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Abstract: This paper proposes a binarization scheme for vectors of high dimen-
sion based on the recent concept of anti-sparse coding, and shows its excellent
performance for approximate nearest neighbor search. Unlike other binarization
schemes, this framework allows, up to a scaling factor, the explicit reconstruction
from the binary representation of the original vector. The paper also shows that
random projections which are used in Locality Sensitive Hashing algorithms, are
significantly outperformed by regular frames for both synthetic and real data if
the number of bits exceeds the vector dimensionality, i.e., when high precision
is required.
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Codage anti-parcimonieux pour la recherche

approximative de plus proches voisins

Résumé : Cet article proposes une technique de binarisation qui s’appuie
sur le concept récent de codage anti-parcimonieux, et montre ses excellentes
performances dans un contexte de recherche approximative de plus proches
voisins. Contrairement aux méthodes concurrentes, le cadre proposé permet,
à un facteur d’échelle près, la reconstruction explicite du vecteur encodé à par-
tir de sa représentation binaire. L’article montre également que les projec-
tions aléatoires qui sont communément utilisées dans les méthodes de hachage
multi-dimensionnel peuvent être avantageusement remplacées par des frames
régulières lorsque le nombre de bits excède la dimension originale du descrip-
teur.

Mots-clés : codage parcimonieux, représentations étalées, recherche approx-
imative de plus proches voisins, binarisation



Anti-sparse coding for approximate search 3

1 Introduction

This paper addresses the problem of approximate nearest neighbor (ANN)
search in high dimensional spaces. Given a query vector, the objective is to
find, in a collection of vectors, those which are the closest to the query with
respect to a given distance function. We focus on the Euclidean distance in
this paper. This problem has a very high practical interest, since matching the
descriptors representing the media is the most consuming operation of most
state-of-the-art audio [1], image [2] and video [3] indexing techniques. There is
a large body of literature on techniques whose aim is the optimization of the
trade-off between retrieval time and complexity.

We are interested by the techniques that regard the memory usage of the
index as a major criterion. This is compulsory when considering large datasets
including dozen millions to billions of vectors [4, 5, 2, 6], because the indexed
representation must fit in memory to avoid costly hard-drive accesses. One
popular way is to use a Hamming Embedding function that maps the real vec-
tors into binary vectors [4, 5, 2]: Binary vectors are compact, and searching
the Hamming space is efficient (XOR operation and bit count) even if the com-
parison is exhaustive between the binary query and the database vectors. An
extension to these techniques is the asymmetric scheme [7, 8] which limits the
approximation done on the query, leading to better results for a slightly higher
complexity.

We propose to address the ANN search problem with an anti-sparse solution
based on the design of spread representations recently proposed by Fuchs [9].
Sparse coding has received in the last decade a huge attention from both the-
oretical and practical points of view. Its objective is to represent a vector in a
higher dimensional space with a very limited number of non-zeros components.
Anti-sparse coding has the opposite properties. It offers a robust representation
of a vector in a higher dimensional space with all the components sharing evenly
the information.

Sparse and anti-sparse coding admits a common formulation. The algo-
rithm proposed by Fuchs [9] is indeed similar to path-following methods based
on continuation techniques like [10]. The anti-sparse problem considers a ℓ∞
penalization term where the sparse problem usually considers the ℓ1 norm. The
penalization in ‖x‖∞ limits the range of the coefficients which in turn tend to
‘stick’ their value to ±‖x‖∞ [9]. As a result, the anti-sparse approximation
offers a natural binarization method.

Most importantly and in contrast to other Hamming Embedding techniques,
the binarized vector allows an explicit and reliable reconstruction of the original
database vector. This reconstruction is very useful to refine the search. First,
the comparison of the Hamming distances between the binary representations
identifies some potential nearest neighbors. Second, this list is refined by com-
puting the Euclidean distances between the query and the reconstructions of
the database vectors.

We provide a Matlab package to reproduce the analysis comparisons reported
in this paper (for the tests on synthetic data), see http://www.irisa.fr/texmex/people/jegou/src.php.
The paper is organized as follows. Section 2 introduces the anti-sparse coding
framework. Section 3 describes the corresponding ANN search method which is
evaluated in Section 4 on both synthetic and real data.
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2 Spread representations

This section briefly describes the anti-sparse coding of [9]. We first introduce
the objective function and provide the guidelines of the algorithm giving the
spread representation of a given input real vector.

Let A = [a1| . . . |am] be a d×m (d < m) full rank matrix. For any y ∈ R
d,

the system Ax = y admits an infinite number of solutions. To single out a
unique solution, one add a constraint as for instance seeking a minimal norm
solution. Whereas the case of the Euclidean norm is trivial, and the case of
the ℓ1-norm stems in the vast literature of sparse representation, Fuchs recently
studied the case of the ℓ∞-norm. Formally, the problem is:

x⋆ = min
x:Ax=y

‖x‖∞, (1)

with ‖x‖∞ = maxi∈{1,...,m} |xi|. Interestingly, he proved that by minimizing
the range of the components, m − d + 1 of them are stuck to the limit, ie.
xi = ±‖x‖∞. Fuchs also exhibits an efficient way to solve (1). He proposes to
solve the series of simpler problems

x⋆
h = min

x∈Rm

Jh(x) (2)

with
Jh(x) = ‖Ax− y‖22/2 + h‖x‖∞ (3)

for some decreasing values of h. As h → 0, x⋆
h → x⋆.

2.1 The sub-differential set

For a fixed h, Jh is not differentiable due to ‖.‖∞. Therefore, we need to work
with sub-differential sets. The sub-differential set ∂f(x) of function f at x is
the set of gradients v s.t. f(x′)− f(x) ≥ v⊤(x′ − x), ∀x′ ∈ R

m. For f ≡ ‖.‖∞,
we have:

∂f(0) = {v ∈ R
m : ‖v‖1 ≤ 1}, (4)

∂f(x) = {v ∈ R
m : ‖v‖1 = 1, (5)

vixi ≥ 0 if |xi| = ‖x‖∞,

vi = 0 else} , for x 6= 0

Since Jh is convex, x⋆
h is solution iff 0 belongs to the sub-differential set ∂Jh(x⋆

h),
i.e. iff there exist v ∈ ∂f(x⋆

h) s.t.

A⊤(Ax⋆
h − y) + hv = 0 (6)

2.2 Initialization and first iteration

For h0 large enough, Jh0
(x) is dominated by ‖x‖∞, and the solution writes

x⋆
h0

= 0 and v = h−1

0
A⊤y ∈ ∂f(0). (4) shows that this solution no longer holds

for h < h1 with h1 = ‖A⊤y‖1.
For ‖x‖∞ small enough, Jh(x) is dominated by ‖y‖2 − x⊤A⊤y + h‖x‖∞

whose minimizer is x⋆
h = ‖x‖∞sign(A⊤y). In this case, ∂f(x) is the set of
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vectors v s.t. sign(v) = sign(x) and ‖v‖1 = 1. Multiplying (6) by sign(v)⊤ on
the left, we have

h = h1 − ‖Asign(A⊤y)‖2‖x‖∞. (7)

This shows that i) x⋆
h can be a solution for h < h1, and ii) ‖x‖∞ increases as h

decreases. Yet, Equation (6) also imposes that v = ν1 − µ1‖x‖∞, with

ν1 , h−1A⊤y and µ1 , h−1A⊤Asign(A⊤y). (8)

But, the condition sign(v) = sign(x) from (5) must hold. This limits ‖x‖∞ by
ρi2 where ρi = νi/µi and i2 = argmini:ρi>0(ρi), which in turn translates to a
lower bound h2 on h via (7).

2.3 Index partition

For the sake of simplicity, we introduce I , {1, . . . ,m}, and the index partition
Ī , {i : |xi| = ‖x‖∞} and Ĭ , I \ Ī. The restriction of vectors and matrices to
Ī (resp. Ĭ) are denoted alike x̄ (resp. x̆). For instance, Equation (5) translates
in sign(v̄) = sign(x̄), ‖v̄‖1 = 1 and v̆ = 0. The index partition splits (6) into
two parts:

Ă⊤
(

Ăx̆+ Āsign(v̄)‖x‖∞
)

= Ă⊤y (9)

Ā⊤
(

Ăx̆+ Āsign(v̄)‖x‖∞ − y
)

= −hv̄ (10)

For h2 ≤ h < h1, we’ve seen that x̄ = x, v̄ = v, and Ā = A. Their ‘tilde’
versions are empty. For h < h2, the index partition Ī = I and Ĭ = ∅ can no
longer hold. Indeed, when vi2 is null at h = h2, the i2-th column of A moves
from Ā to Ă s.t. now, Ă = [ai2 ].

2.4 General iteration

The general iteration consists in determining on which interval [hk+1, hk] an
index partition holds, giving the expression of the solution x⋆

h and proposing a
new index partition to the next iteration.

Provided Ă is full rank, (9) gives

x̆ = ξk + ζk‖x‖∞, (11)

with
ξk = (Ă⊤Ă)−1Ă⊤y (12)

and
ζk = −(Ă⊤Ă)−1Āsign(v̄). (13)

Equation 10 gives:
v̄ = νk − µk‖x‖∞, (14)

with
µk = Ā⊤(I − Ā⊤Ă(Ă⊤Ă)−1)Āsign(v̄)/h (15)

and
νk = (Ă⊤y − ξk)/h. (16)

RR n° 7771
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Left multiplying (10) by sign(v̄), we get:

h = ηk − υk‖x‖∞ (17)

with
υk = (Āsign(v̄))⊤

(

I − Ă(Ă⊤Ă)−1Ă⊤
)

Āsign(v̄), (18)

and
ηk = −sign(v̄)⊤Ā⊤(Ăx̆− y). (19)

Note that υk > 0 so that ‖x‖∞ increases when h decreases.
These equations extend a solution x⋆

h to the neighborhood of h. However,
we must check that this index partition is still valid as we decrease h and ‖x‖∞
increases. Two events can break the validity:

• Like in the first iteration, a component of v̄ given in (14) becomes null.
This index moves from Ī to Ĭ.

• A component of x̆ given in (11) sees its amplitude equalling ±‖x‖∞. This
index moves from Ĭ to Ī, and the sign of this component will be the sign
of the new component of x̄.

The value of ‖x‖∞ for which one of these two events first happens is translated
in hk+1 thanks to (17).

2.5 Stopping condition and output

If the goal is to minimize Jht
(x) for a specific target ht, then the algorithm stops

when hk+1 < ht. The real value of ‖x⋆
ht
‖∞ is given by (17), and the components

not stuck to ±‖x⋆
ht
‖∞ by (11).

We obtain the spread representation x of the input vector y. The vector x

has many of its components equal to ±‖x‖∞. An approximation of the original
vector y is obtained by

ŷ = Ax. (20)

3 Indexing and search mechanisms

This section describes how Hamming Embedding functions are used for approx-
imate search, and in particular how the anti-sparse coding framework described
in Section 2 is exploited.

3.1 Problem statement

Let Y be a dataset of n real vectors, Y = {y1, . . . ,yn}, where yi ∈ R
d, and

consider a query vector q ∈ R
d. We aim at finding the k vectors in Y that are

closest to the query, with respect to the Euclidean distance. For the sake of
exposure, we consider without loss of generality the nearest neighbor problem,
i.e., the case k = 1. The nearest neighbor of q in Y is defined as

NN(q) = argmin
y∈Y

‖q− y‖2. (21)

The goal of approximate search is to find this nearest neighbor with high
probability and using as less resources as possible. The performance criteria are
the following:

RR n° 7771
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• The quality of the search, i.e., to which extent the algorithm is able to
return the true nearest neighbor ;

• The search efficiency, typically measured by the query time ;

• The memory usage, i.e., the number of bytes used to index a vector yi of
the database.

In our paper, we assess the search quality by the recall@R measure: over a set
of queries, we compute the proportion for which the system returns the true
nearest neighbor in the first R positions.

3.2 Approximate search with binary embeddings

A class of ANN methods is based on embedding [4, 5, 2]. The idea is to map the
input vectors to a space where the representation is compact and the comparison
is efficient. The Hamming space offers these two desirable properties. The key
problem is the design of the embedding function e : Rd → B

m mapping the
input vector y to b = e(y) in the m-dimensional Hamming space B

m, here
defined as {−1, 1}m for the sake of exposure.

Once this function is defined, all the database vectors are mapped to B
m,

and the search problem is translated into the Hamming space based on the
Hamming distance, or, equivalently:

NNb (e(q)) = argmax
y∈Y

e(q)⊤ e(y). (22)

NNb(e(q)) is returned as the approximate NN(q).

Binarization with anti-sparse coding. Given an input vector y, the anti-
sparse coding of Section 2 produces x with many components equal to ±||x||∞.
We consider a “pre-binarized” version ẋ(y) = x/‖x‖∞, and the binarized version
e(y) = sign(x).

3.3 Hash function design

The locality sensitive hashing (LSH) algorithm is mainly based on random pro-
jection, though different kinds of hash functions have been proposed for the
Euclidean space [11]. Let A = [a1| . . . |am] be a d × m matrix storing the m
projection vectors. The most simple way is to take the sign of the projections:
b = sign(A⊤y). Note that this corresponds to the first iteration of our algorithm
(see Section 2.2).

We also try A as an uniform frame. A possible construction of such a frame
consists in performing a QR decomposition on a m×m matrix. The matrix A
is then composed of the d first rows of the Q matrix, ensuring that A×A⊤ = Id.
Section 4 shows that such frames significantly improve the results compared with
random projections, for both LSH and anti-sparse coding embedding methods.

3.4 Asymmetric schemes

As recently suggested in the literature, a better search quality is obtained by
avoiding the binarization of the query vector. Several variants are possible.

RR n° 7771
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We consider the simplest one derived from (22), where the query is not bina-
rized in the inner product. For our anti-sparse coding scheme, this amounts to
performing the search based on the following maximization:

NNa (e(q)) = argmax
y∈Y

ẋ(q)⊤e(y). (23)

The estimate NNa is better than NNb. The memory usage is the same because
the vectors in the database {e(yi)} are all binarized. However, this asymmetric
scheme is a bit slower than the pure bit-based comparison. For better efficiency,
the search (23) is done using look-up tables computed for the query and prior
to the comparisons [8]. This is slightly slower than computing the Hamming
distances in (22). This asymmetric scheme is interesting for any binarization
scheme (LSH or anti-sparse coding) and any definition of A (either random
projections or a frame).

3.5 Explicit reconstruction

The anti-sparse binarization scheme explicitly minimizes the reconstruction er-
ror, which is traded in (1) with the ℓ∞ regularization term. Equation (20)
gives an explicit approximation of the database vector y up to a scaling factor:
ŷ ∝ Ab

||Ab||2
. The approximate nearest neighbors NNe are obtained by com-

puting the exact Euclidean distances ||q − ŷi||2. This is slow compared to the
Hamming distance computation. That is why, it is used to operate, like in [6], a
re-ranking of the first hypotheses returned based on the Hamming distance (on
the asymmetric scheme described in Section 3.4). The main difference with [6]
is that no extra-code has to be retrieved: the reconstruction ŷ solely relies on
b.

4 Simulations and experiments

This section evaluates the search quality on synthetic and real data. In partic-
ular, we measure the impact of:

• The Hamming embedding technique: LSH and binarization based on anti-
sparse coding. We also compare to the spectral hashing method of [5],
using the code available online.

• The choice of matrix A: random projections or frame for LSH. For the
anti-sparse coding, we always assume a frame.

• The search method: 1) NNb of (22) 2) NNa of (23) and 3) NNe as described
in Section 3.5.

Our comparison focuses on the case m ≥ d. In the anti-sparse coding
method, the regularization term h controls the trade-off between the robustness
of the Hamming embedding and the quality of the reconstruction. Small values
of h favors the quality of the reconstruction (without any binarization). Bigger
values of h gives more components stuck to ‖x‖∞, which improves the approx-
imation search with binary embedding. Optimally, this parameter should be
adjusted to give a reasonable trade-off between the efficiency of the first stage
(methods NNb or NNa) and the re-ranking stage (NNe). Note however that,

RR n° 7771
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Figure 1: Anti-sparse coding vs LSH on synthetic data. Search quality (re-
call@10 in a vector set of 10,000 vectors) as a function of the number of bits of
the representation.

thanks to the algorithm described in Section 2, the parameter is stable, i.e.,
a slight modification of this parameter only affects a few components. We set
h = 1 in all our experiments. Two datasets are considered for the evaluation:

• A database of 10,000 16-dimensional vectors uniformly drawn on the Eu-
clidean unit sphere (normalized Gaussian vectors) and a set of 1,000 query
vectors.

• A database of SIFT [12] descriptors available online1, comprising 1 million
database and 10,000 query vectors of dimensionality 128. Similar to [5],
we first reduce the vector dimensionality to 48 components using principal
component analysis (PCA). The vectors are not normalized after PCA.

The comparison of LSH and anti-sparse. Figures 1 and 2 show the per-
formance of Hamming embeddings for synthetic data. On Fig. 1, the quality
measure is the recall@10 (proportion of true NN ranked in first 10 positions)
plotted as a function of the number of bits m. For LSH, observe the much bet-
ter performance obtained by the proposed frame construction compared with
random projections. The same conclusion holds for anti-sparse binarization.

The anti-sparse coding offers similar search quality as LSH for m = d when
the comparison is performed using NNb of (22). The improvement gets signif-
icant as m increases. The spectral hashing technique [5] exhibits poor perfor-
mance on this synthetic dataset.

The asymmetric comparison NNa leads a significant improvement, as al-
ready observed in [7, 8]. The interest of anti-sparse coding becomes obvious

1http://corpus-texmex.irisa.fr
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Figure 2: Anti-sparse coding vs LSH on synthetic data (m = 48, 10,000 vectors
in dataset).

by considering the performance of the comparison NNe based on the explicit
reconstruction of the database vectors from their binary-coded representations.
For a fixed number of bits, the improvement is huge compared to LSH. It is
worth using this technique to re-rank the first hypotheses obtained by NNb or
NNa.

Experiments on SIFT descriptors. As shown by Figure 3, LSH is slightly
better than anti-sparse on real data when using the binary representation only
(here m = 128), which might solved by tuning h, since the first iteration of
antisparse leads the binarization as LSH. However, the interest of the explicit
reconstruction offered by NNe is again obvious. The final search quality is
significantly better than that obtained by spectral hashing [5]. Since we do not
specifically handle the fact that our descriptor are not normalized after PCA,
our results could probably be improved by taking care of the ℓ2 norm.

5 Conclusion and open issues

In this paper, we have proposed anti-sparse coding as an effective Hamming
embedding, which, unlike concurrent techniques, offers an explicit reconstruc-
tion of the database vectors. To our knowledge, it outperforms all other search
techniques based on binarization. There are still two open issues to take the
best of the method. First, the computational cost is still a bit high for high
dimensional vectors. Second, if the proposed codebook construction is better
than random projections, it is not yet specifically adapted to real data.

RR n° 7771
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Figure 3: Approximate search in a SIFT vector set of 1 million vectors.
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