′

2| <

|w1w2|. In the second case, we have delay(ρ1r1, ρ′
1r′

1) = delay(ρ1r1r2, ρ′
1r′

1r′
2), but in that

case, we can apply Lemma 24 and we get delay(ρ1r1r3r4, ρ′
1r′

1r′
3r′

4) = delay(ρ1ρ2, ρ′
1ρ′

2).

Therefore delay(ρ1, ρ′
1) 6= delay(ρ1r1r3r4, ρ′

1r′
1r′

3r′
3) and w1w′

1w′
3w′

4 is a shorter witness that

the twinning property does not hold.

We can iterate this reasoning until we find a witness whose size satisfy the premisses of

the lemma. ◭

We are now ready to prove Lemma 18:

Proof of Lemma 18. We define a non-deterministic PSpace algorithm to check whether a

Dsumλ-automaton does not satisfy the twinning property. The idea is to guess two runs on

the same input word of size at most 4|Q|2 and two positions in those runs, and check the

pair of states at the two positions are equal and that the respective delays are different. This

algorithm uses a polynomial space (denomitors of the form λ|w| are stored in polynomial

space) and thanks to Lemma 25, is correct. ◭

E.2 Proofs of Lemma 21 and Lemma 20

We prove a stronger version of Lemma 21:

◮ Lemma 26. Let f be an accessible state of Ad by a run ρd on some word w ∈ Σ∗.

Then the following hold:
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1. dom(f) is the set of states q such that there exists a run on w reaching q;

2. Dsumλ(ρdT ) = min{Dsumλ(ξ) | ξ is a run of A on w}.

3. If q ∈ dom(f) and ρ is a run on w reaching q, then

f(q) = max{delay(ρ, ρ′) | ρ′ is a run of A on w} =
Dsumλ(ρ)− Dsumλ(ρdT )

λ|w|

4. For all f ′ : Q→ Q and all a ∈ Σ such that dom(f ′) = {q′ | ∃q ∈ dom(f), (q, a, q′) ∈ δ}

and for all q′ ∈ dom(f ′):

f ′(q′) =
f(q)

λ
+ γ(q, a, q′)− γd(f, a, f ′) for some q ∈ dom(f) such that (q, a, q′) ∈ δ

we have f ′ ∈ Qd and (f, a, f ′) ∈ δd.

Proof. The five statements are proved by induction on |w|. It is clear when |w| = 0.

Suppose that |w| > 0 and w = w′a for some a ∈ Σ. Let ρd : fI
w′

−→ f be a run of Ad on

w′ and let f ′ such that (f, a, f ′) ∈ δd, and td = (f, a, f ′).

- The first statement is obvious by induction hypothesis and by definition of δd.

- The second statement is proved as follows:

Dsumλ(ρdT )

= Dsumλ(ρd) + λ|w|γd(T )

= Dsumλ(ρd) + λ|w| min{
f(q)

λ
+ γ(q, a, q′) | q ∈ dom(f) ∧ (q, a, q′) ∈ δ}

= Dsumλ(ρd) + λ|w| min{
Dsumλ(ρ)− Dsumλ(ρd)

λ|w|
+ γ(q, a, q′) | q ∈ dom(f) ∧ (q, a, q′) ∈ δ}

by induction hypothesis and for some run ρ : qI
w′

−→ q. This is independ on the choice

of ρ as any run ρ′ reaching q on w′ satisfies Dsumλ(ρ′) = Dsumλ(ρ), as A is functional

and q is co-accessible.

= Dsumλ(ρd) + min{Dsumλ(ρ)− Dsumλ(ρd) + λ|w|γ(q, a, q′) | q ∈ dom(f) ∧ (q, a, q′) ∈ δ}

= min{Dsumλ(ρ) + λ|w|γ(q, a, q′) | q ∈ dom(f) ∧ (q, a, q′) ∈ δ}

= min{Dsumλ(ρ(q, a, q′)) | q ∈ dom(f) ∧ (q, a, q′) ∈ δ}

= min{Dsumλ(ξ) | ξ is a run on w}

(as it is independ on the choice of ρ)

- The third statement is proved as follows: Let q′ ∈ dom(f ′).

f ′(q′) =
f(q)

λ
+ γ(q, a, q′)− γd(f, a, f ′)

(for some q ∈ dom(f) such that (q, a, q′) ∈ δ)

=
Dsumλ(ρ)− Dsumλ(ρd)

λ|w|
+ γ(q, a, q′)− γd(f, a, f ′)

(by induction hypothesis and for some ρ : qI
w′

−→ q)

=
Dsumλ(ρ) + λ|w|γ(q, a, q′)− Dsumλ(ρd)− λ|w|γd(f, a, f ′)

λ|w|

=
Dsumλ(ρ(q, a, q′))− Dsumλ(ρdT )

λ|w|

This value does not depend on the choice q. Indeed, any run ρ′ that reaches q′ on w

satisfies Dsumλ(ρ′) = Dsumλ(ρ(q, a, q′)), as q′ is co-accessible and A is functional.

Then, we prove the second part of the third statement:
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f ′(q′) =
Dsumλ(ρ(q, a, q′)) − Dsumλ(ρdT )

λ|w|

=
Dsumλ(ρ(q, a, q′)) −min{Dsumλ(ξ) | ξ is a run on w}

λ|w|

= max
Dsumλ(ρ(q, a, q′))− Dsumλ(ξ)

λ|w|
| ξ is a run on w}λ|w|

= max{delay(ρ(q, a, q′), ξ) | ξ is a run on w}

which achieves to prove the lemma, as again, this value does not depend on the choice of

the run ρ(q, a, q′).

- We prove the fifth statement. Let f ′′ be a function as defined in the fifth statement.

We have seen that the value f ′(q′) does not depend on the choice of q. We can therefore use

exactly the same proof as f ′ to prove that for all q′′ ∈ dom(f ′′) :

f ′′(q′′) = max{delay(ρ, ρ′) | ρ, ρ′ are runs of A on wa s.t. ρ reaches q′′}

By definition of Qd, we get f ′′ ∈ Qd and by definition of δd, (f ′, a, f ′′) ∈ δd. ◭

Proof of Lemma 20. First note that Ad is complete. Indeed, for all f ∈ Qd and all a ∈ Σ,

there exists f ′ ∈ Qd such that (f, a, f ′) ∈ δd. It suffices to define f ′ as follows: for all q′ ∈ Q:

f ′(q′) =
f(q)

λ
+ γ(q, a, q′)− γd(f, a, f ′) for some q ∈ dom(f) such that (q, a, q′) ∈ δ

By Lemma 26 (statement 5), we get (f, a, f ′) ∈ δd.

We show that Ad is deterministic. Suppose that there exists f, f ′, f ′′ ∈ Qd and a ∈ Σ

such that (f, a, f ′) ∈ δd and (f, a, f ′′) ∈ δd. Clearly, by definition of δd, dom(f ′) = dom(f ′′).

Since f ′ and f ′′ are accessible by definition of Ad, we can apply Lemma 20 and we clearly

get that f ′(q) = f ′′(q) for all q ∈ dom(f ′) = dom(f ′′). Therefore Ad is deterministic.

Let us prove that LAd
= LA. Let w ∈ Σ+. We show that w ∈ dom(Ad) iff w ∈ dom(A).

If w ∈ dom(Ad), then there exists an accepting run ρd : fI
w
−→ f of Ad such that f ∈ Fd.

Therefore there exists q ∈ dom(f) such that q ∈ F . By Lemma 26, there exists a run of A

on w reaching q ∈ F , so that w ∈ dom(A).

Conversely, if w ∈ dom(A), then there exists an accepting run ρ : qI
w
−→ q with q ∈ F .

Since Ad is complete, there exists an accepting run of Ad on w reaching some f ∈ Qd. Again

by Lemma 26, we get q ∈ dom(f) and therefore, since q ∈ F , we have f ∈ Fd. Hence

w ∈ dom(Ad).

Let w ∈ dom(A), we show that LAd
(w) = LA(w). Since dom(A) = dom(Ad), w ∈

dom(Ad) and therefore there exists an accepting run of Ad on w that we denote by ρd :

fI
w
−→ f ∈ Fd. By Lemma 26, Dsumλ(ρd) = min{Dsumλ(ξ) | ξ is a run of A on w}. Since

w ∈ dom(A) and dom(A) ⊆ (Σ − #)∗#, w has necessarily the form w′# and since all

states of A are assumed to be co-accessible, all the runs of A on w are necessarily accepting.

Therefore Dsumλ(ρd) = Dsumλ(ξ) for some accepting run ξ of A on w (the choice of ξ is not

important as A is functional). In other words, LAd
(w) = LA(w). ◭

E.3 Proof of Theorem 22

Proof. The forth direction has been already proved (Lemma 20) . We prove the back

direction (i.e. the twinning property is a necessary condition). Suppose that the twinning

property does not hold. There exist states p, q such that p and q are co-accessible and there

exists words w1, w2 ∈ Σ∗, and runs ρ1 : qI
w1−−→ p, ρ2 : p

w2−−→ p, ρ′
1 : qI

w1−−→ q, ρ′
2 : q

w2−−→ q,

such that delay(ρ1, ρ′
1) 6= delay(ρ1ρ2, ρ′

1ρ′
2).
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We first show that there are infinitely many different delays. For all i ≥ 0, let ∆(i) =

delay(ρ1(ρ2)i, ρ′
1(ρ′

2)i). We show that for all j ≥ i ≥ 0, we have:

λi|w2|(∆(j) −∆(i)) = ∆(j − i)−∆(0) (13)

Let us first develop the expression ∆(j)−∆(i):

∆(j)−∆(i)

=
Dsumλ(ρ1(ρ2)j)− Dsumλ(ρ′

1(ρ′
2)j)

λ|w1|+j|w2|
−

Dsumλ(ρ1(ρ2)i)− Dsumλ(ρ′
1(ρ′

2)i)

λ|w1|+i|w2|

=
Dsumλ(ρ1(ρ2)j)− Dsumλ(ρ′

1(ρ′
2)j)− λ(j−i)|w2|Dsumλ(ρ1(ρ2)i) + λ(j−i)|w2|Dsumλ(ρ′

1(ρ′
2)i)

λ|w1|+j|w2|

We can rewrite Dsumλ(ρ1(ρ2)j)−λ(j−i)|w2|Dsumλ(ρ1(ρ2)i) into Dsumλ(ρ1)−λ(j−i)|w2|Dsumλ(ρ1)+

λ|w1|Dsumλ((ρ2)j−i), i.e. Dsumλ(ρ1(ρ2)j−i)− λ(j−i)|w2|Dsumλ(ρ1). A similar rewriting can

be obtained for Dsumλ(ρ′
1(ρ′

2)j)− λ(j−i)|w2|Dsumλ(ρ′
1(ρ′

2)i). Therefore we get:

∆(j)−∆(i)

=
Dsumλ(ρ1(ρ2)j−i)− Dsumλ(ρ′

1(ρ′
2)j−i)

λ|w1|+j|w2|
−

λ(j−i)|w2|(Dsumλ(ρ1)− Dsumλ(ρ′
1))

λ|w1|+j|w2|

=
1

λi|w2|
(
Dsumλ(ρ1(ρ2)j−i)− Dsumλ(ρ′

1(ρ′
2)j−i)

λ|w1|+(j−i)|w2|
−

λ(j−i)|w2|(Dsumλ(ρ1)− Dsumλ(ρ′
1))

λ|w1|+(j−i)|w2|
)

=
1

λi|w2|
(
Dsumλ(ρ1(ρ2)j−i)− Dsumλ(ρ′

1(ρ′
2)j−i)

λ|w1|+(j−i)|w2|
−

Dsumλ(ρ1)− Dsumλ(ρ′
1)

λ|w1|
)

=
1

λi|w2|
(∆(j − i)−∆(0))

By Equation 13, for all i ≥ 0, we have λi|w2|(∆(i + 1) − ∆(i)) = ∆(1) − ∆(0). Since

by hypothesis, ∆(1) 6= ∆(0), the sequence (∆(i))i≥0 is either strictly increasing or strictly

decreasing. Hence we get:

∀i, j ≥ 0, (i 6= j) =⇒ ∆(i) 6= ∆(j) (14)

We use Equation 14 to show that A cannot be determinized. We suppose that there exists

a deterministic automaton Ad = (Qd, fI , Fd, δd, γd) equivalent to A and get a contradiction.

We consider a word of the form w1(w2)i, for i taken large enough to satisfy the existence of

a run of Ad of the following form:

fI

w1(w2)k1

−−−−−−→ f
(w2)k2

−−−−→ f
(w2)i−k2−k1

−−−−−−−−→ f ′

for some k1, k2 such that k2 > 0, and some f, f ′ ∈ Qd.

Moreover, since p and q are both co-accessible, there exist two words w3, w′
3 and two

runs of Ad of the form:

ρd : fI
w1(w2)k1

−−−−−−→ f
(w2)k2

−−−−→ f
(w2)i−k2−k1 w3

−−−−−−−−−−→ g

ρ′
d : fI

w1(w2)k1

−−−−−−→ f
(w2)k2

−−−−→ f
(w2)i−k2−k1 w′

3−−−−−−−−−−→ g′

for some accepting states g, g′ ∈ Fd. Let ρd = ρd,1ρd2
ρd,3 and ρ′

d = ρd,1ρd2
ρ′

d,3 for some

subruns ρd,1, ρd2
that correspond to w1(w2)k1 and (w2)k2 respectively, and some subruns ρd,3

and ρ′
d,3 that correspond to (w2)i−k1−k2 w3 and (w2)i−k1−k2 w′

3 respectively. By equation 14,

we know that ∆(k1) 6= ∆(k1 + k2). We show that this leads to a contradiction. Let also

ρ3 : p
w3−−→ pf and ρ′

3 : q
w′

3−−→ qf be two runs in A, for some pf , qf ∈ F . Then we have:

Dsumλ(ρd,1ρd,2ρd,3) = Dsumλ(ρ1(ρ2)iρ3) (15)
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Dsumλ(ρd,1ρd,2ρ′
d,3) = Dsumλ(ρ′

1(ρ′
2)iρ′

3) (16)

Dsumλ(ρd,1ρd,3) = Dsumλ(ρ1(ρ2)i−k2 ρ3) (17)

Dsumλ(ρd,1ρ′
d,3) = Dsumλ(ρ′

1(ρ′
2)i−k2 ρ′

3) (18)

From which we get:

Dsumλ(ρd,1ρd,2ρd,3))−Dsumλ(ρd,1ρd,2ρ′
d,3)) = Dsumλ(ρ1(ρ2)iρ3)−Dsumλ(ρ′

1(ρ′
2)iρ′

3) (19)

which is equivalent to:

λ|w1|+(k1+k2)|w2|(Dsumλ(ρd,3)−Dsumλ(ρ′
d,3)) = Dsumλ(ρ1(ρ2)iρ3)−Dsumλ(ρ′

1(ρ′
2)iρ′

3) (20)

Similarly:

λ|w1|+k1|w2|(Dsumλ(ρd,3)−Dsumλ(ρ′
d,3)) = Dsumλ(ρ1(ρ2)i−k2 ρ3)−Dsumλ(ρ′

1(ρ′
2)i−k2 ρ′

3)

(21)

Dividing Equation 20 by λk2|w2| and combining it with Equation 21 we get:

Dsumλ(ρ1(ρ2)iρ3)− Dsumλ(ρ′
1(ρ′

2)iρ′
3)

λk2|w2|
= Dsumλ(ρ1(ρ2)i−k2 ρ3)−Dsumλ(ρ′

1(ρ′
2)i−k2 ρ′

3) (22)

Let us rewrite the left hand side of Equation 22:

Dsumλ(ρ1(ρ2)iρ3)− Dsumλ(ρ′
1(ρ′

2)iρ′
3)

λk2|w2|

=
Dsumλ(ρ1(ρ2)k1+k2 )− Dsumλ(ρ′

1(ρ′
2)k1+k2 )

λk2|w2|
+

+
λ|w1|+(k1+k2)|w2|(Dsumλ((ρ2)i−k2−k1 ρ3)− Dsumλ((ρ′

2)i−k2−k1 ρ′
3))

λk2|w2|

= λ|w1|+k1|w2|(∆(k1 + k2) + Dsumλ((ρ2)i−k2−k1 ρ3)− Dsumλ((ρ′
2)i−k2−k1 ρ′

3))

Similarly, we rewrite the right hand side of Equation 22:

Dsumλ(ρ1(ρ2)i−k2 ρ3)− Dsumλ(ρ′
1(ρ′

2)i−k2 ρ′
3)

= Dsumλ(ρ1(ρ2)k1 )− Dsumλ(ρ′
1(ρ′

2)k1 )+

+ λ|w1|+k1|w2|(Dsumλ((ρ2)i−k2−k1ρ3)− Dsumλ((ρ′
2)i−k2−k1ρ′

3))

= λ|w1|+k1|w2|(∆(k1) + Dsumλ((ρ2)i−k2−k1 ρ3)− Dsumλ((ρ′
2)i−k2−k1 ρ′

3))

Therefore Equation 22 rewrites into:

λ|w1|+k1|w2|(∆(k1 + k2) + Dsumλ((ρ2)i−k2−k1 ρ3)− Dsumλ((ρ′
2)i−k2−k1ρ′

3))

=

λ|w1|+k1|w2|(∆(k1) + Dsumλ((ρ2)i−k2−k1 ρ3)− Dsumλ((ρ′
2)i−k2−k1 ρ′

3))

And therefore ∆(k1) = ∆(k1 + k2), which is a contradiction. ◭
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