N
N

N

HAL

open science

GLIMPSE: A Generic and Flexible Monitoring
Infrastructure

Antonia Bertolino, Antonello Calabro, Francesca Lonetti, Antonino Sabetta

» To cite this version:

Antonia Bertolino, Antonello Calabro, Francesca Lonetti, Antonino Sabetta. GLIMPSE: A Generic
and Flexible Monitoring Infrastructure. 13th European Workshop on Dependable Computing
(EWDC), May 2011, Pisa, Italy. hal-00647355

HAL Id: hal-00647355
https://inria.hal.science/hal-00647355

Submitted on 1 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-00647355
https://hal.archives-ouvertes.fr

GLIMPSE: A Generic and Flexible Monitoring Infrastructure-

Antonia Bertolino, Antonello Calabro, Francesca Lonetti
Istituto di Scienza e Tecnologie dell'Informazione “A. Faedo”.

CNR, Pisa

{firsthame.secondname}@isti.cnr.it

ABSTRACT

To respond to the growing needs of evolution and adapta-
tion coming from the modern open connected world, appli-
cations must continuously monitor their own execution and
the surrounding context. The events to be observed, belong-
ing to guaranteed functional and non-functional properties,
can themselves vary in scope and along time. Therefore the
monitor must be easily configurable and able to serve dif-
fering event consumers. To address these requirements, we
developed the GLIMPSE monitoring infrastructure conceived
having flexibility and generality as main concerns. The pa-
per introduces the architecture of GLIMPSE and shows how it
can support runtime performance analysis through a simple
example.

Categories and Subject Descriptors

H.4 Information Systems Applications|: Miscellaneous;
D.2 [Software Engineering]: General; D.2.8 [Software
Engineering]: Metrics; D.2.5 [Testing and Debugging):
Monitors

General Terms

Measurement, Languages, Performance, Management

Keywords

Monitoring, Model-driven engineering, Complex-event pro-
cessing, CONNECT

1. INTRODUCTION

Modern software applications are more and more con-
ceived as dynamically adaptable and evolvable sets of com-
ponents that must be able to modify their behavior at run

*This work is partially supported by the EU-funded CoN-
NECT project (FP7-231167)

T Antonino Sabetta’s contribution to the research presented
in this paper was given while he was a Researcher at Istituto
di Scienza e Tecnologie dell’Informazione “A. Faedo”.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EWDC 11, May 11-12, 2011, Pisa, Italy

Copyright (©2011 ACM 978-1-4503-0284-5/11/05... $10.00

Antonino Sabettaf
SAP Research
Sophia Antipolis
antonino.sabetta@sap.com

time to tackle the continuous changes in the unpredictable
open-world settings [8]. Changes can be due for example to
the adoption of highly dynamic business integration infras-
tructures in the web service domain or to inherent mobility
of ubiquitous systems.

Coping with context changes requires that software be
able to self-organize its structure and self-adapt its behav-
ior to provide the desired quality of service. Assumptions
taken by developers at design-time, in fact, may become in-
valid after the system is deployed and running and not be
able to fully take into account the changing external world
interacting with the system. A runtime evaluation process
is hence needed to timely detect unpredictable changes that
affect the software system behavior.

This on-line analysis can involve non functional aspects
that are to be taken into account for addressing performance
measurement and run-time performance management. In
particular, runtime analysis is the basic step for collecting
the execution-time values of specified parameters in order
to fill program executions models or perform on-line perfor-
mance prediction.

The runtime assessment process, as opposed to activities
that are carried out in the development/coding phase, can
be identified as a monitoring activity. The monitoring pro-
cess involves several different activities carried out during
the execution of a system, dealing with data collection, in-
terpretation and presentation of information concerning the
“observable object”. Each of these activities is the topic of a
heterogeneous literature and addresses specific problems and
techniques providing different solutions (see a brief overview
in Section 5).

The most commonly used approach for observing the be-
havior of distributed systems is event-based monitoring. In
a large system a lot of events can occur, which need to be
filtered and combined to detect unexpected behaviors and
to estimate performance or dependability measures of the
system. In this paper we present an event-based monitor-
ing infrastructure, called GLIMPSE!, that implements the
key components of a generic, flexible and robust architec-
ture for composite event detection by means of publish/sub-
scribe messaging pattern. Current event-based monitoring
systems mainly focus on simple and composite event specifi-
cation languages, but provide a limited flexibility in dealing
with the large and dynamic context of monitor applications
and the existing technologies. Our contribution is a highly

!Generic fLexIble Monitoring based on a Publish-
Subscribe infrastructurE. A prototype is available at
http://labsewiki.isti.cnr.it /labse/tools/glimpse/public/main

CONNECT e
%

Enabler
v v
CONNECTed
System
Networked Networked
System G System
$1 CONNECTOr S2

Figure 1: Overview of the Connect architecture

flexible architecture decoupling high-level events specifica-
tion from their underlying observation and analysis.

Our work on monitoring originated in the context of the
European Project CONNECT?, addressing the challenges set
out in the “ICT forever yours” initiative>. The CONNECT
world (see Figure 1) envisions dynamic environments pop-
ulated by technological islands which are referred to as the
Networked Systems (NSs), and by the components of the
CONNECT architecture, called the CONNECT Enablers. The
ambitious goal of the project is to have eternally function-
ing systems within a dynamically evolving context. This is
achieved by synthesizing on-the-fly the CONNECTors through
which NSs communicate. The resulting CONNECTors then
compose and further adapt the interaction protocols run by
the CONNECTed System.

The very vision of CONNECT, i.e., achieving automated
and eternal interoperability, puts on-line approaches, and
therefore monitoring, in a central position. Monitoring sup-
ports the construction of feedback loops whereby approaches
to dependability analysis, CONNECTor synthesis, behavior
learning can be applied to an on-line setting and can be en-
hanced to cope with change and dynamism. An evaluation
of the requirements imposed on the monitoring subsystem
by the other elements of CONNECT has led us to identify
several key features that a generic, flexible monitoring in-
frastructure should possess, among which:

Distribution, dinamicity, heterogeneity: the monitoring sys-
tem must be able to observe systems that are inher-
ently distributed, highly dynamic and composed of
heterogeneous entities that were not necessarily con-
ceived for interoperation. Monitoring should address
distribution by adopting an architecture that is itself
distributed.

Modularity and Flexibility: a key goal of our work is to
realize a monitoring infrastructure that can be em-
ployed for different purposes (including monitoring of
functional and non-functional properties) and in differ-
ent settings (even beyond its application within CON-
NECT). This is achieved by structuring our infrastruc-
ture around a modular architecture whose coupling
with the observed system is minimal.

Efficiency: the performance penalty incurred because of
monitoring should be minimized (and possibly pre-

dictable), while achieving the intended observation goals.

Approaches for minimizing the impact of monitoring
involve the mechanisms of monitoring (e.g., sampling,

Zhttp:/ /connect-forever.eu
3http://cordis.europa.eu/fp7/ict /fet-proactive/ictfy_en.html

self-tuning [10]) as well as its architecture (e.g., by im-
proving scalability through a hierarchical organization

[18]).

An important issue addressed in our proposal is decou-
pling high-level specification of properties and events of in-
terest to be monitored, from the underlying observation ar-
chitecture, thus yielding the greatest generality and facil-
ity of use. For this purpose, the quantitative functional
and non-functional properties to be monitored by GLIMPSE
can be formally specified as instances of an eCore* meta-
model. The main advantage of expressing properties as
models which conform to a meta-model is that of provid-
ing a machine-processable language. From such models de-
signers can thus use automated procedures (in form of Mod-
elToModel or ModelToText transformations) to instrument
the GLIMPSE architecture to monitor properties of interest.
An overview of a specific Property Meta-Model (CPMM)
we devised to express properties relevant for the CONNECT
project, is presented in [12]°. Such meta-model allows defin-
ing elements and types to specify prescriptive (required) and
descriptive (owned) quantitative and qualitative properties
that CONNECT actors may expose or must provide. The
models conforming to such meta-model can be used to drive
the instrumentation of the monitoring Enabler that gen-
erates suitable probes to monitor useful properties on the
CONNECTOTS.

The remainder of the paper is structured as follows. Sec-
tion 2 outlines the key concepts and elements of our mon-
itoring framework. These concepts are mapped onto the
components of a generic architecture. A reference imple-
mentation of such architecture is presented in Section 3. An
application to a concrete scenario is presented in Section 4.
Section 5 gives a brief overview of related work. Finally,
Section 6 draws conclusions and identifies possible future
developments.

2. THE MONITORING ARCHITECTURE

Monitoring has been defined as the process of dynamic
collection, interpretation, and presentation of information
concerning objects or software processes under scrutiny [15].

Elaborating on [16], five core functions can be identified
for a generic monitoring system:

1. Data collection: this function concentrates on the col-
lection of raw data from the execution of the observed
components. This can be done by either instrumenting
the subject component (when this is possible) or by in-
tercepting interactions among components through a
proxy-based probe. A special case is represented by
the built-in logging facilities that many systems pro-
vide natively.

2. Local interpretation: this function refers to the filter-
ing that raw data go through before being interpreted
at an aggregated level, to remove redundant or irrele-
vant information.

3. Data transmission: in distributed systems, this func-
tion takes care of gathering information from different

“The eCore metamodel is an instrument for designing
Model-Driven Architecture (MDA).

SA first release is available at
http://labsewiki.isti.cnr.it /labse/tools/cpmm/public/main

Monitored application

Probe

=
— 1 GLIMPSE
Manager E‘Em:fx Manitering Bus

Processar

8

properties / metrics)
specification |

t

consumers

Figure 2: The architecture of GLIMPSE

out ports
(topics)

originating nodes to a central (possibly not unique)
node. Data transmission might exploit smart opti-
mization algorithms (e.g., to delay data transmission
or to give higher priority to certain information, when
the network is subject to congestion).

4. Global interpretation: (also known as “correlation” or
“aggregation”), this function makes sense of pieces of
information that come from several nodes and puts
them together in order to identify interesting condi-
tions/events that can be observed only at an aggre-
gated level. This function can be realized by means of
a complex-event processing engine.

5. Reporting: this function deals with presenting the re-
sults of monitoring in a format that is meaningful to
the “consumer” of the monitoring system. The con-
sumer can be a human (e.g., a system administrator)
or a program (e.g., a software component that imple-
ments the feed-back loop in a self-controlled software
system).

GLIMPSE, the monitoring infrastructure presented in this
paper, was designed in order to cover these five functions
in a modular, flexible way and it is based on messages ex-
change. It can be improved and enriched, even at runtime,
with components that respect a minimal set of requisites.

GLIMPSE was initially proposed in the context of the CON-
NECT project, where it is used to support behavioural learn-
ing, performance and reliability assessment, security, and
trust management. However, the infrastructure is totally
generic and can be easily applied to different contexts.

The architecture of GLIMPSE, shown in Figure 2, is com-
posed of five main components:

Probes (Collector/Data Suppliers). Probes intercept prim-

itive events when they occur into the software and send them
to the GLIMPSE Monitoring Bus. Probes are usually realized
by injecting code into an existing software or by using prox-
ies. In addition, they may be configured to use a primitive
event filter in order to reduce the amount of generated raw
data.

Monitoring Bus. The Monitoring Bus is the communica-
tion backbone where all information (events, questions, an-
swers) is sent by: Probes, Consumers, Complex Event Pro-

cessor and by all the services querying information to GLIMPSE.

In this prototype, we adopt a publish-subscribe paradigm

devoting the communication handling to the Manager com-
ponent; this communication pattern allows more consumers
to fetch the same CEP evaluation results and offers data
dissemination at low computational cost.

Complex Event Processor. The Complex Event Proces-
sor (CEP) is the rule engine which analyzes the primitive
events, generated from the probes, to infer complex events
matching the consumer requests. There are several rule en-
gines that can be used for this task (like Drools Fusion [2],
RuleML [6]). In the current implementation, we adopt the
Drools Fusion rule language [2] that is open source and can
be fully embedded in the realized Java architecture. Note
that, the proposed flexible and modular architecture allows
for easily replacing this specific rule language with another
one.

Consumer. It may be a learning engine, a dependability an-
alyzer or a simple customer that requests some information
to be monitored. It sends a request to the Manager using
the Monitoring Bus and waits for the evaluation results on
a dedicated answer channel provided by the Manager.

Manager. The Manager component is the orchestrator of
all the GLIMPSE architecture. It manages all the communi-
cations among the GLIMPSE components. Specifically, the
Manager fetches requests coming from Consumers, analyzes
them and instructs the Probes. Then, it instructs the CEP
Evaluator, creates and notifies to the Consumer a dedicated
channel on which it will provide results produced by the
CEP Evaluator.

The usage of a messaging system in Enterprise Service Bus
(ESB) allows GLIMPSE to use a variety of protocols such
as HTTP/SOAP and REST. Moreover, with the usage of
JBI [4] components, GLIMPSE may interact even with legacy
systems, binary transports, document-oriented transports,
and Remote Procedure Call systems. Adopting a messag-
ing system reduces execution bottlenecks that might occur
using Remote Procedure Call [5] or Database-centric archi-
tecture.

3. IMPLEMENTATION

A prototype of the GLIMPSE architecture, was developed
and is being used in the CONNECT project. According with
the five core functions identified in Section 2 we implemented
the components of the GLIMPSE architecture as follows:

1. Data collection is entrusted to the Probes, that collect
primitive data and send them to the Monitoring Bus.

2. Local interpretation is even realized by Probes; the pa-
rameters for Local Interpretation are provided by the
Manager component after processing a specific request
from a Consumer.

3. Data transmission is realized by the system backbone

(Monitoring Bus), implemented by means of ServiceMix4 [7],

an open source Enterprise Service Bus, used to com-

bine advantages of event-driven architecture and service-
oriented architecture functionality. We chose ServiceMix4
because it offers a Message Oriented Bus and is able to
run an open source message broker like ActiveMQ [1].

interaction Connect Menitoring Bus[@ sdCasel]J

Consumer Manager
i
«channel» | 1. <=<create=> |

I
|

| . - — — -
| service

|

|

I

2. sendRequest |

3 ==notify=>

4 < =create=>

«channel»
Source

5: setupProbe(Source)

a: send(Sink)

2: setupCEP(Source, Sink)

«channels
Sink

10 =<=notify==

11: ==subscri

Bl |

16, = <notify:

) 12: sendMessagelEvt)
13 ==notify==>

14: analyzeEvents

15: <=pub|

h== ComplexEvtDetecte

Figure 3: Sequence diagram of a typical interaction among GLIMPSE components

4. Global interpretation is provided by the CEP Evalu-
ator component. As said above, this has been imple-
mented using Drools Fusion, chosen for the useful inte-
gration with ServiceMix4, and the flexible and power-
ful rule language. It fetches messages generated from
Probes on the Monitoring Bus, analyzes them, and an-
swers on the dedicated channel provided by the Man-
ager.

5. The Reporting function has been implemented in the
Manager component that creates a dedicated channel
on which it will provide monitoring results to the Con-
sumer.

Figure 3 represents a sequence diagram of a typical in-
teraction among the GLIMPSE components. On startup, the
system initializes all the connections through ServiceMix4,
activates the ActiveMQ broker and starts the Manager.

The Manager is listening for incoming requests on the ser-
vice channel (see message 1 in Figure 3) from the Consumer.

The consumer sends a XML-like request on service chan-
nel (see message 2 in Figure 3). This request, including
parameters like window-time to evaluate, pattern to match,
events to match, is notified to the Manager (see message 3
in Figure 3).

After receiving the request, the Manager starts the mon-
itoring environment setup creating the channel source (see
message 4 in Figure 3). Then, it instructs the Probes about
the channel identifier to use and the filter to apply for re-
ducing the amount of raw data to send on the Monitoring
Bus (see message 5 in Figure 3).

The Manager starts the Complex Event Processor (see
message 6 in Figure 3) and creates the sink channel where

to write the monitoring results (see message 7 in Figure 3).

The Manager provides to the Complex Event Processor
the evaluation request received from the Consumer and the
channel where the monitoring results will be notified (mes-
sage 8 in Figure 3). After that, the Manager notifies to the
Consumer the channel name where it will find the results
concerning the submitted request (see message 9 and 10 in
Figure 3).

The Consumer subscribes on the sink channel (see mes-
sage 11 in Figure 3).

The Probes send primitive events on the source channel
(see message 12 in Figure 3), these messages are captured
by the CEP Evaluator (see message 13 in Figure 3), that
analyzes them (message 14 in Figure 3) and publishes the
evaluation results on the sink channel where the Consumer
is listening for (messages 15 and 16 in Figure 3).

The events taken into account in the GLIMPSE infrastruc-
ture are an abstraction of transitions between states of an
LTS machine. Specifically, we identify the following event
fields:

e a Timestamp;

a Data field representing the event payload;

a SourcelD, identifying the probe sending the event;

e a SequencelD, used by the CEP to infer the sequence
of events sent from the same source;

e a SourceState, indicating the state from where the
transition started.

4. APPLICATION EXAMPLE

As an example to show the application of GLIMPSE, in
this paper we refer to the Photo-Sharing scenario, which is
one of the demonstration examples chosen in CONNECT.

It depicts a service provided in a public infrastructure (e.g,
a stadium) for the dependable and secure exchange of pic-
tures among the heterogeneous handheld devices of specta-
tors. In particular, we consider a constraint that defines the
acceptable response-time for operations used by a Photo-
Sharing client. Hence, we want to measure the latency be-
tween submitting a query and obtaining a list of matching
photos.

Other properties can be checked using the same frame-
work, as long as they are expressed in an input language
(the eCore meta-model mentioned earlier) for which a map-
ping exists onto the complex event specification language
used in GLIMPSE. The notation we use in the example be-
low is expressed in the specification language used by Drools
Fusion [2]. We plan to release automated transformers from
our eCore meta-model to other possible specification lan-
guages.

The assumption we make is that the quantitative proper-
ties to be monitored (latency in this example) are formally
defined using our meta-model based notation. Such defini-
tion must be formulated in terms of the operations belonging
to the interface of the monitored entity. In the example of
the photo-sharing client, the monitoring could be used to
detect whenever the time it takes to get a list of photos that
match a query is above a certain threshold.

It must be noted that in general, observing the latency on
the client side or on the server side can yield very different
results. Besides, the deployment of probes usually is subject
to constraints, and this affects the observability of certain
properties significantly. This is a well-know problem, that is
outside the scope of this paper (for a discussion of observ-
ability of non-functional properties in distributed systems,
see, e.g., [20]).

What matters for the purposes of this work, as hinted
above, is that the property is eventually translated into a
language that is readily understood by the event-correlation
engine. The example in Listing 1 shows the latency con-
straint.

The rule PhotoSearchLatency matches a ReceiveCall event
followed by a Reply event (lines 4 and 8 respectively), ensur-
ing that both refer to the same session (lines 6 and 9) and
that the latter happens not earlier than 1200 ms (which is
assumed to be the latency threshold) after the former (line
11). If all these conditions are verified, i.e., the response
is received after the latency threshold, an alarm is injected
into the Monitoring Bus (line 14) so that the subscribers for
that kind of complex event can be notified.

Possible consumers of this type of notifications are SLA
checkers, loggers (of aggregated events), parameterization/-
tuning of runtime analysis models. In CONNECT, this noti-
fication is used by the dependability analysis Enablers.

S. RELATED WORK

Monitoring is recognized as a key functionality in many
different types of systems, spanning web services applica-
tions, grid environments [22], networks management mech-
anisms. A first attempt to overview the most important
problems and issues about monitoring in distributed systems

1 rule "PhotoSearchLatency”
2 when
3 // this is the complementary of Call

4 $call: ReceiveCall(

5 operation =— ”SearchPhotos”,

6 $session session_id) ,

7 from entry—point ”PhotoSharingMediator”;
8 $reply: Reply(

9 session_id =— $session ,

10 operation = ”SearchPhotos”,

11 this after[1200ms] $call)

12 from entry—point ”PhotoSharingMediator”;
13 then

14 // inject alarm on the Monitoring Bus
15 end

Listing 1: Sample rule for checking a latency policy

is [16]. Due to different aspects and activities of monitor-
ing, research on it appears fragmented. The many works on
monitoring are hard to compare as most of them focus only
on some of the aspects of monitoring.

The works more related to our proposal are those ap-
proaching the definition of a monitoring architecture [19,
14]. In particular, [19] presents an extended event-based
middleware with complex event processing capabilities on
distributed systems. Similar to GLIMPSE this work adopts a
publish/subscribe infrastructure but it is mainly focused on
the definition of a complex-event specification language. The
aim of GLIMPSE is to give a more general and flexible mon-
itoring infrastructure for achieving a better interpretability
with many heterogeneous systems.

Another monitoring architecture for distributed systems
management is presented in [14]. Differently from GLIMPSE,
this architecture employs a hierarchical and layered event
filtering approach. The goal of the authors is to improve
monitoring scalability and performance for large-scale dis-
tributed systems, minimizing the monitoring intrusiveness.

A very attractive research field is the event-based mod-
eling and computing. Many works focus on the definition
of expressive complex event specification languages [17, 11,
13]. Among them, GEM [17] is a generalized and interpreted
event-based monitoring language. It is rule-based (similar to
other event-condition-action approaches) and also provides
a tree-bases detection algorithm taking into account com-
munication delay. Also the Snoop language [11] follows an
event-condition-action approach supporting temporal and
composite events specification but it is especially developed
for active databases. A more recent formally defined spec-
ification language is TESLA [13]. It has a simple syntax
and a semantics based on a first order temporal logic. The
authors of [13] also provide an efficient event detection al-
gorithm by translating TESLA rules into automata. Some
existing open-source event processing engines are Drools Fu-
sion [2] and Esper [3]. They can be fully embedded in exist-
ing Java architectures and provide efficient rule processing
mechanisms.

Monitoring can be used to observe functional and non
functional properties. An approach to perform automated
and distributed monitoring for guaranteeing Service Level
Agreements (SLA) in the web services scenario is presented
in [21]. It gives a flexible but precise formalization of SLAs
and provides an engine to automate the monitoring of these

SLAs. Other monitoring frameworks exist that address the
monitoring of performance, in the context of system manage-
ment. Among them, there are Nagios [9] and Ganglia [18]:
the first offers a monitoring infrastructure to support the
management of I'T systems spanning network, OS, applica-
tions; the latter is especially dedicated for high-performance
computing and is used in large clusters, focusing on scala-
bility through a layered architecture.

6. CONCLUSIONS

We have presented the inspiring principles, the architec-
ture, an implementation and a simple example of usage of
GLIMPSE, a generic and flexible monitoring infrastructure.
It has been conceived to address the requirements for adap-
tation and context-awareness of modern distributed systems
operating in an open changing world.

GLIMPSE adopts a model-driven approach, in that the sim-
ple or complex events to be monitored conform to a spec-
ified GLIMPSE meta-model. The properties are defined by
the consumers in their own language and are then trans-
lated into our complex event language using model-driven
standard transformations. GLIMPSE is currently being in-
tegrated in the CONNECT architecture, aiming at ensuring
seamless eternal connection among heterogenous networked
systems. We focused here on the usage of GLIMPSE for per-
formance on-line analysis, but other usages are being con-
sidered in CONNECT, such as reliability assessment or trust
evaluation. The idea is to use one comprehensive and config-
urable monitoring infrastructure for different purposes and
different property specifications.

7. REFERENCES

[1] ActiveMQ: A complete message broker.
http://activemq.apache.org.

[2] Drools Fusion: Complex Event Processor.
http://www.jboss.org/drools/drools-fusion.html.

[3] Esper: Event Stream and Complex Event Processing
for Java.
http://www.espertech.com/products/esper.php.

[4] JBIL: Java Business Integration.
http://jcp.org/aboutJava/communityprocess-
/final/jsr208/index.html.

[5] RPC: Model for programming in a distributed
computing environment.
http://msdn.microsoft.com/en-
us/library /ms691207(VS.85).aspx.

[6] RuleML: The Rule Markup Initiative.
http://ruleml.org.

[7] ServiceMix: an open source ESB.
http://servicemix.apache.org/home.html.

[8] Luciano Baresi, Carlo Ghezzi, and Elisabetta Di
Nitto. Toward open-world software: Issues and
challenges. Computer, 39(10), 2006.

[9] Wolfgang Barth. Nagios. System and Network
Monitoring. No Starch Press, U.S. Ed edition, 2006.

[10] Antonia Bertolino, Guglielmo De Angelis, Antonino
Sabetta, and Sebastian G. Elbaum. Scaling up SLA
monitoring in pervasive environments. In Proc. of
ESSPE, pages 65-68, 2007.

[11] S. Chakravarthy and D. Mishra. Snoop: An expressive
event specification language for active databases. Data
& Knowledge Engineering, 14(1):1-26, 1994.

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

CONNECT Consortium. Deliverable 5.2 — Design of
approaches for dependability and initial prototypes,
2011.

Gianpaolo Cugola and Alessandro Margara. TESLA: a
formally defined event specification language. In Proc.
of DEBS, pages 50-61, 2010.

Ehab Al-Shaer Hussein, Hussein Abdel-wahab, and
Kurt Maly. HiFi: A New Monitoring Architecture for
Distributed Systems Management. In Proc. of ICDCS,
pages 171-178, 1999.

Jeffrey Joyce, Greg Lomow, Konrad Slind, and Brian
Unger. Monitoring distributed systems. ACM Trans.
Comput. Syst., 5(2):121-150, 1987.

Masoud Mansouri-Samani and Morris Sloman.
Monitoring distributed systems. Network and
distributed systems management, pages 303-347, 1994.
Masoud Mansouri-Samani and Morris Sloman. GEM:
a generalized event monitoring language for
distributed systems. Distributed Systems Engineering,
4(2):96-108, 1997.

Matthew L. Massie, Brent N. Chun, and David E.
Culler. The Ganglia distributed monitoring system:
design, implementation, and experience. Parallel
Computing, 30(7):817 — 840, 2004.

P.R. Pietzuch, B. Shand, and J. Bacon. Composite
event detection as a generic middleware extension.
Network, IEEE, 18(1):44 — 55, January 2004.

Franco Raimondi, James Skene, and Wolfgang
Emmerich. Efficient online monitoring of web-service
SLAs. In Proc. of the 16th ACM SIGSOFT
International Symposium on Foundations of software
engineering, pages 170-180, 2008.

Akhil Sahai, Vijay Machiraju, Mehmet Sayal, Aad van
Moorsel, and Fabio Casati. Automated SLA
Monitoring for Web Services. In Proc. of DSOM,
pages 28-41. 2002.

Serafeim Zanikolas and Rizos Sakellariou. A taxonomy
of grid monitoring systems. Future Gener. Comput.
Syst., 21:163-188, January 2005.

